ON THE RATE OF CONVERGENCE TO BROWNIAN MOTION OF THE PARTIAL SUMS OF INFIMA OF INDEPENDENT RANDOM VARIABLES

BY

HALINA HEBDA-GRABOWSKA (Lublin)

Abstract. Let $\left\{Y_{n}, n \geqslant 1\right\}$ be a sequence of independent and positive random variables, defined on a probability space (Ω, \mathscr{A}, P), with a common distribution function F. Put

$$
Y_{m}^{*}=\inf \left(Y_{1}, Y_{2}, \ldots, Y_{m}\right), m \geqslant 1, \quad S_{n}=\sum_{m=1}^{n} Y_{m}^{*}, n \geqslant 2, S_{1}=0
$$

In this paper a convergence rate in the invariance principle for the sums $S_{n}, n \geqslant 1$, is obtained.

1. Introduction and results. Let $\left\{Y_{n}, n \geqslant 1\right\}$ be a sequence of independent and positive random variables (i.p.r.vs.) with a common distribution function F such that

$$
\begin{equation*}
\int_{0}^{1}|F(x)-x / b| x^{-2} d x<\infty \quad \text { for some } b, 0<b<\infty . \tag{1}
\end{equation*}
$$

Let us put

$$
Y_{m}^{*}=\inf \left(Y_{1}, Y_{2}, \ldots, Y_{m}\right), m \geqslant 1, \quad \text { and } \quad S_{n}=\sum_{m=1}^{n} Y_{m}^{*}, n \geqslant 2, S_{1}=0
$$

Several authors ([2]-[4], [6]-[10]) have investigated the asymptotic convergence S_{n} as $n \rightarrow \infty$ in probability, almost sure and in law. The almost sure and Donsker's invariance principles of sums S_{n} were investigated in [7] and [9]. In this paper we examine the rate of convergence in the Donsker's invariance principle for the sums S_{n}.

Let $\left\{Y_{n}, n \geqslant 1\right\}$ be a sequence of i.p.r.vs. with a common distribution function F such that (1) holds. Let us define

$$
Y_{n, k}^{*}=\left(Y_{k}^{*}-b / k\right) / b(2 \log n)^{1 / 2}, 1 \leqslant k \leqslant n, n>1, \quad Y_{1,1}^{*}=0,
$$

and write

$$
\begin{equation*}
S_{n, k}=\sum_{m=1}^{k} Y_{n, m}^{*}, \quad 1 \leqslant k \leqslant n, n \geqslant 1 \tag{2}
\end{equation*}
$$

Put

$$
\begin{equation*}
F_{n}(\lambda)=P\left[\max _{1 \leqslant k \leqslant n}\left|S_{n, k}\right| \leqslant \lambda\right] . \tag{3}
\end{equation*}
$$

Under the assumption (1) it follows from the Donsker's invariance principle that, for each $\lambda>0$,

$$
\lim _{n \rightarrow \infty} F_{n}(\lambda)=T(\lambda)
$$

where

$$
\begin{equation*}
T(\lambda)=P\left[\max _{0 \leqslant t \leqslant 1}|W(t)| \leqslant \lambda\right]=\frac{4}{\pi} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{2 k+1} \exp \left\{-(2 k+1)^{2} \pi^{2} / 8 \lambda^{2}\right\} \tag{4}
\end{equation*}
$$

and $\{W(t), 0 \leqslant t \leqslant 1\}$ is a standard Wiener process (cf. [7], Corollaries 1 and 2). The purpose of this paper is to study the rate of convergence of F_{n} to T. The main result is the following

Theorem 1. Under the assumption (1) we have

$$
\begin{equation*}
\sup _{\lambda}\left|P\left[\max _{1 \leqslant k \leqslant n}\left|S_{n, k}\right| \leqslant \lambda\right]-T(\lambda)\right|=O\left((\log n)^{-1 / 3}\right) \tag{5}
\end{equation*}
$$

where $\left\{S_{n, k}, 1 \leqslant k \leqslant n, n \geqslant 1\right\}$ and $T(\lambda)$ are given by (2) and (4), respectively.
2. Proof of the result. In the proof of Theorem 1 we apply some lemmas given by Dehéuvels [3], Höglund [10] and Sawyer [15]. Moreover, we use the Skorokhod representation theorem. For the sake of completeness we present them in Section 3.

Proof of Theorem 1. At the beginning suppose that $\left\{X_{n}, n \geqslant 1\right\}$ is a sequence of independent random variables uniformly distributed on [0, 1] (i.r.vs.u.d.). (In this case $b=1$.) Put

$$
X_{m}^{*}=\inf \left(X_{1}, X_{2}, \ldots, X_{m}\right), m \geqslant 1, \quad \tilde{S_{n}}=\sum_{m=1}^{n} X_{m}^{*}, n \geqslant 1
$$

and define

$$
\begin{equation*}
\tilde{S}_{n, k}=\left(\tilde{S}_{k}-\sum_{i=1}^{k} 1 / i\right) /(2 \log n)^{1 / 2}, 1 \leqslant k \leqslant n, n>1, \quad \tilde{S}_{1,1}=0 \tag{6}
\end{equation*}
$$

We are going to prove that

$$
\begin{equation*}
\sup _{\lambda}\left|P\left[\max _{1 \leqslant k \leqslant n}\left|\tilde{S}_{n, k}\right| \leqslant \lambda\right]-T(\lambda)\right|=O\left((\log n)^{-1 / 3}\right) \tag{7}
\end{equation*}
$$

Let us set

$$
\begin{align*}
V_{n, k} & =\left[\tau_{k+1}-\tau_{k}-\mathrm{E}\left(\tau_{k+1}-\tau_{k}\right)\right] / k(2 \log n)^{1 / 2}, \quad 1 \leqslant k \leqslant n, n \geqslant 2 \tag{8}\\
V_{1,1} & =0
\end{align*}
$$

and put

$$
U_{n, k}=\sum_{m=1}^{k} V_{n, m}, \quad 1 \leqslant k \leqslant n, n \geqslant 1
$$

where the random variables $\tau_{n}, n \geqslant 1$, are given in Section 3 by (3.1) $\left(\varepsilon(n)=n^{-1}\right)$.

