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WEIGHTED SQUARE SUMMABLE
AND GENERALIZED HARMONIZABLE SEQUENCES*

BY

M. SEOCINSKI AND J. STOCHEL (KRAKOW)

Abstract. Tt is shown that a weighted square summable process
(sequence) with weights related to a Stieltjes moment sequence is
generalized harmonizable (i.., it is represented by a Borel vector-valued
measure on the complex plane). An explicit formula for a normal
dilation of such a process is presentéd. An example of a generalized
harmonizable process which does not admit any representing measure
on a compact set is given. It is proved that a process which is
generalized harmonizable on a compact set always has a representing
measure supported on at most two circles centered at the origin. The
question of the existence and summability of densities of representing
measures of such a process is investigated. :

~ Introduction and preliminaries. Ideas of our paper go back to the works
[5] by Niemi and [7] by Rozanov. Namely, in [7] Rozanov have given the
well-known definition of a harmonizable process as that which has an integral
representation with some vector medsure on the unit circle (this measure need
not be orthogonally scattered as in the case of a stationary process). Niemi in
[5] has comsidered square summable sequences and has shown that those
sequences have stationary dilations and, consequently, are harmonizable. The
method of Niemi’s proof is based on the construction of some density function
which is vector valued and has Fourier coefficients equal to a given square
summable sequence. In [8] Salehi and Slocinski have generalized Rozanov’s
definition of a harmonizable process (sequence) to that which has an integral
representation with some vector measure on a compact subset of the complex
plane C and have extended Niemi’s result to the case of weighted square
summable sequences with weights being powers of some fixed real.

In our paper we extend Niemi’s idea of looking for some vector density
function to the case of weighted square summable sequences with weights
related to strong Stieltjes moment sequences. In the case of a moment sequence
with compact support (i.e., with representing measure supported on a compact
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subset of the interval (0, o)) we prove that a related weighted square
summable sequence has an integral representation with vector measure
supported on a compact subset of C\{0}. This shows that such sequences are
harmonizable in the sense as in [8]. Our method is more general, namely it
allows us to get an integral representation even for weighted square summable
sequences with weights related to moment sequences which have representing
measures not necessarily compactly supported in the open interval (0, co). In
this case the representing measure. of the process does not have the compact
support, thus in our paper we use a little more general definition from that used
in [8]. Results obtained in this general frame are presented in Section 2.

In Section 3 we consider generalized harmonizable sequences with
compact support (i.e. generalized harmonizable in the sense of [8]). We prove
that in this case we can choose some representing measure supported on at
most two circles in the complex plane C. This result allows us to give an easily
verifiable characterlzatlon of generalized harmonizable sequences. Moreover,
we show that we have some freedom in choosing the circles on which the
measure is concentrated. The extent of this freedom is considered. Some
positive answers and some open problems are presented. Section 3 deals with
the existence and summability of densities of representing measures of
generalized harmonizable sequences with compact support.

* In what follows H denotes a separable Hilbert space with inner product
(-, *) and norm |- |. Denote by C* = C\{0} and by #(C*) the o-algebra of all
Borel subsets of C*. For a finite and positive measure u we use the usual
definition of I2(u, H) as the Hilbert space of all square summable functions
with values in H and inner product {f, g> ={(f(2), ¢(2))du(z). For a given
vector-valued measure ¢ (w1th values in H) we use the deﬁmtlon of variation

[¢l(e) = sup |&,l(0),
Ixf =1 ‘ }
where |€_ | denotes the semivariation of the complex measure é (0) = (¢(0)x, x).
For this and. other topics on 1ntegrat10n with respect to vector-valued functions
see [1]. :

2. Weighted square summable sequences. Our main goal in the present
. section is to show that weighted square summable. sequences with weights
related to Stieltjes moment sequences are generallzed harmomzable For thlS
we need some definitions.

Let S stand for Z or Z* (all integers or nonnegative integers). Extending
Definition 1.10 in [8] we call the sequence {X,}nes = H generalized harmoniz-
able iff there exists a measure

& BCH-H (& B(O)— H for S = Z*)
such that
(2.1) e, is ¢ integrable for any neS.
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and o
22) x,= je,,d!,‘,
where e, (z) = 2", zeC.

The measure & will be called a representing measure of the process {x s
If the closed support of || is compact in C* (C for S = Z*), then: the sequence
will be shortly called harmonizable on a compact set. g

It is obvious that if {x,},.s is harmonizable on a compact set,*then the
condition (2.1) is satisfied automatically and, consequently, in that case we have
exactly the same definition as that used in [8].

