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Abstract. It is shown that a weighted square summable process 
(sequence) with weights related to a St~eltjes moment sequence is 
generalized harmonizable (i.e., it is represented by a Borel vector-valued 
measure on the complex plane). An explicit formula for a normal 
dilation of such a process is presented. An example of a generalized 
harmonizable process which does not admit any representing measure 
on a compact set is given. It is proved that a process which is 
generalized harmonizable on a compact set always has a represenhag 
measure supported on at most two circles centered at the origin. The 
question of the existence and sumability of densities of representing 
measures of such a process is investigated. 

Introduction and preliminaries. Ideas of our paper go back to the works 
[ 5 ]  by Niemi and [7] by Rozanov. Namely, in 171 Rozanov have given the 
well-known definition of a harmonizable process as that which has an integral 
representation with some vector measure on the unit circle (this measure need 
not be orthogonally scattered as in the case of a stationary process). Niemi in 
[5] has considered square summable sequences and has shown that those 
sequences have stationary dilations and, consequently, are harmonizable. The 
method of Niemi's proof is based on the construction of some density function 
which is vector valued and has Fourier coefficients equal to a given square 
summable sequence. In [8] Salehi and Sbcinski have generalized Rozanov's 
definition of a harmonizable process (sequence) to that which has an integral 
representation with some vector measure on a compact subset of the complex 
plane C and have extended Niemi's result to the case of weighted square 
summable sequences with weights being powers of some fixed real. 

In our paper we extend Niemi's idea of looking for some vector density 
function to the case of weighted square summable sequences with weights 
related to strong Stieltjes moment sequences. In the case of a moment sequence 
with compact support (i.e., with representing measure supported on a compact 
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subset of the interval (0, as)) we prove that a related weighted square 
summable sequence has an integral representation with vector measure 
supported on a compact subset of C\{O). This shows that such sequences are 
harmonizable in the sense as in [XI. Our method is more general, namely it 
allows us to get an integral representation even for weighted square summable 
sequences with weights related to moment sequences which have representing 
measures not necessarily compactly supported in the open interval (0, a). In 
this case the representing measure of the process does not have the compact 
support, thus in our paper we use a little more general definition from that used 
in [8]. Results obtained in this general frame are presented in Section 2. 

In Section 3 we consider generalized harmonizable sequences with 
compact support (i.e. generalized harmonizable in the sense of [8]). We prove 
that in this case we can choose some representing measure supported on at 
most two circles in the complex plane C. This result allows us to give an easily 
verifiable characterization of generalized harmonizable sequences. Moreover, 
we show that we' have some freedom in choosing the circles on which the 
measure is concentrated. The extent of this freedom is considered. Some 
positive answers and some open problems are presented. Section 3 deals with 
the existence and summability of densities of representing measures of 
generalized harmonizable sequences with compact support. 

In what follows N denotes a separable Hilbert space with inner product 
( a ,  -) and norm 11 11. Denote by C* = C\{O) and by LB(C*) the c-algebra of all 
Bore1 subsets of C*. For a finite and positive measure p we use the usual 
definition of L2(p, Ii) as the Hilbert space of all square surnmable functions 
with values in H and inner product (f, g) = I(f (z), g(z))dp(z). For a given 
vector-valued measure 4- (with values in H )  we use the definition of variation 

l5l(4 = SUP 15,1(0), 
IIxIl d l  

where 15,l denotes the semivariation of the complex measure 5,(a) = (~(D)x,  x). 
For this and other topics on integration with respect to vector-valued functions 
see [I]. 

2. Weighted square sumable  sequences. Our main goal in the present 
section is to show that weighted square summable sequences with weights 
related to Stieltjes moment sequences are generalized harmonizable. For this 
we need some definitions. 

Let S stand for Z or Z+ (all integers or nonnegative integers). Extending 
Definition 1.10 in [8] we call the sequence (x,),, c H generalized harmoniz- 
able iff there exists a measure 

5: g(C*)  -, H (5: B(C) + H for S = Zf) 

such that 

(2.1) en is 5 integrable for any ~ E S ,  
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and 

where en (z) = zn, z E C. 

The measure { will be called a representing measure of the process { x , ) ~ , ~ .  
I f  the closed support of )(I is compact in C* (C for S = Z'), then the sequence 
will be shortly called harmonizable on a compact set. 