Now, let us observe that $V_{n, k}, 1 \leqslant k \leqslant n$, are independent random variables (Lemma 3.2) and

$$
\begin{equation*}
\max _{1 \leqslant k \leqslant n}\left|V_{n, k}\right| \leqslant(1+A) \log _{2} n /(2 \log n)^{1 / 2} \text { a.s. } \tag{9}
\end{equation*}
$$

for sufficiently large n, where $\log _{p} n=\log _{p-1}(\log n), p>2, \log _{2} n=\log (\log n)$.
In fact, by (3.12) for all $A>0$ we have

$$
\tau_{k+1}-\tau_{k}-\mathrm{E}\left(\tau_{k+1}-\tau_{k}\right) \leqslant(1+A) k \log _{2} k \text { a.s. }
$$

for sufficiently large k, so by the definition (8) we get

$$
V_{n, k} \leqslant \frac{(1+A) \log _{2} k}{\sqrt{2 \log n}} \leqslant \frac{(1+A) \log _{2} n}{\sqrt{2 \log n}} \text { a.s., } \quad 1 \leqslant k \leqslant n
$$

for sufficiently large n.
By the Skorokhod representation result applied to the sequence V_{n} $=\left(V_{n, 1}, V_{n, 2}, \ldots, V_{n, n}\right)$ there is a standard Wiener process $\{W(t), t \in\langle 0,1\rangle\}$ together with a sequence of nonnegative independent random variables $z_{1}, z_{2}, \ldots, z_{n}$ on a new probability space such that

$$
\begin{equation*}
\left\{U_{n, 1}, U_{n, 2}, \ldots, U_{n, n}\right\} \stackrel{\mathrm{d}}{=}\left\{W\left(z_{1}\right), W\left(z_{1}+z_{2}\right), \ldots, W\left(\sum_{i=1}^{n} z_{i}\right)\right\} \tag{10}
\end{equation*}
$$

$n>1$, where $\stackrel{\text { d }}{=}$ means the equivalence in joint distribution,

$$
\begin{equation*}
\mathrm{E} z_{k}=\mathrm{E} Y_{n, k}^{2}, \tag{11}
\end{equation*}
$$

for each real number $r \geqslant 1$

$$
\begin{equation*}
\mathrm{E}\left|z_{k}\right|^{r} \leqslant C_{r} \mathrm{E}\left(Y_{n, k}\right)^{2 r}, \quad 1 \leqslant k \leqslant n, \tag{12}
\end{equation*}
$$

where $C_{r}=2\left(8 / \pi^{2}\right)^{r-1} \Gamma(r+1)$, and

$$
\begin{equation*}
Y_{n, k}=W\left(\sum_{i=1}^{k} z_{i}\right)-W\left(\sum_{i=1}^{k-1} z_{i}\right) \stackrel{\mathrm{d}}{=} V_{n, k} . \tag{13}
\end{equation*}
$$

Now we shall prove that

$$
\begin{equation*}
\sup _{\lambda}\left|F_{n}^{(1)}(\lambda)-T(\lambda)\right|=O\left((\log n)^{-1 / 3}\right) \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
F_{n}^{(1)}(\lambda)=P\left[\max _{1 \leqslant k \leqslant n}\left|U_{n, k}\right| \leqslant \lambda\right], \quad \lambda \geqslant 0 . \tag{15}
\end{equation*}
$$

Let us observe that by (13) and (9) we obtain

$$
\begin{aligned}
F_{n}^{(1)}(\lambda) & =P\left[\max _{1 \leqslant k \leqslant n}\left|W\left(z_{1}+\ldots+z_{k}\right)\right| \leqslant \lambda\right] \\
& \leqslant P\left[\max _{1 \leqslant k \leqslant n}\left|W\left(z_{1}+\ldots+z_{k-1}\right)\right|-\max _{1 \leqslant k \leqslant n}\left|W\left(\sum_{i=1}^{k} z_{i}\right)-W\left(\sum_{i=1}^{k-1} z_{i}\right)\right| \leqslant \lambda\right] \\
& \leqslant P\left[\max \left\{|W(t)| \leqslant \lambda+(1+A)\left(\log _{2} n\right)(2 \log n)^{-1 / 2} ; 0 \leqslant t \leqslant \sum_{i=1}^{n-1} z_{i}\right\}\right]
\end{aligned}
$$

and, analogously,

$$
F_{n}^{(1)}(\lambda) \geqslant P\left[\max \left\{|W(t)| \leqslant \lambda-(1+A)\left(\log _{2} n\right)(2 \log n)^{-1 / 2} ; 0 \leqslant t \leqslant \sum_{i=1}^{n-1} z_{i}\right\}\right]
$$

Let us put

$$
a_{n}=(1+A)\left(\log _{2} n\right)(2 \log n)^{-1 / 2}, \quad n>2 .
$$

Thus from the above we get

$$
\begin{array}{r}
F_{n}^{(1)}(\lambda) \leqslant P\left[\max \left\{|W(t)| \leqslant \lambda+a_{n} ; 0 \leqslant t \leqslant \sum_{i=1}^{n-1} z_{i}\right\},\left|\sum_{i=1}^{n-1} z_{i}-1\right|<g(n)\right] \tag{16}\\
+P\left[\left|\sum_{i=1}^{n-1} z_{i}-1\right| \geqslant g(n)\right] \\
\leqslant P\left[\max _{0 \leqslant t \leqslant 1-g(n)}|W(t)| \leqslant \lambda+a_{n}\right]+P\left[\left|\sum_{i=1}^{n-1} z_{i}-1\right| \geqslant g(n)\right]
\end{array}
$$

where $g(\cdot)$ is a positive function decreasing to zero as $n \rightarrow \infty$, slower than $(\log n)^{-1 / 2}$.

