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Abstract. A previsible process F is integrable with respect to a semimartingale X if
and only if F belongs to a randomized Musielak-Orlicz space L, where o is explicitly
expressed in terms of the Grigelionis characteristics of X. Decoupling inequalities and
tangent processes are the main tool used in the proof,

1. Introduction. Semimartingales form a natural class of processes with
respect to which the stochastic integration is feasible. More precisely, by results
of C. Dellacherie and K. Bichteler, classical by now, they are a maximal space
of processes X for which the stochastic integral operator F — [FdX is
a continuous operator from the space of bounded predictable processes with
the supremum norm into L°(Q2, &, P). Each semimartingale has random
characteristics B, 4 and C (Section 4) which were originally inroduced by
B. Grigelionis. If X has independent increments (and only in this case), B, y and
C become deterministic, and in the case of a stochastically continuous process
X with independent increments they coincide with the usual Lévy characteris-
tics which appear in the Lévy—Hinchin formula for the characteristic func-
tion of X.

The principal goal of the present paper is to describe analytically the space
of X-integrable predictable processes in terms of the Grigelionis characteristics
B, p and C of a semimartingale X. The space turns out to be a randomized
Musielak-Orlicz space %, and an explicit formula for ¢ as a functional of B,
p and C is obtained (Section 6).

The above goal is achieved by:

(i) constructing a decoupled tangent process X to X (a la Jacod [11] and
following an old idea of It6 [8]), which, in a sense, behaves as if it had
independent increments (Section 4);
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(ii) showing, via decnuplmg inequalities, that F is X wmtegrable if and only
if Fis f-mtegrable, and proving that X-integrability of F is equivalent to
pathwise X-integrability of F (Section 6);

(ili) obtaining a complete description of deterministic functions integrable
with respect to a process with independent increments with given Lévy
characteristics (Section 5).

Our exposition here is deliberately as elementary as we could make it and
uses only basic martingale properties and stopping time techniques. Essentially,
no prior knowledge of the semimartingale theory or of the general theory of
stochastic integration is necessary here.

A primitive version of the ideas developed in this paper was used
previously by the authors {cf. [16] and [17]) to study single and double
stochastic integrals with respect to stochastically continuous, symmetric
processes with independent increments.

The underlying ideas of this paper can be traced to many papers which
exploited the “conditioning” techniques. Let us just mention here the papers by
Burkholder [3], Hill [5], It6 [8], Jacod [11], Jakubowski [13], Jakubowski
and Stonimski [14], Kallenberg [15], Szulga [23], which have closest connec-
tions to our subject matter.

2. Decoupling inequalities and tangent sequences. The present section is
a collection of basic inequalities and definitions which are necessary for the
development of material of Sections 3-6, and which are also of independent
interest. The techniques are essentially those of Burkholder [2].

Let (2, &, P) be a probability space and let F, c # c #, —... be an
ascending sequence of sub-o-fields (filtration) of % For a sequence cf (&) of
random variables we put

k&
gr=suplEl, YEi=sup|Yy &l Tidi= supIZ &l
i E i=1 kol zfﬁk
DerinrTioN 2.1. We shall say that two (ﬁ‘}adapted sequmces of random
variables (&) and (4, are tangent if for each i=1,2, ...
fg ~ i Mo

ie. for each ceR we have P(¢, <c|Zi-,) = Py, <c|%-,) as.

Equivalently, (¢;) and (y,) are tangent if, and only if, for each (%)-predic-
table, bounded sequence (v,) (i.e. (v) is (% - 1)-adapted) and for each sequence of
Borel measurable, bounded functions (@),

Evffpf(ét) =EBEyem), i=12,...,

so that, in particular, for any stopping time 7 and any tangent sequences (£;)
and (1),

E ¥ noie)=E 3 noin)
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If (£) and (n,) are tangent, then for any (%)-predictable sequence (v), the
sequences (v,£) and (v;n,) are tangent as well

A simple example of tangent sequences (which also motivated our
definition) is given by (£, = (v;8)) and (n,) = (v, 1), where (), (B} are indepen-
dent copies of a sequence of independent random variables and the sequence
(v) is predictable with respect to the filtration

Fi= 0By s B Brv s BY i=1,2,..