It is obvious that if {x,),,~ is harmonizable on a compact set, then the 
condition (2.1) is satisfied automatically and, consequently, in that case we have 
exactly the same definition as that used in [8]. 

The sequence of reals is called a bilateral Stieltjes moment sequence 
(shortly, a moment sequence, see [4]) if there exists a finite positive measure p on 
the open interval (0, m) such that en e L2(p) and' fin = j t2"dp(t) for n E 2. The 
measure p is called the representing measure of the sequence {B,},,,. A moment 
sequence is ca1led:non~e~ene~te iff 8, > 0 for any n in Z. For a given 
finite positive measure p on the interval (0, m) we define a new measure (the 
rotation measure) p,, on the Borel subsets of the complex.plane as follows: 

where ;I, denotes the indicator function of the Borel set u c C. Evidently, pro, is 
a positive and finite measure such that p;,({Oj) = 0. It is easy to see that 
pro* corresponds (via the polar coordinates) to the product measure of p and 
normalized Lebesgue measure on the interval [O,2n). 

The following theorem gives some sufEcient conditions for a process to be ' 
generalized harmonizable. 

THEOREM 1. Suppose p is the representing measure of a nondegenerate 
moment sequence {&,),,. Let X,EH for P I E Z .  

(i) The following conditions are equivalent: 

(2.4) ' there exists h E LZ(p,o,, H )  such that 

(a) h = Ph, where P denotes the orthogonal projection of L2&,,,, II) onto 
the closed span of U,,, i ? , ~ ,  

tb) enh E L2 (pro, 7 HI for any n Z 
( 4  X n  = J en hd~rot. 

Moreover, under the assumptions (a), (b) and (c) the function h is unique and 
takes the form 

m 
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(ii) If additionally the closed support of p is compact in (0, a), then the 
. condition (2.3) is equivalent to the following one: 

Proof.  Assume that (2.3) holds. Let 9;: = ~ , z ~ x ~ P ~ ' .  Observe first that for 
any fixed integer n the sequence g;, k f Z ,  consists of pairwise orthogonal 
vectors in L2 (pro,, H). Indeed, 

. .. 
Moreover, we gki- 

6 k + n  
IIg;:112 = - I l ~ ~ 1 1 ~  for a n y  n, k c Z .  

P k  

Thus for any ~ E Z  the series Ckw= - m  g; converges in LZ(k0,, H) because by the 
assumption (2.3) so does the series 

In particular, the function h given by (2.5) is well defined. Consequently, 
h belongs to the range of the projection P and the property (a) is proved. 

For a complex polynomial p, we denote by M ,  the operator of multi- 
plication by p with the domain 

It is the well-known fact that M,  is closed. Thus, since the series zr= g: 
converges in L2(ko,, H), it is easy to show that 

Consequently, e,h belongs to L2(pr0,, H), and the property (b) is proved. 
Moreover, we have 

which shows (c). This completes the proof of the implication (2.3)* (2.4). 
Now we will show the uniqueness of h. Suppose that g E L2(~ , , ,  H) has the 

properties (a), (b) and (c). Let P, denote the orthogonal projection of L2(p,,, H )  
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onto H ,  = &H.  Evidently, the spaces H,,  ~ E Z ,  are pairwise orthogonal. Thus 
we get Pg = xz=- Phg.  As an element of H,,  P,g takes the form P,g = &g, 
with some g, E H .  Then for x E H we have 

This shows that P,g = Zng, = j?; 'Z,, S e,gdpr,,. It follows from (c) that 
m 

P,g = l C x , ,  and, consequently, g = C k =  - P,g = h,  which shows that (2.4) 
implies (2.5). 