We first estimate the second part of the extreme right-hand side of (16). From the construction of z_{i} and the relations (11)-(13) and (3.2), (3.7) we have

$$
\begin{aligned}
P\left[\left|\sum_{i=1}^{n-1} z_{i}-1\right| \geqslant g(n)\right] & \leqslant P\left[\left|\sum_{i=1}^{n-1}\left(z_{i}-\mathrm{E} z_{i}\right)\right|+\left|\sum_{i=1}^{n-1} \mathrm{E} z_{i}-1\right| \geqslant g(n)\right] \\
& =P\left[\left|\sum_{i=1}^{n-1}\left(z_{i}-\mathrm{E} z_{i}\right)\right|+\left|\sum_{i=1}^{n-1} \mathrm{E} Y_{n, i}^{2}-1\right| \geqslant g(n)\right] \\
& =P\left[\left|\sum_{i=1}^{n-1}\left(z_{i}-\mathrm{E} z_{i}\right)\right|+\left|(\log n)^{-1} \sum_{i=1}^{n-1} i^{-1}-1\right| \geqslant g(n)\right] \\
& \leqslant P\left[\left|\sum_{i=1}^{n-1}\left(z_{i}-\mathrm{E} z_{i}\right)\right| \geqslant g(n)-O(1) / \log n\right] \\
& \leqslant \mathrm{E}\left[\sum_{i=1}^{n-1}\left(z_{i}-\mathrm{E} z_{i}\right)\right]^{2}(g(n)-O(1) / \log n)^{-2}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n-1}\left[\mathrm{E} z_{i}^{2}-\left(\mathrm{E} z_{i}\right)^{2}\right](g(n)-O(1) / \log n)^{-2} \\
& \leqslant \sum_{i=1}^{n-1}\left[C_{2} \mathrm{E} V_{n, i}^{4}-\left(\mathrm{E} V_{n, i}^{2}\right)^{2}\right](g(n)-O(1) / \log n)^{-2} \\
& \leqslant 4!C_{2}(\log n)[(2 \log n)(g(n)-O(1) / \log n)]^{-2} \\
& =O\left(\left((\log n)(g(n))^{2}\right)^{-1}\right),
\end{aligned}
$$

where C_{2} is a positive constant defined in (12). Putting $g(n)=(\log n)^{-1 / 3}$ we obtain

$$
\begin{equation*}
P\left[\left|\sum_{i=1}^{n-1} z_{i}-1\right| \geqslant(\log n)^{-1 / 3}\right]=O\left((\log n)^{-1 / 3}\right) \tag{17}
\end{equation*}
$$

As for the first term of the right-hand side of (16), from the scaling property of the Wiener process we get

$$
\begin{aligned}
P\left[\max _{0 \leqslant t \leqslant 1-g(n)}|W(t)| \leqslant \lambda+a_{n}\right] & =P\left[\max _{0 \leqslant t \leqslant 1}|W((1-g(n)) t)| \leqslant \lambda+a_{n}\right] \\
& =P\left[\max _{0 \leqslant t \leqslant 1}|W(t)| \leqslant\left(\lambda+a_{n}\right)(1-g(n))^{-1 / 2}\right]
\end{aligned}
$$

Thus from (16) and (17) we have

$$
\begin{equation*}
F_{n}^{(1)}(\lambda) \leqslant T\left(\left(\lambda+a_{n}\right)(1-g(n))^{-1 / 2}\right)+O\left((\log n)^{-1 / 3}\right) \tag{18}
\end{equation*}
$$

We can also obtain, by a similar argument, the relation

$$
\begin{equation*}
F_{n}^{(1)}(\lambda) \geqslant T\left(\left(\lambda-a_{n}\right)(1+g(n))^{-1 / 2}\right)+O\left((\log n)^{-1 / 3}\right) . \tag{19}
\end{equation*}
$$

If $(\log n)^{-1 / 3}<\frac{1}{2}$, then we easily find that

$$
\begin{aligned}
\left(\lambda+a_{n}\right)(1-g(n))^{-1 / 2}-\left(\lambda-a_{n}\right)(1+g(n))^{-1 / 2} & \leqslant 2 \lambda g(n)+4 a_{n} \\
= & 2 \lambda(\log n)^{-1 / 3}+4(1+A)\left(\log _{2} n\right)(2 \log n)^{-1 / 2}
\end{aligned}
$$

Hence, by Lemma 3.7 (cf. [15]), for $(\log n)^{-1 / 3}<\frac{1}{2}$ we have

$$
\begin{aligned}
& T\left(\left(\lambda+a_{n}\right)(1-g(n))^{-1 / 2}\right)-T\left(\left(\lambda-a_{n}\right)(1+g(n))^{-1 / 2}\right) \\
& \leqslant \sqrt{8 / \pi}\left(2 \lambda g(n)+4 a_{n}\right) \exp \left\{-\frac{1}{2}\left(\left(\lambda-a_{n}\right) /(1+g(n))^{1 / 2}\right)^{2}\right\} \\
& \leqslant \sqrt{8 / \pi}\left(2 \lambda g(n)+4 a_{n}\right) \exp \left\{-\frac{1}{3}\left(\lambda-a_{n}\right)^{2}\right\} \\
& \leqslant \sqrt{3 / \pi e} 4 g(n)+\sqrt{8 / \pi}(4+2 g(n)) a_{n}=O\left((\log n)^{-1 / 3}\right)
\end{aligned}
$$

Combining this with (18) and (19) we obtain (14).
Now let us put

$$
\tilde{S}_{n, \tau_{k}}=\left(\sum_{i=1}^{\tau_{k}} X_{i}^{*}-\sum_{i=1}^{k} i^{-1}\right)(2 \log n)^{-1 / 2}, \quad 1 \leqslant k \leqslant n, n \geqslant 2, \quad \tilde{S}_{1, \tau_{1}}=0
$$

where τ_{k} is defined in (3.1).