In all the inequalities of this paper, sequences of random variables will
always have only finitely many non-zero terms, so we need not concern
ourselves with the question of convergence of their series. In this context the
sign Z will always mean that the summation extends overalli = 1, 2, ... Also,
by definition,

¢ if ¢,>¢,
EE if iéiﬂ = c,
—¢ if < —c.

[fi]c =

Routinely, the standard truncation [ ]* will be written as [ ] and the brackets
will not be used here for any other purpose. The first result of this section is
a basic inequality which compares tail probabilities of maximal functions of
sums of tangent sequences.

THEOREM 2.1. Let (d;) and (e,) be two tangent sequences of random variables.
Then, if f,=d,+...4+d,, g,=e+...+e,, n=1,2,..., then, for each
a,b,c>0 with ¢ = 2b,

52+c

(21) P(f*>a éz - +3P(g* > b+ 2P(Y* E([e,) | 1) > b).

Proof Let a, b, ¢ be arbitrary positive real numbers with ¢ 2 2b, and let
us define stopping times

k
or=inflk: lg)>c}, w:=inflk: | T ([4) ~E(4F|%-1) > $a},
L k+1
gi=inf{k: |, [e)|> b}, A:=inf{k: |}, E(fel|#-1)| > b).

Clearly,
P(f* > 0) < P* > O+ P(T* ([T - E(4)'| L)) > $a)
+P(Y"E([dY| %)) > }a),
and, under the above notation, the three terms on the right-hand side can be
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estimated from above as follows:

P@*>¢)<E ZI(]dﬂ>e)+P(a<m =E 2 I{le) > )+ P(o < o)

i=1 f=1
= 2P(e* > ¢) < 2P(g* > ¢/2) < 2P(g* > b).
Next '
P(Y* ([d)—B(d]| F:-y) > 4a)
TADAL

< P(o < 00)+P(l< m)+§a“1(E( Y, ([dF—EQd]| %))

i=1

- P(Y (el > b)+P(Z* E(feJ| #i_y) > b)
+Sa“‘( E( Z (e —E a1 7))

142

< P(g* > b))+ P(L E([e ] | Fi-0) > b’*% 2b: -

because, by the definitions of g and A,

TAQAR

| ¥ (fe~E(e)| %)) < 2b+e.

i=1
Inequality (2.1) is trivial in the case

wS_izbr+c'2 1,
4 aqa

so suppose that

§2b+c<
4 a

Then a/5> b, and

P(Y*E([d Y| #i-1) > o/5) < P(Y" E([e ]| #i-y) > D),
which, together with two previous estimates, gives inequality (2.1). Q.E.D.
Remark 2.1. In [18] we obtained a modified version of the inequality in
Theorem 2.1 which is more useful for some applications. We proved there that
if a, b, ¢ and (d), (e} are as in Theorem 2.1, then

PU* > < 6,+3%°Plg" > 4 2P(S" B(eiF| -0 > b).

It is also proved there that if, addmonaﬂy, either (d,) (and hence also (¢)) is
a conditionally symmetric sequence, ie, d;, ~g,_,—d, i=1,2,..., or{d)is
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a non-negative sequence, then we simply have
P(f* > a) < 3(b/a+ P(g* > b)).

An interested reader is also referred to that paper for more results on
tangent sequences.

The last term in the basic inequality (2.1) of Theorem 2.1 is, in general,
quite complicated to evaluate. However, in the special case of conditionally
independent sequences, to be defined below, it is controlled by the term
P(g* > b), which considerably simplifies applying of Theorem 2.1.

DerINITION 2.2. An (#)-adapted sequence (e,) is said to satisfy condition
(CI) if there exists a o-field ¥ = # such that Z(e;| F-,) = Lig;|¥) as. for
i=1,2,..., and such that (e} is a sequence of %-conditionally independent
random variables.

If (e;) satisfies condition (CI), then the o-field % can always be selected to
be equal to o(L(el Fi-y),i=1,2,..).