To prove the implication (2.4) -(2.3), fix an integer n and denote by 
Q (resp. Q& the orthogonal projection of L2(pro,, H )  onto the closed span of 
Ukd e n ~ k H  (resp. onto the space enEk'kH). Since the spaces f?,ZkH and a,EIH are 
orthogonal for k + I, we get 

Take now g = enh, where h satisfies (a), (b) and (c). As an element of the space 
e,ZkHl Q k g  is of the form Q,g = e&gk with some g , ~  H. Then for x c  H we 
have 

I B ~ ,  X) = P::k{enekgkr engkx) 

= B:-k  (Qkg7 e n e k ~ )  = bi2k (g7 enckx) 

= P;-k(enh, enzkx> = P i ? k  ( h ,  IenI2Zkx). 
Since h = Ph,  h is of the form h = - P;'Z[x,.  Thus 

which shows that Qkg = p ; l e , ~ ~ x , .  Finally, we have . 

which completes. the proof of (i). 
To prove (ii) assume that the closed support of p is compact in (0, a). The 

implication (2.3) *(2.6) is obvious. To complete the proof it is sufficient to 
show the implication (2.6) *(2.4). This can be done similarly to the proof of 
(2.3) * (2.4), keeping in mind that the multiplication operators M,, n E Z ,  are 
bounded. H 
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W em a r  k. 1. The condition (2.3) is sufficient for harmonizability. It can be 
generalized in the following way: choose the sequence ( f , J n E Z  such that, for any 
fixed n, f,, belongs to the convex hull of vectors of the form (CJ&)x, and e -,x,. 
It is'easy to see that the vectors f, form an orthogonal sequence in LZ(prot, H). 
If we assume that the series zr==_m Ile,f,t12 converges for any integer la, then 
putting h = zkm' - f, we get en h = zr= - en fk and, consequently, assuming 
additionally that fi, = 1, we get xn = je,hdp,,,. This shows that we have 
infinitely many possibilities of obtaining the density h. Evidently, in each case 
the sufficient aqsurnption in the implicit form xr= - m  Ile, f k 2  < co is the same 
but in the exp!icit form looks different. 

Finally, we can prove that weighted square summable processes con- 
sidered admit normal dilations of Niemi's type. The process of normal type is 
defined in [37. The notion of normal process appears also in [8]. Unfor- 
tunately, these notions cannot be used in our work. Though the Getoor 
definition deals with unbounded shift operators, it works only for a process 
with continuous prarneter. On the other hand, the definition from 181 assumes 
that the shift operators attached to the process are bounded. For our purpose 
the best choice is to apply the latter by neglecting the boundedness of shift 
operators and assuming that the considered semigroup is equal to Z or Z'. 
Thus the definition of normal process can be restated as follows. The sequence. 
{y,],,, in some Hilbert space K is normal iff there is a normal (shift) operator 
N in K (possibly unbounded) such that yo is in domain of Nn and y, = Nny, for 
any n E S. We say that a process (x,),,~ in H has normal dilation if there exists 
a normal process (y,],, in some Hilbert space K 3 H such that x, = Py, for 
~ E Z ,  where P is the orthogonal projection of K onto H. The following 
theorem gives an explicit construction of this dilation. 

THEOREM 2. Let p, {/?,,)nEz, {x,},,~ and h be as in Theorem 1. If (2.3) holds 
and Po = 1, then {x,},,~ has a normal dilation. Moreover, the process 
(y,), c L2brot, ti) dejned by the formula y, = enh, ~ E Z ,  is a normal dilation 
of {X,],EZ. 

Proof.  By Theorem 1 we see that h and e, h are in L2(p,,,, H). Let N be 
the operator of multiplication by el in L2(kot, H ) .  Then y, = Wh. Evidently, 
the operator N as a multiplication in L2-space is normal. All we have to show is 
that x, = Py,, where P denotes the orthogonal projection of LZ(prot, H) onto 
the space of constants H. For X E H  we have 

= je,(h, x ) d ~ , ,  = ue,hdpr0,, x) = (x,, x) = (x,, x) 

The fifth equality follows from Theorem 1. The proof is complete. ia 

Re m a r k  2. Repeating proofs from [8] one can extend Theorem 1.23 and 
Corollary 1.24 of [8] to the case of an arbitrary generalized harmonizable 
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sequence (not necessarily with compact support). Thus any generalized 
harmonizable sequence has a normal dilation. In Theorem 2 we assume more 
(namely, weighted square swnmability, which by Theorem 1 is equivalent to 
generalized harmonizabiIity with representing measure having L2-density), but 
our proof does not use any existence type theorems (like the Rosenberg 
theorem [6] which leads back to the Grothendieck inequality). 

