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Abstract. Let .{Y,, a 2  I }  be a sequence of independent and 
positive random variables, defined on a probability space (9, d ,  Pj, 
with a common distribution function F. Put 

In this paper a convergence rate in the invariance principle for 
the sums S,, n 2 1, is obtained. 

1. Introduction and results. Let (Y,, n 2 1) be a sequence of independent 
and positive random variables (i.p.r.vs.) with a common distribution function 
F such that 

1 

(1) S ( F ( X ) - X / ~ ( X - ~ ~ X  < m for some b, O < b < m. 
0 

Let us put 

Y,* =inf(Yl, Y2, ..., Ym), m a  1, and S , =  z Y,, n 2 2 ,  S, = O .  
m= 1 

Several authors (121-[4], [6]-[lo]) have investigated the asymptotic conver- 
gence S, as n 4 oo in probability, almost sure and in law. The almost sure and 
Donsker's invariance principles of sums S, were investigated in [73 and [9]. In 
this paper we examine the rate of convergence in the Donsker's invariance 
principle for the sums S,. 

Let (I.',, n 2 1) be a sequence of i.p.r.vs. with a common distribution 
function F such that (1) holds. Let us define 

and write 

8 - PAMS 12.1 
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Put 

F,,(E.) = P[ max ISn,kI < A]. 
l G k < n  

Under the assumption (1) it follows from the Donsker's invariance principle 
that, for each 1 > 0, 

lim FJA) = T (A) ,  
n'm 

where 

4 " (- 2 2 ;12 (4) T(L) = P [  max IW(t)l < A] = - -expi-(2k+ 1) IT /8 }, 
o<is  1 R k = O  2k+1 

and ( W (t), 0 < t < 1) is a standard Wiener process (cf. [7j, Corollaries 1 
and 2). The purpose of this paper is to study the rate of convergence of Fn to T. 
The main result :is the following 

THEOREM I. Under the assumption ( 1 )  we have 

(5)  sup I P [ max IS,,kl < A] - T (~)l = 0 ((log n)- 
.4 . l $ k C n  

where 1 < k < n, n 2 1) and T(1) are given by (2) and (4), respectively. 

2. Braof of the result. In the proof of Theorem 1 we apply some lemmas 
given by Dehkuvels [3], Hoglund [lo] and Sawyer [15]. Moreover, we use the 
Skorokhod representation theorem. For the sake of completeness we present 
them in Section 3. 

Proof of Theorem 1. At the beginning suppose that (X,, n 2 1) is 
a sequence of independent random variables uniformly distributed on [0, I] 
(i.r.vs.u.d.1. (In this case b = 1.) Put 

n 

X:=in€(X,,X ,,..., X,), m B 1 ,  S",= Xz, n B  1, 
m =  1 

and define 

We are going to prove that 

(7) sup I P ~  max  IS".,^^ d A] - T (A)I =  log n)- ' I 3 ) .  
A 1 B k S n  

Let us set 



Injma 01 independent random variables 115 

and put 
k 

Un,k= C K , m r  f Gkdn, n B 1 ,  
m = l  

where the random variables z,, n 2 1, are given in Section 3 by (3.1) 
( ~ ( n )  = n - l ) .  

Now,  lei us observe that K,kt  1 < k < n, are independent random 
variables (Lemma 3.2) and 

(9) max < ( 1  + A)log2 n/(2 log n)li2 a,s. 
l S k 4 n  

for sufficiently large n, where log, n = log,- 1 (log n), P > 2,  log, n = log(log 4. 
In fact, by (3.12) for all A > 0 we have 

z k + i - ~ k - E ( ~ k + l - ~ k )  < ( l + A ) k l o g , k  as. 

for sufficiently large k, i p  by the definition (8) we get 

for saciently large n. 
By the Skorokhod representation result applied to the sequence V,  