Lemma 2.1. If an (F)-adapted sequence (e,) satisfies condition (CI), then for
each b>0, c > b/4

PE" el | 7> B < 25 P(g* > g“)

where g, = e+ ... +¢,
Proof If (&) is a sequence of independent random variables, then,
following [6], for any s, t, a >0 we have
P(YTE > s+t+a) S PE* > a)+P(L7E > s)P(L, &> 1),
and

f P(YF &> 2s+1)ds < ?P(é* > s)ds+P(}, & > 1) ? P(Y* & > s)ds,
(¢] 0 0

so that
t/2+EE*
12—P(L &> 1)

for each ¢ for which the right-hand side is positive. Therefore, for each
c>t>10,

22) EY'E<

t/2+Esup,|[£,]
12—P(3 [ > 1)
t/2-+cP(sup|[&11 > O+t _ 31/2+ cP(Y* ¢ > 1/2)
SU12-P(LIREY > 12-P(LTE>12)°

EY [T <
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because, for ¢ >, {YF [£]° > t} = {¥* & > 1/2}. So, if 3" B[] > 4, then
P(Y* & > t/2) = t/2(c+41).

 Inserting t = b/4 and applying the above implication to the ¥-conditional-
ly independent sequence (¢), we see that a.s. if Z* E([e]J19) = b, then

P(3 e, > b/8|%) = b(8(c+b) ™"
Hence, integrating the last inequality over the event {Y " E([¢,J°| %) = b} we get
8(c+b)
b

P(T* E([e|9) > b) <~ 2 p(* e, > b8),

which, in view of condition (CI), concludes the proof of Lemma 2.1.
The above lemma and Theorem 2.1 immediately give

Traeorem 2.2, If (d) and (e) are tangent sequences and (e;) satisfies condition
(CI), then for each a,b>0

P(f*>a) < 402—%-51}’{9’* > b),

where f,=d,+... +d, and gn%efi—,.. +e,.

The next lemma shows how the last term in the basic inequality (2.1) of
Theorem 2.1 can also be controlled by another expression which will prove to
be useful later on.

LeMMA 2.2. If (e) is an (%)-adapted sequence, then, for each a, b, ¢ > 0 and
¢z 2a,
- . a . b+c
P(Z |E({_Ei]“|§‘}~1)a > b) = E+2-—b—— sup P(ﬁZiﬁiE‘il > .’.2),
{vi)edy
where 2, is the class of all (#)-predictable sequences (v;) such that |v] <1,
i=1,2,.. '

Proof. Let u,=sgnE([eJ*| %), i=1,2,... Then (u)e. Let

k
A:=inf{k: |}, wle]] > a}.
% i=1
Then we have

P(} [E([e]°| #;-1)| > b) = P(LwE([e]|%:-1) > b)
A A
E(Y wE(e]| Fi-1) E(Y wlel)

€ P(A < o0)+—1=1 zP(A<oo)+-~—~"—3~‘}-]mm

b
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<P (Z* u;le] > ﬂ)*i‘*gf'(i* u;fe]” < )-f-f%;f P(Z wle] > a)
m: b;‘cP(Z u[ﬂ]“}ﬂ) z—i—m{?(g ue >a)+P(L’$>C)]

a R % ¢
€ =t 0> >
<3t% [P(z uie,_>a)+P<z &>3

——

<2422 sup P(Loel > a)
b b {pedy

where the last inequality follows from the following simple Lemma 2.3. Q.E.D.
LemMma 2.3. For each (%)-adapted sequence of random variables (h;)

P(Y*h, > a) < sup P({Yv;h] > a).

(videdy
The proof follows immediately by taking v, = I(r = i), where 7=
= inf {k: Eﬂ Ii > aj.
Lemmas 2.2 and 2.3 and Theorem 2.1 immediately give

CoRrOLLARY 2.1, For each & > 0 there exists a 6 > 0 such that if (d)) and (e,)
are tangent sequences and if the inequality P(EZI: d { > 5)< & holds true for
every (F)-predictable sequence (v) with v < 1,i=1,2, ..., then P(T €; > g)
< €.