3. Seqaences harmonizablle w compact sets. Our goal in this section is to 
show that any sequence harmonizable on a compact set admits a representing 
measure with closed support Iocalized on at most two circles. We also prove 
the main result of our paper which characterizes sequences harmonizable on 
compact sets as those whose growth in norm is not greater than exponential. 
We begin with some notation. For a real number r > 0, we denote by r, the 
circle on the complex plane centered at the origin and with radius r. Given 
a sequence x, E H, n EZ, define R +  (x) and R- ( x )  as follows: 

and 

R- (x )  = (lim sup I l~-~Il l /")- l .  
A'W 

We admit for R+(x) and R - ( x )  to be equal to infinity. We shall say that 
a sequence (x,},,, has an exponential growth if there are a, b 2 0 such that 
Ilx,ll < ablnl for any integer n. For ZEC, denote by 6, the point mass 
probability measure concentrated at the point ( z )  . 

! Now we can prove the main result of this section. 

THEOREM 3. I f  x = ( x , , } .~  c H ,  then the following conditions are equivalent: 

(3.1) x is harrnonizable on a compact set, 

(3.2) x has an exponential growth,. 

(3.3) R + ( x ) < o o  and R - ( x ) > O .  

If one of the above conditions holds, then 

1 (3.4) for any r ,  R ~ ( 0 ,  m) such that r < R-(x) and R > R+ (x) there is 
h E L2(kOt, II), p = 4 (Sr+ SR), SUCR that 

(a) Ph = h,  where P denotes the orthogonal projection of LZ(p,,, H) onto 
the closed span of UnEZZnH, 

(b) Xn = lr.urx enhd~rot. 

Moreover, for fixed r and R the function h having the properties (a) and (b) 
is unique and takes the f o m  

m 

(3.5) h =  2 ( r2n+R2n) -1~n~n .  
n = - m  
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P r o  of. By the definition of generalized harrnonizable process we see that 
there is a measure [ supported on a compact subset K of C* such that 
x ,  = jK end<. Since K is compact in C*, there is b > 0 such that len(.z)l < blnl for 
any Z E K  and any integer n. Consequently, Ixnll < l t l ( ~ ) b l ~ l ,  which completes 
the proof of the implication (3.1) 513.2). 

The implication (3.2) (3.3) is obvious. To show that (3.3) implies (3.4) 
observe first that /3, = $(r2"+R2") is a nondegenerate moment sequence with 
representing measure p. Since R > R+ (x) and r < R - (x), one can show that the 
series xkm= - flL1 llxk 11 converges. Hence the observation that prot is supported 
on r, u r,, together with Theorem 1, shows (3.4), the uniqueness of h and (3.5). 

Since the implication (3.4)-(3.1) is obvious and we have just proved the 
implication (3.3) = (3.41, we infer that (3.3) - (3.11, which completes the 
proof. rn 

Applying Theorem 3 and the Kolmogoroff factorization theorem we can 
state necessary and sufficient conditions for a matrix to be a covariance matrix 
of a sequence harmonizable on a compact set. 

COROLLARY. A matrix (C(n ,  m)),,m,z is a covariance matrix of some 
sequence harmonizable on a compact set iff the following conditions hold: 

(a) {C(n ,  m)) ,,,,, is positive definite, i.e., 

N 

C C(n, m)a,,&, 3 0, 
n,m= -N 

for any choice of N 2 0 and A_,, . . . , AN E C; 
(b) limsupC(n, n)lin < m as n--r m and limsupC(-n,-n)lIn < m as 

n j c o .  

Although the main part of the paper concerns sequences harmonizable on 
a compact set, the more general setting developed in Section 2 is aIso 
important. Namely, we can give an example of a generalized harmonizable 
sequence which does not admit any representing measure on a compact set. 

EXAMPLE 1. Let (x,}~,, be an arbitrary sequence of vectors in H such that 
Ilxnl14 = y(lnl), ~ E Z ,  where y(n) = ITtne(t)dt, ~ E Z ,  and Q: [0, m) + R is 
defined by 

for t > 1, 
for O < t < l .  