Let us denote

$$
F_{n}^{(2)}(\lambda)=P\left[\max _{1 \leqslant k \leqslant n}\left|\tilde{S}_{n, \tau_{k}}\right| \leqslant \lambda\right] .
$$

By (3.9) and the fact that $\tau_{1}=1$ and $\tilde{S}_{\tau_{1}}=X_{1}^{*} \leqslant 1$ a.s. we obtain

$$
\begin{aligned}
F_{n}^{(2)}(\lambda) & \leqslant P\left[\max _{1 \leqslant k \leqslant n}\left|U_{n, k}\right|-\max _{1 \leqslant k \leqslant n}\left|\tilde{S}_{n, \tau_{k}}-U_{n, k}\right| \leqslant \lambda\right] \\
& \leqslant P\left[\max _{1 \leqslant k \leqslant n}\left|U_{n, k}\right|-\tilde{S}_{\tau_{1}}(2 \log n)^{-1 / 2} \leqslant \lambda\right] \leqslant F_{n}^{(1)}\left(\lambda+(2 \log n)^{-1 / 2}\right) .
\end{aligned}
$$

Analogously, by (3.4), (3.9) and (3.8), we obtain

$$
\begin{aligned}
F_{n}^{(2)}(\lambda) \geqslant & P\left[\max _{1 \leqslant k \leqslant n}\left|U_{n, k}\right|+\max _{1 \leqslant k \leqslant n}\left|\tilde{S}_{n, \tau_{k}}-U_{n, k}\right| \leqslant \lambda\right] \\
& \geqslant P\left[\max _{1 \leqslant k \leqslant n}\left|U_{n, k}\right|+\frac{\left|2-\tilde{S}_{\tau_{1}}\right|}{\sqrt{2 \log n}}+\max _{1 \leqslant k \leqslant n} \frac{\left|U_{k}^{\prime}-U_{k}\right|}{\sqrt{2 \log n}} \leqslant \lambda\right] \\
= & P\left[\max _{1 \leqslant k \leqslant n}\left|U_{n, k}\right|+\frac{U_{n}-U_{n}^{\prime}}{\sqrt{2 \log n}} \leqslant \lambda-\frac{2}{\sqrt{2 \log n}}\right] \\
\geqslant & P\left[\max _{1 \leqslant k \leqslant n}\left|U_{n, k}\right|+\frac{U_{n}-U_{n}^{\prime}}{\sqrt{2 \log n}} \leqslant \lambda-\frac{2}{\sqrt{2 \log n}}, \frac{U_{n}-U_{n}^{\prime}}{\sqrt{2 \log n}}<\frac{C}{(\log n)^{1 / 3}}\right] \\
& -P\left[\frac{U_{n}-U_{n}^{\prime}}{\left.\sqrt{2 \log n} \geqslant \frac{C}{(\log n)^{1 / 3}}\right]}\right. \\
\geqslant & F_{n}^{(1)}\left(\lambda-\frac{C}{(\log n)^{1 / 3}}-\frac{2}{(2 \log n)^{1 / 2}}\right)-\frac{\sigma^{2}\left(U_{n}-U_{n}^{\prime}\right)}{2 C^{2}(\log n)^{1 / 3}} \\
\geqslant & F_{n}^{(1)}\left(\lambda-C^{\prime}(\log n)^{-1 / 3}\right)-O\left((\log n)^{-1 / 3}\right),
\end{aligned}
$$

where C and C^{\prime} are positive constants independent of n such that

$$
C(\log n)^{-1 / 3}+2(2 \log n)^{-1 / 2} \leqslant C^{\prime}(\log n)^{-1 / 3}
$$

Hence, by (14), we get

$$
\begin{equation*}
\sup _{\lambda}\left|F_{n}^{(2)}(\lambda)-T(\lambda)\right|=O\left((\log n)^{-1 / 3}\right) . \tag{20}
\end{equation*}
$$

Now, let $\left\{\tilde{S}_{n, k}, 1 \leqslant k \leqslant n, n \geqslant 1\right\}$ be a triangular array of sums of random variables defined by (6).

By a similar argument to that in the proof of Theorem 1 (see [7]) (relations (9)-(12)) we obtain

$$
\begin{aligned}
P\left[\max _{1 \leqslant k \leqslant n}\left|\tilde{S}_{n, k}-\tilde{S}_{n, \tau_{k}}\right| \geqslant\right. & \left.C^{\prime}(\log n)^{-1 / 3}\right] \\
& =P\left[\max _{1 \leqslant k \leqslant n}\left|\sum_{i=1}^{k} X_{i}^{*}-\sum_{i=1}^{\tau_{k}} X_{i}^{*}\right| \geqslant \sqrt{2} C^{\prime}(\log n)^{1 / 6}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant P\left[\max _{1 \leqslant k \leqslant N(n)}\left|\tilde{S}_{k}-\tilde{S}_{\tau_{k}}\right| \geqslant \frac{\sqrt{2} C^{\prime}}{2}(\log n)^{1 / 6}\right] \\
& \qquad+P\left[\max _{N(n)<k \leqslant n}\left|\tilde{S_{k}}-\tilde{S}_{\tau_{k}}\right| \geqslant \frac{\sqrt{2} C^{\prime}}{2}(\log n)^{1 / 6}\right]
\end{aligned}
$$

where

$$
\tilde{S}_{k}=\sum_{i=1}^{k} X_{i}^{*}, \quad \tilde{S}_{\tau_{k}}=\sum_{i=1}^{\tau_{k}} X_{i}^{*}
$$

and $N(n)$ is a sequence of integers.
We note that for k such that $k \geqslant \tau_{k}$ by the definition (3.1) we have

$$
\inf \left(X_{1}, X_{2}, \ldots, X_{\tau_{k}+i}\right) \leqslant \varepsilon(k)=1 / k \quad \text { for all } i \geqslant 0
$$