In general, the last term in the inequality (2.1) of Theorem 2.1 cannot be
omitted. This can be seen from the following

ExampLE 2.1. Let (£,) be a sequence of independent random variables and
let (&) be its independent copy. Define dy;iy = &, daiez = — & €201 = &,
eyiva = —&, 1=10,1, 2, ... Both sequences (¢;) and (d;) are (%)-adapted and
tangent for #:= o(d;; ¢; j =1, 2,..., i). Moreover, (d,) has property (CI) with
% = ¢((¢)). In view of the constrm:han, the partial sums of ) e, are either 0 or
& and Y d, = Y (&—¢&). Hence, for each a, b >0,

P(f*>a) = P(Z (¢i—&)>a) and P(g* > b)= P(&F > b),
so that it is possible for P(g* > b) to be small without P(f* > a) being small.

3. Decoupled tangent sequences. Tangent sequences with property (CI)
share many properties with sequences of independent random variables and
the main idea of the present paper is to construct, for a given sequence (d,) (or,
in subsequent sections, for a process), a tangent sequence (or process) with
property (CI) (or its analogue for a process), and then, via inequalities of
Section 2, deduce results about (d,) from results about independent random
variables.
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DeriNiTION 3.1. Let (d) be an (%)-adapted sequence on a filtered
probability space (Q, #, P; (%)). For any filtered space (Q', %', (%7)) and any
probability transition function P': Qx % — R*, a sequence (d)) defined on
@=0xQ and adapted to the filtration (%) =(F®F) is said to be
a decoupled tangent sequence to (d,) if

{a) for each we 2, [5 (w, -)) is a sequence of independent random variables
on (2, #, P'(w, ")),

(b) the sequences (d) and (d), where di(w, ):= di(w), (0, ©)eQxQ,
i=1,2,..., are tangent on the filtered probability space (@, #, P; (%)),
where P is defined by the formula

P(AxB):= PRP(AxB) = [P'(w, B)P(dw), AeF, BeF'.

(In the sequel, the trivial extension d, of d; will be simply denoted by d, without
any risk of misunderstanding.)
Clearly, a decoupled tangent sequence satisfies condition (CI) with respect
to the o-field ¥ = % (or, more precisely, with respect to ¥ = ¥ @ {2, O}).
For a given sequence (d,) there is a canonical way to construct a decoupled
tangent sequence: Let £ = RY, #| be the o-field generated by the first
i coordinates in R" and, finaily, let

P'(w, B)=(® £(d;| #-1)(@))(B).
i=]
The sequence dj(w, (x)) = x;,i=1, 2, ..., is a decoupled tangent sequence to
dyi=1,2,...

Examrre 3.1, Let

@ 7, P) = é @, #, P)

be an infinite product probability space wuth w = (w,, @,, ...)and let & be the
o-field which depends only on the first i coordinates w,,..., w;, If 4,
=dfwy, ..., w), i=1,2,..., then the sequence

diw, @):=dfw,, sy ..., @1, @), i=1,2,...,

defined on (2% Q, F @ F, PR P; (% ® %)) is a decoupled tangent sequence to
{d,). Note that in this case P®P is just a product measure.

In particular, if &,, £,, ... is a sequence of independent random variables
and »;, v,, ... is a predictable sequence with respect to & = o(£,, ..., {)(ie. v,
is %_,-measurable, i = 1, 2; ...) and (d) = (v;£,), then (d):= (v, &), where (&)
is an independent copy of (£), is a decoupled tangent sequence to (d,) (cf. [16]).

The following corollary, which parallels Corollary 2.1 (but formally does
not follow from it), will play a pivotal role in Section 6 in applications of the
notion of a decoupled tangent sequence to theory of stochastic integrals.
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COROLLARY 3.1. For any &> 0 there exists a & > 0 such that if (d) is
a decoupled tangent sequence to (d) and if the inequality P(|Y v,d| > 8) <&
holds true for every (#)-predictable sequence (v)) with o] < 1,i=1,2,... (ie
(v)e), then

P(Y*vd,>e)<e
Jor every such sequence (v).
Proof. By Lemma 2.2 we have

P(Z BT %0 > B Sj+275° sup P(Ewd]>a)
(wi)edy

and, in view of the definition of P,
P(YEB((o, 4| £~ 1) > b) = P(Y" E([v,d;)| #i-1) > b).