The sequence {f,},.z of reals is called a bilateral Stieltjes moment sequence
(shortly, a moment sequence, see [4]) if there exists a finite positive measure p on
the open interval (0, co) such that e,e I*(u) and B, = j¢*"du(t) for ne Z. The
measure y is called the representing measure of the sequence { ﬁ }nez- A moment
sequence {B,}.cz is called. nondegenerate iff B, > 0 for any n in Z. For a given
finite positive measure p on the interval (0, co) we define a new measure (the
rotation measure) g, on the Borel subsets of the complex plane as follows:

"o 2z

() = 5 1 Ix,(re“’)dﬂdu(r)

where y, denotes the indicator function of the BoreI seto < C. Ev1dently, Mot 18
a positive and finite measure such that po({0}) =0. It is easy to see that
Ueor cOTresponds (via the polar coordinates) to the product measure of y and
normalized Lebesgue measure on the interval [0, 27).

The following theorem gives some sutﬁc1ent condltlons for a process to be ’
generahzed harmomzable

THEOREM 1. Suppose u is the representing measure of a nondegenerate
moment sequence {f,}n.z. Let x,€H for neZ.
(i) The following conditions are equivalent:

(2.3) Y lekll2 ﬁ"“‘ <o for any neZ;

k=—o0 k
24)° there exists he I? (tror» H) such that

(a) h = Ph, where P denotes the orthogonal pro;ectmn of I? (umt, H) onto
the closed span of | )..z€,H,

(b) e,he [*(toy, H) for any neZ,

(©) x, = [ e hdpicy.

Moreover, under the assumptions (a), (b) and (c) the function h is unique and
takes the form

25 h= {2 ékﬁ,,__lx,‘f.

k=-—w




It is the well-known fact that M, is closed. Thus, since the series ZZ’:_@ ar
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(i) If additionally the closed support of u is compact in (0, ), then the

. condition (2.3) is equivalent to the following one:

2O Y Btlx)? <o

k=—o
Proof. Assume that (2.3) holds. Let g} = e,&,x, B¢ *. Observe first that for
any fixed integer n the sequence gj, keZ, consists of pairwise orthogonal
vectors in I?(u., H). Indeed,

{gk, 91> = “e Izékel(xks )dﬂrmﬁk_lﬂl_l

— [ P, x) B B je“‘ md
(0)0) .2
= bl 2B

Moreover, we get:
ﬁk+n

Bi

Thus for any ne Z the series ), __ gk converges in I?(y,, H) because by the
assumption (2.3) so does the series

S ogir= 3 P,

k=—w k= k

Ix,lI> for any n, keZ.

gkl =

In particular, the function h given by (2.5) is well defined. Consequently,
h belongs to the range of the projection P and the property (a) is proved.

For a complex polynomial p, we denote by M, the operator of multi-
plication by p with the domain

D, = {F €L (ts H): B € L2tss H)).

n

converges in L?(u.o, H), it is easy to show that

eh=M,h= 3 g

k=—w

Consequently, e,h belongs to I?(y., H), and the property (b) is proved
Moreover, we have

je,,hd/,tm. Z _“e ekﬁk xkdurol = jrznd.u(r)ﬁn Xp = Xp>

) k=—mw
which shows (c). This completes the proof of the implication (2.3)=(2.4).
Now we will show the uniqueness of 4. Suppose that g € I* (i, H) has the

properties (a), (b) and (c). Let P, denote the orthogonal projection of L? (i, H)
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onto H =¢,H. Evidently, the spaces H,, ne Z, are pairwise orthogonal. Thus
we get Pg = Z P,g. As an element of H,, P,g takes the form P,g = e,g,
with some g,,eH , Then for xe H we have ;

0> %) = Br * <Esllr €% = By (P, &%)

= B. '<g, P,(&,%)) = B, ' g, &)

= ﬂll ! _fe (ga x)d.urot - Bn ! <_fe gd.urot: x>
This .shows that P,g=¢&,9, = B;* e j e, gdpo. 1t follows from (© that
P,g = B, 'é,x, and, consequently, g = Zk— P,g = h, which shows that (2. 4)
implies (2. 5) ,

To prove the implication (2.4)= (2. 3), ﬁx an 1nteger n and denote by

0O (resp. Q,) the orthogonal projection of I?(u,,, H) onto the closed span of

\Ukez €,€, H (resp. onto the space e,&, H). Since the spaces e,&, H and e, H are
orthogonal for k # I, we get .