In this case we get

$$
\tilde{S_{k}}=\tilde{S}_{\tau_{k}}+\sum_{i=\tau_{k}+1}^{k} X_{i}^{*}
$$

and so $\left|\tilde{S_{k}}-\tilde{S}_{\tau_{k}}\right| \leqslant k \varepsilon(k)=1$. If $k<\tau_{k}$, then

$$
\tilde{S_{k}}=\tilde{S}_{\tau_{k}}-\sum_{i=k+1}^{\tau_{k}} X_{i}^{*}
$$

Put $N(n)=(\log n)^{1 / 6-\delta}, 0<\delta<1 / 6$. Then
(21) $P\left[\max _{1 \leqslant k \leqslant N(n)}\left|\tilde{S_{k}}-{\tilde{\tau_{k}}}_{\tau_{k}}\right| \geqslant \frac{\sqrt{2} C^{\prime}}{2}(\log n)^{1 / 6}\right]$

$$
\begin{aligned}
& \leqslant P\left[\max _{1 \leqslant k \leqslant \tau_{k} \leqslant N(n)} \sum_{i=k+1}^{\tau_{k}} X_{i}^{*} \geqslant \frac{\sqrt{2} C^{\prime}}{2}(\log n)^{1 / 6}\right] \\
& \leqslant P\left[N(n) X_{1}^{*} \geqslant \frac{\sqrt{2} C^{\prime}}{2}(\log n)^{1 / 6}\right]=P\left[X_{1} \geqslant \frac{\sqrt{2} C^{\prime}}{2} \frac{(\log n)^{1 / 6}}{N(n)}\right]=0
\end{aligned}
$$

for all n such that $n \geqslant n_{0}$, where n_{0} is the largest integer such that

$$
\frac{\sqrt{2} C^{\prime}}{2}(\log n)^{1 / 6} / N(n)>1
$$

Now we are going to estimate

$$
P\left[\max _{N(n)<k \leqslant n}\left|\tilde{S_{n, k}}-\tilde{S_{n, \tau_{k}}}\right| \geqslant C(\log n)^{-1 / 3}\right]
$$

Analogously as previously and by Lemmas 3.4 and 3.5 for sufficiently large n, we have

$$
\begin{aligned}
& P\left[\max _{N(n)<k \leqslant n}\left|\tilde{S}_{n, k}-\tilde{S}_{n, z_{k}}\right| \geqslant \frac{C^{\prime}}{2}(\log n)^{-1 / 3}\right] \\
& \leqslant P\left[\max _{N(n)<k \leqslant \tau_{k} \leqslant n} \sum_{i=k+1}^{\tau_{k}} X_{i}^{*} \geqslant \frac{\sqrt{2} C^{\prime}}{2}(\log n)^{1 / 6}\right] \\
& \leqslant P\left[\max _{N(n)<k \leqslant \tau_{k} \leqslant n}\left(\tau_{k}-k\right) \frac{(1+A) \log _{2} k}{k} \geqslant \frac{\sqrt{2} C^{\prime}}{2}(\log n)^{1 / 6}\right] \\
& \leqslant P\left[\operatorname { m a x } _ { N (n) < k \leqslant \tau _ { k } \leqslant n } \left[\left(\tau_{k}-\tau_{k-1}\right) \frac{(1+A) \log _{2} k}{k}+\tau_{k-1} \frac{(1+A) \log _{2} k}{k}\right.\right. \\
& \left.\left.-(1+A) \log _{2} k\right] \geqslant \frac{\sqrt{2} C^{\prime}}{2}(\log n)^{1 / 6}\right] \\
& \leqslant P\left[\max _{N(n)<k \leqslant \tau_{k} \leqslant n}\left[\left(\tau_{k}-\tau_{k-1}\right) \frac{(1+A) \log _{2} k}{k}+\frac{\tau_{k-1}}{k \log _{2} k}(1+A)\left(\log _{2} k\right)^{2}\right]\right. \\
& \left.\geqslant \frac{\sqrt{2} C^{\prime}}{2}(\log n)^{1 / 6}+(1+A) \log _{2} N(n)\right] \\
& \leqslant P\left[\max _{N(n)<k \leqslant \tau_{k} \leqslant n} \frac{\tau_{k}-\tau_{k-1}}{(1+A) k \log _{2} k}(1+A)^{2}\left(\log _{2} k\right)^{2}\right. \\
& \left.\geqslant \frac{\sqrt{2} C^{\prime}}{2}(\log n)^{1 / 6}+(1+A) \log _{2} N(n)-(1+A)^{2}\left(\log _{2} n\right)^{2}\right] \\
& \leqslant P\left[\max _{N(n)<k \leqslant \tau_{k} \leqslant n} \frac{\tau_{k}-\tau_{k-1}}{(1+A) k \log _{2} k} \geqslant \frac{C_{1}(\log n)^{1 / 6}}{(1+A)^{2}\left(\log _{2} n\right)^{2}}\right] \\
& \leqslant \sum_{k=N(n)+1}^{n} P\left[\tau_{k}-\tau_{k-1} \geqslant(1+A) k\left(\log _{2} k\right) A_{n}\right],
\end{aligned}
$$

where

$$
A_{n}=C_{1}(\log n)^{1 / 6} /(1+A)^{2}\left(\log _{2} n\right)^{2}
$$

and C_{1} is a positive constant such that

$$
\frac{\sqrt{2} C^{\prime}}{2}(\log n)^{1 / 6}+(1+A) \log _{2} N(n)-(1+A)^{2}\left(\log _{2} n\right)^{2} \geqslant C_{1}(\log n)^{1 / 6}
$$