Similarly,
P(Y*vd,>a)< sup P(|Y wd]|>a)
{wyeds
by Lemma 2.3, and P(Y " v,d, > a) = - P} * v,d, > a). Since the sequences (v,d))

-and (v,d) are tangent on (@, &, P; (%)), an application of Theorem 2.1
concludes the proof. Q.E.D.

4. Decoupled tangent processes. Let T = [0, t..], let (@, #, P; (# (1)) be
a probability space with filtration satisfying the standard assumptions (i.e.,
right continuity and completeness), and let X (t), te T, be a process with sample
paths in the Skorohod space D(T) and adapted to (# (¢)). In the present section
we describe a concept of a decoupled tangent process to X(f) (which was
introduced by Jacod [11] as a tangent process), study conditions for its
existence and its properties.

Let

4.1 ={t) 0=t<...<f, =t,}

be a normal sequence of partitions of T (i.e, lim,. , max; <<, [th—1thi—1] = O).
For each n, consider the sequence

4.2) =X -X(E-), k=1,...,k,

which is (# (tf))-adapted. Let (df) be a decoupled tangent sequence to (d7)
defined on the filtered probability space (&, &, F; (%)) (depending on n) as
described in Definition 3.1. _
Next, let us define processes on (3, &, P) by the formulas
X:= ¥ & n=1,2,...,

kup st

and random variables on £, with values in the space of probability distributions
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on D(T), by the formula
“w):= L(X"(w,, 1), teT), n=1,2,..

Notice that by the definition of a decoupled tangent sequence, for each we 2,
the stochastic process X™(w, -, t), te T, on €', has independent increments with
respect to the probability P'(w, ).

DermiTION 4.1. We shall say that X (t), te T, admits a decoupled (n"}-tangent
process (the partition (#") usually will not be explicitly mentioned, although see
Remark 4.5) if the sequence of random variables M%,n=1, 2, ...,0on(Q, #, P),
with values being measures on D(T), converges in probability P. As usual, the
space of measures on D(T) is equipped with the topology of weak convergence.

If X(t), te T, admits a decoupled tangent process, then any process X (¢),
teT, defined on (@xQ', FQRF',PRF; (FO®F'(1), where (@, #,
(7 ’{t))) is a filtered space and P': @x % —R" is a probability transition
function, is called a decoupled tangent process to X as long as the following two
conditions are satisfied:

(i) X has sample paths in D(T) and is adapted to F(H®@F (1), teT;

@) for P-aa wef

Z(X(w,-, 1), teT)= Mg(w), where MY = P-lim M%.
A0

Once X(f) admits a decoupled tangent process, a canonical way to
construct it is as follows: choose @' = D(T), F(t) =c(0'(s), s<1), F' =
F(t,), Plw, )= MZ(o, ), and set X(w, o, ) = o'(1).

Remark 4.1. It is clear that, for P-a.a. we@, X(w, -, t), te T, is a process
defined on (@', #', P'(», -)), which has independent increments and sample
paths in D(T).

If X(1), te T, is itself a process with independent increments, then it admits
a decoupled tangent process X which can be taken to be an independent copy
of X. More precisely, X can be defined by the formula

X, o)=Xw), (0, 0)e2xQ.

Strongly predictable processes X (ie, processes such that there exists and & > 0
such that, for all te T, X(t) is # (t —&)-measurable) also admit a decoupled tangent
process. In this case we can take X(w, o, f) = X(w, 1), te T, (@,0)eQ2x Q.

A process X with sample paths in D(T) is said to be left quasi-continuous if
for each & > 0 there exists a § > 0 such that for any stopping times 7, 6, 1 < 0,
such that P(c—1 > §) <6 we have

P( sup | X()—X(0)>¢g)<e.
TEEIKT

This definition, which is handy for our purposes, is equivalent to the usual one
(L, e.g. [9]
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The class of left quasi-continuous processes in D(T} admitting a decoupled
tangent process was characterized by Jacod [11]. In particular, he proved that
any left quasi-continuous semimartingale admits a decoupled tangent process
as well. This result is what we need in Section 6, and we discuss it below in
some detail sketching also its strengthening with a proof based on inequalities
of Section 2.