= (KVI,  KP2, ..., KBn) there is a standard Wiener process (W( t ) ,  t ~ ( 0 ,  1)) 
together with a sequence of nonnegative independent random variables 
z,, z,, .. ., z, on a new probability space such that 

n 

(10) {ua,l, ,un ,2 ,  . * .  5 u n , n ]  2 { ~ ( z ~ l ~  W(z1  +z&, 3 W( zi)], 
i =  1 

n > 1, where means the equivalence in joint distribution, 

for each real number r >, 1 

where C, = 2(8/n2)'- r(r + 1); and 
k k - l  

Now we shall prove that 

(14) sup IFL'I(A).- T (41 =  log n)- ' I3 ) ,  
I 

where 

(15) Fkl)(A) = P [  max (Un,k( < A], A 2 0. 
1 S k G n  
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Let us observe that by (13) and (9) we obtain 

Fil)[R) = P [  rnax IW(z, + . . . +zk)l 6 A1 
l C k d n  

k k - 1  

b P [  max \W(z,+ ... +q-,)I- max Iw( zi)- W (  zi)l <A] 
l G k 4 n  1 C k S n  i = l  i =  1 

n- 1 

6 P[max (IW(tj1 $ A+(l+ A)(log, n)(Zl~gnj-~/ ' ;  0 < t C zi)] 
i =  l 

and, analogously, 

Let us put 

Thus from the above we get 

< P[ max IW(t)l < A + a , l + ~ [ l  zi-11 2 g(n)], 
OSrSl -g(n) i = l  

where g(-) is a positive function decreasing to zero as n + co, slower than 
(log a)- ll*. 

We first estimate the second part of the extreme right-hand side of (16). 
From the construction of zi and the relations (11H13) a i d  (3.2), (3.7) we have 
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i = l  

$ 4! C2(logn)[(2 log n)(g(n)-O(l)/logn)] -' 
= o(((1.g n)(L7(n))2)') - I), 

where C, is a positive constant defined in (12). Putting g(n) = ( l ~ g n ) - ~ / ~  we 
obtain 

n - 1  

(17) P [ I  C zi - I I B (log ~ r ) - ' / ~ ]  = O(flog n)-'I3), 
i = l  

As for the first term of the right-hand side of (16),  from the scaling property of 
the Wiener process we get 

P [  rnax IW(t)l C I + a J  = P [  max I ~ ( ( l - ~ ( n ) ) t ) l  c l+an]  . 
O S t S l  -g(n) 0 6 t S  1 

= P [  max [W(t)J < ( a + ~ , ) ( l - g ( n ) ) - ~ ~ ~ ] .  
O < r < l  

Thus from (16) and (17) we have 

We can also obtain, by a similar argument, the relation 

If (log < 3, then we easily find that 

= 2A(log n)-11%4(1 + A)(Iog, n)(2 Iog n)-'I2. 

Hence, by Lemma 3.7 (cf., [15]), for ( l ~ g n ) - ~ / ~  < 3 we have 

Combining this with (18) and (19) we obtain (14). 
Now let us put 

- tk k Sn,7,=(z Xr- C i-1)(210gn)-112, l G k d n ,  n 2 2 ,  &,, ,=0 ,  
i =  1 i=  1 

where z, is defined in (3.1). 



Let us denote 
FP)(A) = P [  max  IS",,,,^ < A]. 

l < k < n  

By (3.9) and the fact that T, = 1 and fr, = Xf 6 .l a.s. we obtain 

FL2'(A) 4 P [  rnax IUn,kl- max 19,,~, - Un,kl G a1 
16k4n l<k$n 

< P [  max IU,,,~ -Tz, (2 log a)- 1!' < A] < ~;''(A+(2log n)-'I2). 
l S k < n  

Analogously, by (3.4), (3.9) and (3.8), we obtain 

Fk2'14 2 P C  max I Un,kt + max If",,,- G A] 
l$kdn lSk<n 

where C and C' are positive constants independent of n such that 

Hence, by (14), we get 

t 20) sup IFh2)(A) - T(A)I = 0 ((log n) - ' I3) .  
2. 