Now, by (3.3), we obtain

$$
\begin{align*}
& P\left[\max _{N(n)<k \leqslant n}\left|\tilde{S}_{n, k}-\tilde{S}_{n, \tau_{k}}\right| \geqslant \frac{C^{\prime}}{2}(\log n)^{-1 / 3}\right] \tag{22}\\
& \leqslant \sum_{k=N(n)+1}^{n} \frac{1}{k}\left(1-\frac{1}{k}\right)^{(1+A) k\left(\log _{2} k\right) A_{n}-1} \\
& \leqslant\left(1+\frac{1}{N(n)}\right) \sum_{k=N(n)+1}^{n} \frac{1}{k} \exp \left\{-(1+A) A_{n} \log _{2} k\right\} \\
&=\left(1+\frac{1}{N(n)}\right) \sum_{k=N(n)+1}^{n} \frac{1}{k(\log k)^{(1+A) A_{n}}}=O\left((\log n)^{-1 / 3}\right)
\end{align*}
$$

The last equality is a consequence of the integrable type criterion of series convergence. Hence, by (20)-(22), we get (7).

Now, let $\left\{Y_{n}, n \geqslant 1\right\}$ be a. sequence of i.p.r.vs. with the same distribution function F satisfying (1) and let, as previously, $\left\{X_{n}, n \geqslant 1\right\}$ be a sequence of i.r.vs.u.d. on [0, 1].

Put

$$
G(t)=\inf \{x \geqslant 0: F(x) \geqslant t\} .
$$

Then, by [4], the sequences $\left\{G\left(X_{n}\right), n \geqslant 1\right\}$ and $\left\{Y_{n}, n \geqslant 1\right\}$ are the same in law. Furthermore, the sums

$$
S_{n}=\sum_{k=1}^{n} Y_{k}^{*}, \quad \text { where } Y_{k}^{*}=\inf \left(Y_{1}, Y_{2}, \ldots, Y_{k}\right), k \geqslant 1
$$

can be represented as

$$
\bar{S}_{n}=\sum_{k=1}^{n} G\left(X_{k}^{*}\right), \quad \text { where } X_{k}^{*}=\inf \left(X_{1}, X_{2}, \ldots, X_{k}\right), k \geqslant 1
$$

Let us define $\left\{\bar{S}_{n, k}, 1 \leqslant k \leqslant n, n \geqslant 1\right\}$ as follows:

$$
\bar{S}_{n, k}=\left(\bar{S}_{k}-b \log k\right) / b(2 \log n)^{1 / 2}, \quad 1 \leqslant k \leqslant n, n \geqslant 2, \bar{S}_{1,1}=0 .
$$

By Lemma 3.6 we can deduce that

$$
\begin{equation*}
\frac{\bar{S}_{n}-b \tilde{S}_{n}}{b_{n}}=O(1) \text { a.s. } \tag{23}
\end{equation*}
$$

for all sequences $\left\{b_{n}, n \geqslant 1\right\}$ of real numbers such that $b_{n} \nrightarrow \infty$, as $n \rightarrow \infty$. In fact, for some $\delta, 0<\delta<1$, and $n \geqslant 1$, putting $\delta_{n}=1$ if $X_{n} \leqslant \delta$ and $\delta_{n}=0$ if $X_{n}>\delta$, we get

$$
\left|\bar{S}_{n}-b \widetilde{S}_{n}\right| \leqslant \sum_{i=1}^{n} \delta_{i}\left|G\left(X_{i}^{*}\right)-b X_{i}^{*}\right|+\sum_{i=1}^{n}\left(1-\delta_{i}\right)\left|G\left(X_{i}^{*}\right)-b X_{i}^{*}\right| .
$$

With probability one all but finitely many δ_{i} are equal to one, so if $b_{n} \nearrow \infty$, as $n \rightarrow \infty$, then

$$
\sum_{i=1}^{n}\left(1-\delta_{i}\right)\left|G\left(X_{i}^{*}\right)-b X_{i}^{*}\right| / b_{n} \rightarrow 0 \text { a.s. } \quad \text { as } n \rightarrow \infty
$$

Moreover, if M is a positive constant, we see that

$$
\begin{aligned}
P\left[\sup _{n \geqslant k}\right. & \left.\frac{\sum_{i=1}^{n} \delta_{i}\left|G\left(X_{i}^{*}\right)-b X_{i}^{*}\right|}{b_{n}} \geqslant M\right] \\
& \leqslant P\left[\sum_{i=1}^{\infty} \delta_{i}\left|G\left(X_{i}^{*}\right)-b X_{i}^{*}\right| \geqslant M b_{k}\right]=O\left(\left(b_{k}\right)^{-1}\right) \rightarrow 0 \quad \text { as } k \rightarrow \infty
\end{aligned}
$$

because

$$
\mathrm{E}\left[\sum_{i=1}^{\infty} \delta_{i}\left|G\left(X_{i}^{*}\right)-b X_{i}^{*}\right|\right]<\infty
$$