-

a0

Y. 12l =11QgI> < o0 for any geI?(u, H).

k=—o
Take now g = e,h, where h s‘ati'sﬁesv(a), (b) and (c). As an element of the;':épace
e,e.H, Qg is of the form Q,g = e,e,g, with some g, € H. Then for xe H we
have S ;
(gk’ X) = ﬁn_+1k<e,.ékgk, e,.ékx> .
‘ ,Y = r|_+1k<ng7 enékx> = ﬁn_-l-lk<g, enékx>
) = ;+1k<enh9 ene-ki)c> = ﬁ;—i-lk<h, |enlzékx>'

Since h = Ph, h is of the form h=Y," __ B 'gx, Thus

(gk’ x) ﬂn+k< z ﬁl elxl, |e| ekx>

I=—ow

Z B ﬁn+k<elxla le, |2ekx> ﬁn+kﬂn+kﬂk (% X)

I=—w

(ng xk: _x)

which shows that ng Bile ekxk Fmally, we have :

0> 5 el = 5 mtleantt= 5 B
k=—o0 k=—ow k=—ow k
which completes. the proof of (i).

To prove (ii) assume that the closed support of u is compact in (0, 00). The
implication (2.3)=(2.6) is obvious. To complete the proof it is sufficient to
show the implication (2.6) = (2.4). This can be done similarly to the proof of
(2.3) = (2.4), keeping in mind that the mu1t1phcat10n operators M , neZ, are
bounded. =
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Remark. 1. The condition (2.3) is sufficient for harmonizability. It can be
generalized in the following way: choose the sequence { f,},.z such that, for any
fixed n, f, belongs to the convex hull of vectors of the form (,/f,)x, and e_,x,.
It is' easy to see that the vectors f, form an orthogonal sequence in L*(p,, H).
If we assume that the series Zk_ —o len fil* converges for any integer n, then
putting h = Zk__m f, we get e,h = Zk e, f, and, consequently, assuming
~ additionally that f, =1, we get x, = fe hdy.,. This shows that we have
infinitely many possibilities of obtaining the density h. Evidently, in each case
the sufficient assumption in the implicit form Zk_ o lle, ﬁ |? < oo is the same
but in the exp11c1t form looks different. :

‘Finally, we can prove that weighted square summable processes con-
sidered admit normal dilations of Niemi’s type. The process ‘of normal type is
defined in [3]. The notion of normal process appears also in [8] Unfor-
tunately, these notions cannot be used in our work. Though the Getoor
definition deals with unbounded shift operators, it works only for a process
with continuous parameter On the other hand, the definition from [8] assumes
that the shift operators attached to the process are bounded. For our purpose
the best choice is to apply the latter by neglecting the boundedness of shift
operators and assuming that the considered semigroup is equal to Z or Z™.
Thus the definition of normal process can be restated as follows. The sequénce'
{Vu}nes in some Hilbert space K is normal iff there is a normal (shift) operator
N in K (possibly unbounded) such that y, is in domain of N” and y, = N"y, for
any neS. We say that a process {x,}..z in H has normal dilation if there exists
a normal process {y,}n.z in some Hilbert space K = H such that x, = Py, for
neZ, where P is the orthogonal projection of K onto H. The following
theorem gives an explicit construction of this dilation. :

THEOREM 2. Let p, {B,}nez> {X,}nez and h be as in Theorem 1. If (2.3) holds
and B, =1, then {X,},.z has a normal dilation. Moreover, the process
{Vutnez = [* (um, H) defined by the formula y, = e,h, ne Z, is a normal dilation

of {Xp}nez-

Proof. By Theorem 1 we see that h and e, h are in L?(u,,, H). Let N be
the operator of multiplication by e, in I*(u,,, H). Then y, = N"h. Evidently,
the operator N as a multiplication in L2-space is normal. All we have to show is
that x, = Py,, where P denotes the orthogonal pro_]ectmn of I? (,um,, H) onto
the space of constants H. For xe H we have

(PYuy XD = (Vs X = [ > X)) Athren
= je,,(h, x)dﬂrot = (_‘. enhdﬂrota ) (xn: x) <xm x>
The fifth equality follows from Theorem 1. The proof is complete. m

Remark 2. Repeating proofs from [8] one can extend Theorem 1.23 and
Corollary 1.24 of [8] to the case of an arbitrary generalized harmonizable
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sequence (not necessarily with compact support) Thus any generalized
harmonizable sequence has a normal dilation. In Theorem 2 we assume more
(namely, weighted square summability, which by Theorem 1 is equivalent to
generalized harmonizability with representing measure having L?-density), but
our proof does not use any existence type theorems (like the Rosenberg
theorem [6] which leads back to the Grothendieck inequality).