Now, let {$a,k, 1 < k < n, n 2 11 be a triangular array of sums of random 
variables defined by (6). 

By a similar argument to that in the proof of Theorem 1 (see [7]) (relations 
(9H12)) we obtain 

P [  max 1fns-s",,,,l 2 C(1og n)-lj3] 
l < k S n  
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< P [  max IS, -$,I r 
l G k d N ( n )  

2 

where 

and N(n) is a sequence of integers. . , 
We note that for k such that k  2 T, by the definition (3.1) we have 

inf (X, , X,, . . . , X,, + i) < E (k) = l/k for all i 2 0. 

In this case we get ' 

and so 1fk-f7j < k ~ ( k )  = 1 .  If k < z,, then 

Put N(n) - ( l ~ g n ) ' ~ ~ - ' ,  0 < 6 < 1/6. Then 

rnax 1Sk- frkj > - 
2 

c ] [ $C (log n)lfi] 
2 - 

2 
(log n)lI6 = P X I  2 - = 0 

2 N(n) 

for all n such that n 2 no,  where no is the largest integer such that 

Jzc 
-(log n)lI6/N (n) > 1. 

2 

Now we are going to estimate 

PC max 1fn,, -gn,,I 2 C(log n)-'I3]. 
N(n)<k<n 
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Analogously as previously and by Lemmas 3.4 and 3.5 for sufficiently large n, 
we have 

(1 + A) log, k (1 +A)log, k 
+ % - I  k 

+ A )  log, 
g- 1  (1 +A)(log2 k)2] 

k 
+- 

N ( n ] < k S r + S n  k log, k 

fief 
2 -(log n)li6 + (1 +A) log, N(n) 

2 I 

Z k - z k - 1  C l  (log n)lI6 S P [  mar 
N(n)<k<Tk<n(1+~)k10g2k ' (1+~)2(10g2n)2 1 

where 

A, = C,(log n)lt6/(1 + A)2(log2 nj2, 

and C,  is a positive constant such that 

Jz C' 
2 

(log n)'l6 + (1 + A) log2 N(n)  - (1 + A)' (log, n), 2 C, (log n)li6. 
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Now, by (3.31,. we obtain 

1 exp { - (1 + A M n  log, k) 

The last equality is a consequence of the integrable type criterion of series 
convergence. Hence, by (20H223, we get (7). 

Now, let {Y,, n 3 1) be a, sequence of i.p.r.vs. with the same distribution 
function F satisfying (1)' and let, as previously, {X,, n 2 1) be a sequence of 
i.r.vs.u.d. on [O,  I]. 

Put 
G ( t )  = inf{x 2 0: F(x)  3 t) .  

Then, by [41, the sequences (G(X , ) ,  n 2 I} and (Y,, n 3 I) are the same in law. 
Furthermore, the sums 

n 

S , =  Y,*, where &*=inf(Y, ,Y,  ,..., Y,), k 2 1 ,  
k =  1 

can be represented as 

sn = G(X,*), where Xf = inf(Xl, X,, .. ., X h ,  k 2 1. 
k = l  

Let us define 1 < k < n, n 2 1) as follows: 

s n , k = ( S k - b l ~ g k ) / b ( 2 1 ~ g n ) 1 1 2 ,  1 < k < n ,  n a 2 ,  sl,1=0. 

By Lemma 3.6 we can deduce that 

for all sequences (b,, n 2 1) of real numbers such that 6,  r ao, as n + XI. In 
fact, for some 6,  0 < 6 < 1, and n 2 1, putting 6, = 1 if Xn < 6 and 6, = 0 if 
X, > 6,  we get 
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With probability one all but finitely many ai are equal to one, so if b, 7 a, as 
n+  a,, then 

n 

Moreover, if M is a positive constant, we see that 

because 

Consequently, we get (23). Now, we obtain 

FJA) = P C  max I S , , , I  < ~1 < P C  max 1fn,kl - max ~ & , k -  G 13 
1 S k S n  1 < k < n  1 Q k C n  

Isk - bgk1 
rnax l f n P k l  - rnax 

1 Q k S n  I d k d n b  ,/= 
bn Isk - bS",l rnax 

b n  
. A] 

1 Q k S n  b , / G  l d k d n  

rnax ~ $ , ~ l d  A + 
I S k S n  

and analogously 

rnax 1gnFkl d - 
l s k d n  

By (7) and Lemma 3.7, putting b, = log,n we obtain (3, and the proof of 
Theorem 1 is complete. 