Then one can prove that the sequence {x,,},,~ satisfies the condition (2.3) with 
the nondegenerate moment sequence {fl,},,, defined by P(n) = J," tne(t)dt, 
~ E Z .  By Theorem 1, the sequence (x,},,, is generalized harmonizable. 
Suppose for a moment that {x,),, is harmonizable on a compact subset of C*. 
Then (see Theorem 3) there exist positive real numbers a and b such that 
Hx,114 d abl"l, ~ E Z .  Thus e - I n !  < y(ln1) < abn for n 2 0, which is impossible. 
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Remark  3. Any sequence x: Z -+ H harmonizable on a compact set has 
a representing measure supported on two circles centered at the origin. If 
R ,. (x) < R - (x) ,  then x has a representing measure supported on one circle. If 
R+ (x) < 1 < R -  (x), then x is harmonizable in the Rozanov sense. 

Re mark  4. Theorem 3 gives sufficient conditions for a sum of two circles 
Tr u r, to be a support of some representing measure of the process (x,),,,. 
The necessary conditions are a little weaker. Namely, if { is the representing 
measure sf a generalized harmonizable sequence x :  Z + H and the closed 
support of < is contained in the sum r, u r, with 0 < r < R ,  then 
0 < r < R-  (x) and R+ (x) < R < a,. If the closed support of 5: is contained in 
r, with some r > 0, then R + (x) < r < R-  (x). 

Remark  5. Evidently, for a process x which is harmonizable on a com- 
pact set, a choice of the measure p = $(6,+6,) (with r and R as in (3.4)) allows 
us to define the Stieltjcs moment sequence (j,),,, having the property (2.3). 
Thus Theorem 2 gives ihe direct proof of the existence of normal dilations for 
sequences harmonizable on compact sets. The result is exactly the same as 
Theorem 1.23 of [8]. 

Now we consider the question when the representing measure of a sequence 
harmonizable on a compact set may be located on its extremal circles. The 
problem of characterization of such sequences having an absolutely continuous 
representing measure is still open. Denote by m,, r > 0, the normalized 
Lebesgue measure supported on r,, i.e., m, = (J,),,,. The following equivalence 
is a simple consequence of Theorem 1 (ii). 

If x: Z + H and 0 < r < R < oo, then the following conditions are 
equivalent : 

(3.6) There are f E L2(mr, H) and g E L2(rn,, H) such that 

(3.7) 1 < CKI and C rZnl/x-,112 < oo. 
n = O  n = O  

It is easy to see that if we assume that in (3.7) the first series converges and 
the second one diverges, then we get square summable density on one circle 
and nonexistence of square summable density on the other. Evidently, any 
R > R+ (x) and 0 < r < R- (x) have the property (3.7). Thus the above is more 
interesting in the case R = R+(x) and r = R-(x). The square summable 
sequences considered in [8] are exactly those which have the property (3.7) 
with r = R and the square summabIe sequences considered by Niemi in [5] are 
exactly those for which r = R = 1. 

Now we prove some necessary conditions of the absolute continuity of 
representing measures on extremal circles. For a given measure on rr u T, 
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(P' < R) we will write 5 = c,+ t, where 5 ,  (CR, respectively) is supported on T, 
(r,, respectively). If ( is the representing measure of a generalized harmoniz- 
able sequence x, then 

PROPOSITION. Suppose t is a representing measure of the sequence (x,,).,~ 
which is supported on rr u r, (0 < r 6 R < m). Then 

(i) the sequences {IIxnII/Rn)?= and { I I x - ~ ~ ~  rn)7=P=o are bounded; 
(ii) if t, 4 m, (t, < WI,), then 

w-lim xnR -" = 0 (w-lim x -,rn = 0). 
n-t m n-+ m 

Proof.  Suppose that r < R, For a given measure q on T, denote by f the 
measure on r such that fj(E) = ?(RE) for any Bore1 subset E of r. Then for 
X E H  and n g Z  we have 

, . 
(xn, = rnJznd(Frcz>, x)+Rn Jznd(rR(z), x). 

r r 

Consequently, x, = r"(fr) A (- n) + ~ " ( f ~ ) "  (- n) for n E 2, where A denotes the 
Pburier transform of measure. Thus for positive n we have 

a l l n l l / l l r - I l l A - I  f o r n B O .  

Since {11(5",) A (- n)ll)nEZ+ and (1l(fR)^ (-n)ll)n,Z+ are commonly bounded as the 
sequences of Fourier coefficients of bounded measures (see [2]), we get the 
boundedness of {IIxnll/Rn),"=, The proof of the other part of the condition (i) 
is similar. 

