PROBABILITY AND MATHEMATICAL STATISTICS Vol. 12, Fasc. 2 (1991), pp. 265–270

MINIMIZING L₁-DISTANCE BETWEEN DISTRIBUTION FUNCTIONS

Eugene F. Schuster

Abstract: The problem addressed is that of finding the closest distribution function G in a class of distributions \mathcal{G} to a given theoretical or empirical distribution function F in the L_1 -norm. Applications considered are those of estimating the center of symmetry θ in the one-sample problem and in estimating the shift θ in the two-sample problem by minimizing the L_1 -distance between suitably chosen empirical distribution function functions. In both cases, the minimizing $\hat{\theta}$ is shown to be Galton's estimator. The closest symmetric distribution function to the empirical in L_1 -norm is identified as the average of the empirical distribution function and the empirical distribution function of the data reflected about Galton's estimator. The minimizing techniques employed can be used to give new proofs of the corresponding results for the L_2 -norm where the minimizing $\hat{\theta}$ is the Hodges-Lehmann estimator.

2000 AMS Mathematics Subject Classification: Primary: -; Secondary: -; Key words and phrases: -

THE FULL TEXT IS AVAILABLE HERE