3. Lemmas. In this section we present without proofs lemmas due to 
Dehkuvels f31, Hoglund [lo], Sawyer [I51 and Skorokhod 1161, we needed in 
the proof of Theorem 1. 

Let (~(n), n 2 1) be a sequence of positive real numbers strictly decreasing to 
zero. By (% = r(~(n)) ,  n 2 1) we denote a sequence of random variables such that 

(3.1) z, = inf(m: inf(Xl, X,, ... , X,) < ~(n)) ,  

where (X,, n 2 1) is a sequence of i.r.vs.u.d. on LO, 11. 
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LEMMA 3.1. The sequence (z,, n 2 1) increases with probability one and 
2, + w a.s. as n 4 m. 

LEMMA 3.2. The random vuriables r.+, -rn, n > 1,  are independent and if 
~ ( n )  = n- I, then 

(3.2) E ( ~ ~ . + ~ - t ~ ) = l ,  u 2 ( z n f l - ~ , ) = 2 n ,  n > l ,  

1 
(3.3) P [ T , + ~ - T , ~ ~ ] = -  for any r > 0 ,  n2 1 

Ld us put 

Then 

n R 

(3-7) C E@+, + 1 - ~ k ) ~ / k ~  E ( T ~  + - ~ & ~ / ( k  + lIP - p ! log n , 
k - 1  k = l  

(3.8) . E(U,- Un) = 0 ( 1 ) ,  uZ(U,-  UL) = 0 ( 1 ) ,  

where b, = O(1) means that the sequence {b, ,  n 2 1) is bounded as n + ao. 

LEMMA 3.3. Let U,, Uf, be given by (3.4). Then 

where 

LEMMA 3.4. We have 

(3.1 1) lim sup z j n  log, n = 1 as., 
n+ m 

(3.12) lim sup [z, + -7, - 1]/n log, n = 1 a.s. 
n-r m 

LEMMA 3.5. For all A > 0,  

[n log n log, n . . . (log, n)' + A ]  - l < X, 
< Dog, n + log, n + . . . + (1 + A )  log, n]/n a.s. 

for sufiiently large n. 
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LEMMA 3.6. Under the assumptions of Theorem I, 

as n m, and 

where 

I .  . ,. . .  , G(t)  =.inf(x 2 0: F ( x )  2 t ) .  
.. . 

LEMMA 3.7. For any pair of reals 0 < a < b < oo we have 

T ( b ) -  T (a)  < f i ( b - a ) e - ' 2 p ,  

where 

T(x) = PC sup IW(t)l d x ] ,  
t€(O, 1 )  

and { W ( t ) ,  t~ (0, 1 ) )  is a standard Brownian motion (see [15]). 

LEMMA 3.8 (the Skorokhod representation theorem; see Theorem A.l in 
151 and Theorem 4 in [14]). Let Yl ,  Y2, . . . , Y, be mutually independent random 
variables with zero means and a2 = a?, 1 < i < n. Then there exists a sequence 
of nonnegative, mutually independent random variables z,, z,, . .. , z, with the 
foE lowing properties: 

The joint distributions of the random variables Y,, Y,, . . . , Y, are identical to 
the joint distributions of the random variables W (z,), W ( z ,  + 2,) 

-W(z , )  ,..., W ( z , +  ...+ 2,)-W(z,+...+z,-,), E z , = a z ,  and Elzilk 
6 C,E(X)", k 2 1, where C, = 2 ( 8 / r ~ ' ) ~ - ~ r ( k + l ) .  
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