To prove (ii) observe that if (c,, x) 4 m,, then ( f R ,  X) is absolutely 
continuous with respect to the normalized Lebesgue measure m on T. Thus 
d ( f R ,  x) = h,dm with some hX€L1.  This implies that 

where KJn) denotes the n-th Fourier coefficient of h i .  Thus 

Since 7: < R, the integrals jrznd(rr(z), x) are commonly bounded and &(-*) 
tends to 0 for n + ao as a sequence of Fourier coefficients of some L1-function 
(see [2]), we get 

The proof of the other part of (ii) is analogous. Similar arguments can be used 
to prove the properties (i) and (ii) in the case r = R. H 
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Finally, we give two examples which explain what may happen with 
representing measure on the extremal circles. For this we prove lemma which 
shows some method of constructing harmonizable sequences on their extremal 
circles. 

LEMMA. Let 0 < r < R < a. Suppose we are given two sequences {y,};==, 
and {z,),"=, such that 

y n =  Jz-"dqr  for n > 0 ,  z , =  fdq, for n > 0 ,  
rr rR 

where g, and qR are arbitrary masures supported on T, and T,, respectively. 
Then the sequence (x,),, de$ned by 

is generalized harmonizahle with the representing measure ( on r, v rR giuen 
by the formulas = tR = g R  + hRdmR, t, = v, + h,drn,, where 
h, E LZ (mR, H) and hr E L2(mr, H )  take the form 

P r o  of. First we prove that the series in (3.8) converges in L2(m,, H). 
Since the summands in the series (3.8) are orthogonal and 

the series (3.8) converges. Similarly we show the convergence of the series in 
(3.9). Now for n > 0 we have 

Analogously we prove that 

x, = J zndC(z) for n < 0. B 
~ P U ~ R  

The following example is an application of the Lemma. - 
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EXAMPLE 2. Let H = C, 0 < r < R < c~ and q ,  = a,, q, = 6,. Defme 

n e n  R + ( (x, ) )  = R and R - ((x,]) = r. It foIIows from the Lemma that 

Thus the sequence { x , ) . , ~  has a representing measure on its extremal circles. 
Since 

l imx,R-"=I  and l i m x - , r n = l ,  
n+m n+ m 

we can use the Proposition (ii) to see that { x , ] , ,  has no representing measure 
absolutely continuous wi* respect to the Lebesgue measure on T, u T,. 

I . . .  , 

The next exdmple shows that there are sequences which have no 
representing measure on their extremal circles. 

EXAMPLE 3. Let H = 6 , ' ~  < r < R < ca and 

. nRn for n > 0 ,  
x n =  C for n  SO. 

Then R+({x,)) = R and R-({x,) )  = r. Since the sequence Ilx,Jj/Rn = n for 
n  > 0 is unbounded, we can infer from the Proposition (i) that the process 
{x,),,, has no representing measure on T, u T,. It follows from Theorem 3 
applied to the sequence 

for n 2 0, 
= tor n  4 0 

that for R, > R and pa > 0 we have x, = jr,, e,dqR, with some r,, defined on 
r,,. Evidently, for n < 0 we have xn = jr,znd6,(z). Thus, by the Lemma, {x,),,~ 
has a representing measure on T, u T,, . 

It is easy to see that using the method as in Example 3 we can also show 
that the sequences defined by the formulas 

Rn f o r n > O ,  
xn = { nrn for n < O  

and 

nRn for n  > 0, 
Xn = In? for n  B o 

have no representing measures on their extremal circles. For the last example 
even taking one circle not being extremal does not help. 
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Remark 6. Most results of our paper (like Theorem 3) can be refor- 
mulated for generalized harmonizable one-sided sequences x: Zf -+ W by 
replacing Z by Z +  and two circles by one (using only R + ) .  In particular, any 
one-sided sequence harmonizable on a compact set has a representing measure 
supported on one circle centered at the origin. Moreover, a sequence x: Z H 
is hannonizable on a compact set iff the sequences y: Z+ -+ H and z: Z+ + H 
defined by y, = x, and z, = x-, are harmonizable on compact sets. 
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