Consequently, we get (23). Now, we obtain

$$
\begin{aligned}
\bar{F}_{n}(\lambda) & =P\left[\max _{1 \leqslant k \leqslant n}\left|\bar{S}_{n, k}\right| \leqslant \lambda\right] \leqslant P\left[\max _{1 \leqslant k \leqslant n}\left|\tilde{S}_{n, k}\right|-\max _{1 \leqslant k \leqslant n}\left|\bar{S}_{n, k}-\tilde{S}_{n, k}\right| \leqslant \lambda\right] \\
& =P\left[\max _{1 \leqslant k \leqslant n}\left|\tilde{S}_{n, k}\right|-\max _{1 \leqslant k \leqslant n} \frac{\left|\bar{S}_{k}-b \tilde{S}_{k}\right|}{b \sqrt{2 \log n} \leqslant \lambda]}\right. \\
& \leqslant P\left[\max _{1 \leqslant k \leqslant n}\left|\tilde{S}_{n, k}\right|-\frac{b_{n}}{b \sqrt{2 \log n}} \max _{1 \leqslant k \leqslant n} \frac{\left|\bar{S}_{k}-b \tilde{S}_{k}\right|}{b_{n}} \leqslant \lambda\right] \\
& \leqslant P\left[\max _{1 \leqslant k \leqslant n}\left|\tilde{S}_{n, k}\right| \leqslant \lambda+\frac{O(1) b_{n}}{b \sqrt{2 \log n}}\right]
\end{aligned}
$$

and analogously

$$
\bar{F}_{n}(\lambda) \geqslant P\left[\max _{1 \leqslant k \leqslant n}\left|\tilde{S}_{n, k}\right| \leqslant \lambda-\frac{O(1) b_{n}}{b \sqrt{2 \log n}}\right]
$$

By (7) and Lemma 3.7, putting $b_{n}=\log _{2} n$ we obtain (5), and the proof of Theorem 1 is complete.
3. Lemmas. In this section we present without proofs lemmas due to Dehéuvels [3], Höglund [10], Sawyer [15] and Skorokhod [16], we needed in the proof of Theorem 1.

Let $\{\varepsilon(n), n \geqslant 1\}$ be a sequence of positive real numbers strictly decreasing to zero. By $\left\{\tau_{n}=\tau(\varepsilon(n)), n \geqslant 1\right\}$ we denote a sequence of random variables such that

$$
\begin{equation*}
\tau_{n}=\inf \left\{m: \inf \left(X_{1}, X_{2}, \ldots, X_{m}\right) \leqslant \varepsilon(n)\right\} \tag{3.1}
\end{equation*}
$$

where $\left\{X_{n}, n \geqslant 1\right\}$ is a sequence of i.r.vs.u.d. on $[0,1]$.

Lemma 3.1. The sequence $\left\{\tau_{n}, n \geqslant 1\right\}$ increases with probability one and $\tau_{n} \rightarrow \infty$ a.s. as $n \rightarrow \infty$.

Lemma 3.2. The random variables $\tau_{n+1}-\tau_{n}, n \geqslant 1$, are independent and if $\varepsilon(n)=n^{-1}$, then

$$
\begin{gather*}
\mathrm{E}\left(\tau_{n+1}-\tau_{n}\right)=1, \quad \sigma^{2}\left(\tau_{n+1}-\tau_{n}\right)=2 n, \quad n \geqslant 1 \tag{3.2}\\
P\left[\tau_{n+1}-\tau_{n} \geqslant r\right]=\frac{1}{n+1}\left(1-\frac{1}{n+1}\right)^{r-1} \quad \text { for any } r>0, n \geqslant 1 .
\end{gather*}
$$

Let us put

$$
\begin{equation*}
U_{n}=\sum_{k=1}^{n-1}\left(\tau_{k+1}-\tau_{k}\right) \frac{1}{k}, \quad U_{n}^{\prime}=\sum_{k=1}^{n-1}\left(\tau_{k+1}-\tau_{k}\right) \frac{1}{k+1} \tag{3.4}
\end{equation*}
$$

Then

$$
\begin{align*}
\mathrm{E} U_{n}-\log n & =O(1), \quad \mathrm{E} U_{n}^{\prime}-\log n=O(1), \tag{3.5}\\
\sigma^{2} U_{n}-2 \log n & =O(1), \quad \sigma^{2} U_{n}^{\prime}-2 \log n=O(1), \tag{3.6}\\
\sum_{k=1}^{n} \mathrm{E}\left(\tau_{k+1}-\tau_{k}\right)^{p} / k^{p} & \sim \sum_{k=1}^{n} \mathrm{E}\left(\tau_{k+1}-\tau_{k}\right)^{p} /(k+1)^{p} \sim p!\log n, \tag{3.7}\\
\mathrm{E}\left(U_{n}-U_{n}^{\prime}\right) & =O(1), \quad \sigma^{2}\left(U_{n}-U_{n}^{\prime}\right)=O(1), \tag{3.8}
\end{align*}
$$

where $b_{n}=O(1)$ means that the sequence $\left\{b_{n}, n \geqslant 1\right\}$ is bounded as $n \rightarrow \infty$.
Lemma 3.3. Let U_{n}, U_{n}^{\prime} be given by (3.4). Then

$$
\begin{gather*}
-2+U_{n}^{\prime} \leqslant \tilde{S}_{\tau_{n}}-\tilde{S_{\tau_{1}}} \leqslant U_{n} \text { a.s. }, \quad n \geqslant 2 \tag{3.9}\\
\tilde{S}_{\tau_{n-1}} \leqslant \tilde{S}_{m} \leqslant \tilde{S}_{\tau_{n}} \quad \text { for } m \in\left\langle\tau_{n-1}, \tau_{n}\right) \tag{3.10}
\end{gather*}
$$

where

$$
\tilde{S}_{n}=\sum_{k=1}^{n} X_{k}^{*}, \quad \tilde{S_{n}}=\sum_{k=1}^{\tau_{n}} X_{k}, \quad n \geqslant 1, X_{k}^{*}=\inf \left(X_{1}, \ldots, X_{k}\right), k \geqslant 1 .
$$

Lemma 3.4. We have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \tau_{n} / n \log _{2} n=1 \text { a.s. } \tag{3.11}
\end{equation*}
$$

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left[\tau_{n+1}-\tau_{n}-1\right] / n \log _{2} n=1 \text { a.s. } \tag{3.12}
\end{equation*}
$$

Lemma 3.5. For all $A>0$,

$$
\left.\begin{array}{rl}
{\left[n \log n \log _{2} n \ldots\left(\log _{p} n\right)^{1+A}\right.} &]^{-1}
\end{array} \quad \leqslant X_{n}\right]\left(\log _{2} n+\log _{3} n+\ldots+(1+A) \log _{p} n\right] / n \text { a.s. }
$$

for sufficiently large n.