We begin by introducing what we call Grigelionis characteristics of the
process X.

The first characteristic is a predictable process B(f), te T, in D(T) defined
by the formula

43) B:= P-lm B,

Ao

where the convergence is in the space D(T), and

(44) B)= 3 E(@IFE-D), teT
HEEL

As in (4.1), 11, ..., t§,en” and (d}) is defined by (4.2).

The second and third characteristics are a predictable random measure
u supported on Tx (R\{0}) and a predictable process C(t), te T, which are
simultaneously defined by the condition that for each teT and each
fe®R:={f: f is bounded and continuous on R and lim_. f (x)/x* = $/"(0)
exists and is finite}

4.5) irocH+ £ [j:f(x)y(d’s, dx) = K(f)(0),
where K(f){t}) = P-lim,.,,, K ,{/)(f), the limit is in D(T), and
(4.6) K,(NW):= Y E(f(@—E{F G- ) FE-1)

kuap<e
Of course, the above characteristics need not exist in general, but the
following proposition shows that once B exists, x and C do exist as well. The
proposition can be proved using the machinery of the theory of semimartin-
gales but we propose here an elementary proof which can be found in the
Appendix.

Prorosrmion 4.1. If X (1), te T, is a left quasi-continuous process and (a") is
a nested normal sequence of partitions of T, and the characteristic B exists, then
the characteristics p and C are also well defined, the convergence in (4.3), (4.5) and
(4.6) is uniform, rather than only in D(T), and the processes B, C and K(f),
fe€R, have sample paths in the space C(T) of continuous functions.

Remark 4.2. If X(t), te T, is a process with independent increments, then
B, p and C are deterministic and are well known as the so-called Lévy
characteristics of X. It is easy to see that X is stochastically continuous if and
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only if the functions B and K(f), f €2, are continuous. In this case B, u, and
C are, of course, the quantities appearing in the Lévy—Hinchin formula for
X (cf. Section 5).

The next theorem, which explains a connection between the existence of
Grigelionis characteristics and the existence of decoupled tangent processes for
processes in D(T), extends a result of Jacod [11].

THEOREM 4.1. A left quasi-continuous process X in D(T) admits a decoupled
tangent process if and only if the Grigelionis characteristic B exists for it.

Proof. We shall restrict ourselves to the proof of the “if” part which is the
only one needed in what follows. Besides, a proof of the “only if” part can be
found in [11]. So, assume that B exists for X. To show that X admits
a decoupled tangent process (Definition 4.1) we need to show the weak
convergence of M¥%.

For each fixed we and for the process with independent increments
X"(w, -, "), the first characteristic B(-) and the functional K(f)(-), fe %,
coincide with B,(w, ') and K,(f)(w, ). If they converge uniformly to con-
tinuous functions B{w, *) and K(f ), -) {for f in a countable dense set in %,
then, by a criterion of weak convergence for processes with independent
increments (cf. [10]), the processes X™(w, -, -) converge weakly to a process
with independent increments with first characteristic B(w, -) and the functional
K(f)(w, -}, which uniquely determine the distribution of this process. This, and
the standard subsequence argument, immediately conclude the proof. Q.E.D.

Remark 4.3. The above proof follows the original Jacod’s [11] approach.
However, the basic inequality of Theorem 2.1 creates also a possibility for the
following, a little more direct, proof. It follows from Theorem 2.1 that for each
two stopping times ¢ and 1 on (ﬂ, F, P (F (t))) with values in 7" we have, for
each ¢, 6 >0,

P@P,( sup |X"(t)—X"(0)] > ¢)

r<rse

< §-éi+3‘}';’( sup [ X()—X (o)l > 8)+2P( Y E([d1¥|F-y) > d).
£ A £ 4 ko <tfsc

Now, the Aldous [1] method can be used to prove the tightness of processes X"
and the convergence of characteristics permits identification of the limit.