‘3. Sequences harmonizable on compact sets. Our goal in this section is to
show that any sequence harmonizable on a compact set admits a representing
measure with closed support localized on at most two circles. We also prove
the main result of our paper which characterizes sequences’ harmonizable on
compact sets as those whose growth in norm 1s not greater than exponential.
We begin with some notation. For a real number r > 0, we denote by I', the
circle on the complex plane centered at the origin and with radius r. Givenr
a sequence x,€H, neZ, define R (x) and R_(x) as follows:

(x) = lim sup ||x, II”"

]'l—> oo
and

R_(x) = (lim sup le‘-,,ll tm=,

n— o

We admit for R, (x) and R_(x) to be equal to infinity. We shall say that
a sequence {x,},.z has an exponential growth if there are a, b > 0 such that
[x,|| <ab™ for any integer n. For zeC, denote by &, the pomt mass
probability measure concentrated at the point {z}.

Now we can prove the main result of this section.

THEOREM 3. If x = {X,},ez = H, then the following condltwns are equwalent
(3.1) x is harmonizable on a compact set,
32 x has an exponentlal growth,
(33). R,.(x)< o and R_(x) > 0.

If one of the above conditions holds, then

34 for any r, Re(O o0) such that r < R_(x) and R>R (x) there is
he (oo, H), u=3%(8,+38g), such that

(@) Ph = h, where P denotes the orthogonal projection of I*(u,o, H) onto
the closed span of | Juz2,H,

(b) Xp = jl"rul"n e hd:urot

Moreover, for fixed r and R the function h having the propertzes (a) and (b)
is unique and takes the form

(35 h= 2 202"+ R¥) ™12 x,

n=-—o
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Proof. By the definition of generalized harmonizable process we see that
there is a measure £ supported on a compact subset K of C* such that
x, = [ge,d¢. Since K is compact in C¥, there is b > 0 such that |e,(z)] < b for
any ze K and any integer n. Consequently, |x,|| < |£|(K)b", which completes

the proof of the implication (3.1)=>(3.2).
' The implication (3.2)=>(3.3) is obvious. To show that (3.3) 1rnp11es (3.4
observe first that f, = 3(r*"+R>") is a nondegenerate moment sequence with
representing measure u. Since R > R, (x) and r < R_(x), one can show that the
series Zk_ — o B MlIxlI? converges. Hence the observation that . is supported
on I',u [',, together with Theorem 1, shows (3.4), the umqueness of h and (3.5).

Since the implication (3.4)=>(3.1) is obvious and we have just proved the
implication (3. 3)=>(3.4), we infer that (3. 3) = (3. 1), which completes the
proof. m

Applying Theorem 3 and the Kolmogoroff factorization theorem we can
state necessary and .sufficient conditions for a matrix to be a covariance matrix
of a sequence harmonizable on a compact set.

COROLLARY. A matrix {C(n, M)}, mez IS a covariance matrix of some
sequence harmonizable on a compact set iff the following conditions hold:
(@) {C(n, m)},mez is positive definite, i.e.,

N
Y, Cn,mi A, =0
nm=-—N
Jor any choice of N >0 and A_y, ..., Ay eC
(b) limsupC(n, n)" < 0 as n— o0 and limsup C(—n —n)”" < o0 as
n— 00.

Although the main part of the paper concerns sequences harmonizable on
a compact set, the more general setting developed in Section 2 is also
important. Namely, we can give an example of a generalized harmonizable
sequence which does not admit any representing measure on a compact set.

ExampLE 1. Let {x,},.z be an arbitrary sequence of vectors in H such that
lx,1* = y(nl), neZ, where y(n)= .‘.1 t"Q(t)dt neZ and ¢: [0, oo) - R is

defined by
O = e’! for t>1,
=21 for0<t<1.