Lemma 3.6. Under the assumptions of Theorem 1,

$$
\frac{\sum_{m=1}^{n} \delta_{m}\left(G\left(X_{m}^{*}\right)-b X_{m}^{*}\right)}{b \sqrt{2 \log n}}+\frac{\sum_{m=1}^{n}\left(1-\delta_{m}\right)\left(G\left(X_{m}^{*}\right)-b X_{m}^{*}\right)}{b \sqrt{2 \log n}} \xrightarrow{\mathrm{P}} 0
$$

as $n \rightarrow \infty$, and

$$
\mathrm{E}\left[\sum_{m=1}^{\infty} \delta_{m}\left|G\left(X_{m}^{*}\right)-b X_{m}^{*}\right|\right]<\infty,
$$

where

$$
\begin{gathered}
\delta_{m}= \begin{cases}1 & \text { if } X_{m} \leqslant \delta, \quad 0<\delta<1, \\
0 & \text { if } X_{m}>\delta,\end{cases} \\
G(t)=\inf \{x \geqslant 0: F(x) \geqslant t\}
\end{gathered}
$$

Lemma 3.7. For any pair of reals $0 \leqslant a<b<\infty$ we have

$$
T(b)-T(a) \leqslant \sqrt{8 / \pi}(b-a) e^{-a^{2} / 2}
$$

where

$$
T(x)=P\left[\sup _{t \in\langle 0,1\rangle}|W(t)| \leqslant x\right],
$$

and $\{W(t), t \in\langle 0,1\rangle\}$ is a standard Brownian motion (see [15]).
Lemma 3.8 (the Skorokhod representation theorem; see Theorem A. 1 in [5] and Theorem 4 in [14]). Let $Y_{1}, Y_{2}, \ldots, Y_{n}$ be mutually independent random variables with zero means and $\sigma^{2} Y_{i}=\sigma_{i}^{2}, 1 \leqslant i \leqslant n$. Then there exists a sequence of nonnegative, mutually independent random variables $z_{1}, z_{2}, \ldots, z_{n}$ with the following properties:

The joint distributions of the random variables $Y_{1}, Y_{2}, \ldots, Y_{n}$ are identical to the joint distributions of the random variables $W\left(z_{1}\right), W\left(z_{1}+z_{2}\right)$ $-W\left(z_{1}\right), \ldots, W\left(z_{1}+\ldots+z_{n}\right)-W\left(z_{1}+\ldots+z_{n-1}\right), \quad \mathrm{E} z_{i}=\sigma_{i}^{2}, \quad$ and $\quad \mathrm{E}\left|z_{i}\right|^{k}$ $\leqslant C_{k} \mathrm{E}\left(Y_{i}\right)^{2 k}, k \geqslant 1$, where $C_{k}=2\left(8 / \pi^{2}\right)^{k-1} \Gamma(k+1)$.

REFERENCES

[1] P. Billingsley, Convergence of Probability Measures, J. Wiley, New York 1968.
[2] P. Dehéuvels, Sur la convergence de sommes de minima de variables aléatoires, C. R.Acad. Sci. Paris 276, A (1973), pp. 309-313.
[3] - Valeurs extrêmales d'échantillons croissants d'une variable aléatoire réelle, Ann. Inst. H. Poincaré, Sec. B, 10 (1974), pp. 89-114.
[4] U. Grenander, A limit theorem for sums of minima of stochastic variables, Ann. Math. Statist. 36 (1965), pp. 1041-1042.
[5] P. Hall and C. C. Heyde, Martingale Limit Theory and Its Applications, Academic Press, New York 1980.
[6] H. Hebda-Grabowska, Weak convergence of random sums of infima of independent random variables, Probab. Math. Statist. 8 (1987), pp. 41-47.
[7] - Weak convergence to the Brownian motion of the partial sums of infima of independent random variables, ibidem 10 (1988), pp. 119-135.
[8] - and D. Szynal, On the rate of convergence in law for the partial sums of infima of random variables, Bull. Acad. Polon. Sci. 27.6 (1979), pp. 503-509.
[9] - An almost sure invariance principle for the partial sums of infima of independent random variables, Ann. Probab. 7.6 (1979), pp. 1036-1045.
[10] T. Höglund, Asymptotic normality of sums of minima of random variables, Ann. Math. Statist. 43 (1972), pp. 351-353.
[11] S. Kanagawa, An exact rate of convergence in the invariance principle for martingale difference arrays, Yokohama Math. J. 32 (1984), pp. 153-158.
[12] K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York-London 1967.
[13] P. Prakasa Rao, Limit theorems for sums of order statistics, Z. Wahrsch. Verw. Gebiete 38 (1976), pp. 285-307.
[14] W. A. Rosenkrantz, On rates of convergence for the invariance principle, Trans. Amer. Math. Soc. 129 (1967), pp. 542-552.
[15] S. Sawyer, A uniform rate of convergence for the maximum absolute value of partial sums in probability, Comm. Pure Appl. Math. 20 (1967), pp. 647-659.
[16] A. V. Skorokhod, Studies in Theory of Random Processes, Addison-Wesley, Massachusetts 1965.
[17] V. Strassen, Almost sure behaviour of sums of independent random variables and martingales, Proc. of the 5th Berkeley Symp. of Math. Statist. and Probab. (1965), pp. 315-343.

Instytut Matematyki UMCS
plac Marii Curie-Skłodowskiej 1
20-031 Lublin, Poland