In the next few paragraphs we discuss the situation when X is a semimar-
tingale, i.e. a sum of an (#)-local martingale and an (%)-adapted process with
sample paths with finite variation on finite intervals.

Since for any left quasi-continuous semimartingale the characteristic
B exists (cf. Appendix), we obtain thus the following result of J. Jacod.

COROLLARY 4.1. Any left quasi-continuous semimartingale admits a decoup-
led tangent process for each normal sequence of partitions (n").
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Remark 44. If X(f), teT, is a left quasi-continuous semimartingale on
(@, #, # (1), P), then the Grigelionis characteristics B, p, and C are uniquely
characterized by the following property: For each ueR the process

ﬂzg(t)+ j‘ Iﬁeiux_l__iu[i])ﬁ(ds, dgx}
O R

@.7) Ay, 1) = iuB(t)—

is a unique predictable process of bounded variation such that A(u, 0) = 0 and
such that exp(iuX () — A(u, 1)}, te T, is a local martingale (cf. [11]). Note that if
X is not left quasi-continuous, then the characteristic B need not exist as
defined (cf. [4]) and another definition of B is necessary.

Remark 4.5. In the case where a semimartingale X is left quasi-
-continuous the Grigelionis characteristics ¢ and C may be defined by the
equation (fe4%)

H
OCH+ | [ fx)uds, dx) = lim ¥ E(f(dD|F{Ei-1)
RO n~rowo kit s
and, moreover, the above limit is in C(T) (cf. Appendix 7.0). This is the
definition of y and C that we will use in Sections 5 and 6.

Remark 4.6. In general, the existence of a tangent process, as well as the
existence of the Grigelionis characteristic B, depends on the initial choice of the
sequence of partitions (z"). In fact, it is possible to construct a process X with
continuous sample paths and a nested sequence of partitions (z") such that on
two of its subsequences, say (n}) and (n3), X admits decoupled (z%)- and
(n3)-tangent processes with different Grigelionis characteristics. (This solves
a problem posed by Jacod [11].) ‘

Indeed, let ¥, n=1,2,..., k=1, 2,..., 4" !, be independent Radema-
cher random variables on (2, #, P). Define

1 gr=1

Xi=— ¥ n{(l-Wt—4k+2) v 0} for te[0,1]=T,
k=1
and then put
Xi = Z X7,
n=1

where the series is uniformly convergent in view of | X7[, < 1/n?, so that (X,)
is in C(T) because each (X}) is in C(T), and

F = ﬂ G, = g((Xz)uﬁm n=1,2,.. )

Ifn] = k/A4", k=0, 1,2, ..., 4" is a sequence of partitions of [0, 1], then
E[AX!:;‘M !-ﬁ( —-1)jan} = AX'W"
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so that
lim Z E(AXMMJ%&“M,M”) = lim X[M"]M" = Xt'

n-ven kf4nsg [ Rad ]

Hence B exists and B= X. Also
E E((AX hfa.n*“E(AX kjan Ii%,kml)mn))z kﬁkﬁw—'!) =0,

kfan <t

so that y=0 and C=0. 7
On the other hand, if =} = (2k/4"), k=0,1,..., 4"

E(4X5y1an | Par- 1y1a7)

AXFypqn if msnor if m=n and k is odd,
0=AX%yn—n" 2] if m=n and k is even,

AX ygan for odd k,

E AX L ﬁ — n’ =
( 24 I pitd 1)}4) {szkmn—ﬂ_zrﬂ fﬂr even k,,

and )
B'(t)= Y E(dXzyanl| Frg-rya) =X,—n % 3 1.

Akfan<s 2kjAn <t
Clearly, B"(t) does not converge in any sense as »u — 0.
The above construction can be easily fine-tuned to yield the desired
counterexample.