Then one can prove that the sequence {x,},.z satisfies the condition (2.3) with
the nondegenerate moment sequence {f,}..z defined by B(n) = Io t"o(t)dt,
neZ. By Theorem 1, the sequence {X,}nez is generalized harmonizable.
Suppose for a moment that {x,},.z is harmonizable on a compact subset of C*.
Then (see Theorem 3) there exist positive real numbers a and b such that
" Ix,)1* < ab™, neZ. Thus e n! < y(jn|) < ab” for n > 0, which is impossible.
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Remark 3. Any sequence x: Z — H harmonizable on a compact set has
a representing measure supported on two circles centered at the origin. If
R_.(x) < R_(x), then x has a representing measure supported on one circle. If
R, (x) <1 < R_(x), then x is harmonizable in the Rozanov sense.

Remark 4. Theorem 3 gives sufficient conditions for a sum of two circles
I' U Ty to be a support of some representing measure of the process {x,}cz-
The necessary conditions are a little weaker. Namely, if £ is the representing
measure of a generalized harmonizable sequence x: Z — H and the closed
support of ¢ is contained in the sum I',uIl'p with 0 <r <R, then
0<r<R_(x)and R, (x) < R < o0. If the closed support of & is contained in
I, with some r > 0, then R, (x) <r < R_(x).

Remark 5. Evidently, for a process x which is harmonizable on a com-
pact set, a choice of the measure u = 4(5,+ d5) (with 7 and R as in (3.4)) allows
us to define the Stleltjes moment sequence {f,},.z having the property (2.3).
Thus Theorem 2 gives thé direct proof of the existence of normal dilations for
sequences harmonizable on compact sets. The result is exactly the same as
Theorem 1.23 of [8].

Now we consider the question when the representing measure of a sequence
harmonizable on a compact set may be located on its extremal circles. The
problem of characterization of such sequences having an absolutely continuous
representing measure is still open. Denote by m,, r >0, the normalized
Lebesgue measure supported on I',, i.., m, = (,).;- The following equivalence
is'a simple consequence of Theorem 1 (ii).

If x: Z—-H and 0 <r < R< o, then the following conditions are
equivalent:

(3.6) There are fel?*(m,, H) and geL*(mg, H) such that
X, = | e, fdm,+ | e,gdmp.
. I'r

ri‘
B7 Y R x> <o and Y r*|x_,|* < 0.
n=0 B n=0

It is easy to see that if we assume that in (3.7) the first series converges and
the second one diverges, then we get square summable density on one circle
and nonexistence of square summable density on the other. Evidently, any
R > R, (x) and 0 < r < R_(x) have the property (3.7). Thus the above is more
interesting in the case R =R, (x) and r = R_(x). The square summable
sequences considered in [8] are exactly those which have the property (3.7)
with » = R and the square summable sequences considered by Niemi in [5] are
‘exactly those for which r =R = 1.

Now we prove some necessary conditions of the absolute contmulty of
representing measures on extremal circles. For a given measure £ on I', U I'y
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(r < R) we will write & = £,+ &5, where &, (&g, respectively) is supported on I,
(I'g, respectively). If £ is the representing measure of a generahzed harmoniz-
able sequence x, then

x~jed§+jed§n

PROPOSITION -Suppose & is a representing measure of the sequence {x bnez
which is supported on T, UT'y (0 <r< R < ). Then
(i) the sequences {||x ||/R"},, o and {||x_,,|]r Lo are bounded
(11) if Ep €my (& <m,), then
wlimx,R™"=0  (w-limx_, = 0).
n—+»a n-+ o
Proof. Suppose that » < R. For a given measure  on I' denote by / the
measure on I" such that n(E) = n(RE) for any Borel subset E of r. Then for
er and neZ we. have - '

(x,,, x)=r" fz"d(f (z) x)+R"jz"d(gR(z) x).

Consequently, x, = r"(£)" (~ n)+R"(5R) (—n) for neZ, where * denotes the
Fourler transform of measure. Thus for positive n we have

/R < (/R IE) (= n)||+||(5R)( ~n)|  for n>0.

Smce {Il(é) (— n)]l},,ez+ and {[(ER)" (= )| }nez+ are commonly bounded as the
sequences of Fourier coefficients of bounded measures (see-[2]), we get the
boundedness of {||x,|/R"}s=o. The proof of the other part of the condition (i)
is similar. :

To prove (ii) observe that if (£g, X) < mg, then (&g, x) is absolutely
continuous with respect to the normalized Lebesgue measure m on I'. Thus
d(€g, x) = h_dm with some h_eL!. This implies that

(x,, x) = r"jz"d(f,(z), x)+R"h (—n),
r

where /. (n) denotes the n-th Fourier coefficient of k.. Thus

I(R"'x,., x)| < (r/R)"IIZ"d £.@)y x)|+ A (—n).

Since r < R, the integrals _fr z"d(f (2), x) are commonly bounded and A, (—n)
tends to 0 for n — co as a sequence of Fourier coefﬁc:ents of some Ll-function
(see [2]) we get '

,w-lim.an._" =0..
The proof of the other part of (ii) is analogous. Similar arguments can be used
to prove the properties (i) and (ii) in.the case r=R. m
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Finally, we give two examples which explain what may happen with
representing measure on the extremal circles. For this we prove lemma which
shows some method of constructing harmonizable sequences on their extremal
circles.

LEMMA. Let 0 < r < R < o0. Suppose we are given two sequences Vo
and {z,}5, such that

j'z "dn, for n>= z,= | Z"dng for n>0,
. - I'n

where N, and ng are arbltrary measures supported on I', and Iy, respectively.
Then the sequence {x,},.z defined by

Z,, n> 0,
X, = <.
"o y-m n<0,

is generalized harmoniéékle- with the representing measure & on I',u I'y given
by the formulas &=¢&,+&y, Exp=ngpthpdmg, & =n,+hdm, where
hpe?(mg, H) and h,eI?(m,, H) take the form

v e}

(3.8) hg(z) = — Y a,z™™, zelg, a,= _femdn,, mz1,
1

m= Iy
3.9 h(z)=— ) b,z", zel,, b,= [ e_ndng, m>0.
. =0 - I'r

‘Proof. First we prove that the series in (3.8) converges in L*(mg, H).
Since the summands in the series (3.8) are orthogonal and

1802 ™ 2y < C/RY™ 0, (T)2,

the series (3.8) converges. Similarly we show the convergence of the series in
(3.9). Now for n> 0 we have

[ z'dé(2)

Iryuln
= [ 2"dng(2)+ j Z"hg(z)dmg(z)+ jz"dn,(z)+ {z"h, (z)dm (z)
I'r ' : Iy
— Z " j 2" " dmg(2)+ jz"dn,(z)— 2 b, jz’”"”dm (2)
=x,—a,+a,—0 =x,.
Analogously we prove that
X, = j' z"dé(z) for n<0. =

n
TrUTR

The following example is an appllcatlon of the Lemma. -
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ExampLE 2. Let H=C, 0 <r <R < o and #i = 0, #, = J,. Define

R™ for n>0,
X, =
" " for n<O.
Then R, ({x,}) =R and R_({x,}) =r. It follows from the Lemma that
X, = | z"d¢(2).
rrulrp . R )
Thus the sequence {x,}..z has a representing measure on its extremal circles.
Since

limx,R™"=1 and Ilmx_,"=1,

n—aw n—roo

we can use the Proposition (ii) to see that {x,},.z has no representing measure
absolutely continuous with respect to the Lebesgue measure on I', U I'g.

The next ex-aifﬁplé" shows that there are sequences which have no
representing measure on their extremal circles.

ExAMPLE 3. Let H=C, 0 <r<R < o0 and

. = nR® for n> 0,

L P for n < 0.
Then R, ({x,}) =R and R_({x,}) =r. Since the sequence |x,[|/R"=n for
n > 0 is unbounded, we can infer from the Proposition (i) that the process

{X,}nez has no representing measure on I', U I's. It follows from Theorem 3
applied to the sequence

. )X, for n >0,
"0 forn<0

that for R, > R and n > 0 we have x, = [, e,dng; with some 75, defined on
Ty, Evidently, for n < 0 we have x, = [r,z"dd,(z). Thus, by the Lemma, {x,},cz
has a representing measure on I', U Ig,.

It is easy to see that using the method as in Example 3 we can also show
that the sequences defined by the formulas

_|Rr" for n>0,
Yn = m" for n<0
and
_ |nR" for n>0,
Yn = nr" for ng0

have no representing measures on their extremal circles. For the last example
even taking one circle not being extremal does not help. - :
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Remark 6. Most results of our paper (like Theorem 3) can be refor-
mulated for generalized harmonizable one-sided sequences x: Z* — H by
replacing Z by Z* and two circles by one (using only R ). In particular, any
one-sided sequence harmonizable on a compact set has a representing measure
supported on one circle centered at the origin. Moreover, a sequence x: Z —» H
is harmonizable on a compact set iff the sequences y: Z* > Handz: Z* - H
defined by y, = x, and z, = x_, are harmonizable on compact sets.
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