5. Stochastic integrals: deterministic integrands, integrators with independent
increments. In the present section, which is independent of the remainder of the
paper, we collect basic facts on Wiener-type integrals of the form § fdX, where
S is a deterministic function and X is a process with independent increments.
As we shall see in Section 6 understanding of such integrals is critical for
explaining the structure of general predictable processes which are integrable
with respect to semimartingales. A number of authors studied these integrals in
a similar spirit under various restrictions on X (cf. Urbanik and Woyczynski
[25] for symmetric, stationary and stochastically continuous X, Urbanik [24]
for X symmetric, stochastically continuous but not necessarily stationary, and
Rosifski [21] for stationary, stochastically continuous, but not necessarily
symmetric X)}. Since what we need in Section 6 are resuits in the general case,
with no assumptions on stationarity or symmetry of X, for the benefit of the
reader, we provide these results below (even without assumption of stochastic
continuity) with concise proofs.

Let X(t), teT, be a process with independent increments with sample
paths in the Skorohod space D(T), and let, as before, z" = (t§) be a normal
nested sequence of partitions of T, ie., max,|/ti—¢f-;]—0 as n— oo and
et n=1,2,... We will assume that | j,n" contains all the points of
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stochastic discontinuity of the process X. The Lévy characteristics B, y and
C (compare with Section 4, Remark 4.5) of X are defined as follows:
(5.1) B(t)=1limB, = lim Y E[d], teT,

n=rm kupst
where df = X(t)— X (ti—1). B() is a well-defined function in D(T) and the
convergence is uniform (see Appendix 7.P). From now on, in this section, we
will assume that B(z) is a function of bounded variation on T (BeBV(T)). It
was noticed by Prekopa [20] that the condition Be BV(T) is a necessary and
sufficient condition for the stochastic integral with respect to X to exist (under
any reasonable definition of the integral). This fact also follows easily from the
methods developed below. If BeBV(T), then (see Appendix 7.P)

(5.2) VarB(f)= lim ) |E[df]l, teT.
n=o ki<t
In the case of BeBV(T), the condition
(5.3) 1 OCO+ | mx u(ds, dx) = lim Y. Ef(d})

n—+o RapEr
satisfied for each fe#&:= {f: f is bounded and continuous on R and
lim,.q f(x)/x* = % f"(0) exists and is finite} uniquely determines a positive
measure u supported on T x (R\{0}) and a function C: T — R™. The measure
u fulfills the condition

(5.4) § @ A xHulds, dx) < o,

and the function C is continuous and non-decreasing.
Recall that if X is stochastically continuous, then the Lévy characteristics
of X introduced above determine its characteristic functions and

o ,

EeX® = exp {iﬂ'm“ LAY N j' f(e““' 1—iu[x]ulds, dx}}

Let v be a measure on T defined by the formula
(5.5) v(ds) = |dB(s)| +dC(s)+ [(1 A x2)u(ds, dx).
R
If f is a step function, i.e. a linear combination of functions I, we define
{rfdX in an obvious way, and in this case define
(5.6] o8 (f): "sup{iljvfdx lo: v is a step function, |v| < 1}.

Here and thereafter ||¢||, ¢ B[]l = E|& ~ 1.

DEFINITION 5.1, A deterministic function f: T — R is said to be X-inte-
grable (in short, f e L% (dX)) if there exists a sequence (f) of step functions such
that
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@) f,— f vae;

(i) Qd"“(j:{—f,,n)»-w as m, m-—»o0.

If fel®(dX), then, by definition, Jr fdX = P-lim, {; f,dX.

Remark 5.1. It follows from Theorem 5.1 that | fdX defined in such
a way is independent of the choice of (f).

Our main goal in this section is to characterize functions in L¥*(dX) in
terms of the three Lévy characteristics of X, and in order to accomplish this we
need to introduce the following notation. Let, by the Randon-Nikodjym
Theorem,

(5.7 dB(s) = b(s)v{ds), dC(5) = c(s)v(ds),
and let
(5.8) u(ds, dx) = 9(s, dx)v(ds)

represent the desintegration of u. Furthermore, let
k(s, x) = j{l A (xu)?} (s, du)+c(s)x?

59 s, x) = [ (Dxu]—x[u])¥(s, du)+bis)x,
R ,

I(s, x) = sup I(s, y)

Il =ix|

and, finally, let
(5.10) o(s, x) = k(s, x)+1(s, x).
The function ¢ is measurable in s, continuous and symmetric in x, and
increasing in x for x = 0. Moreover, for each s, ¢ fulfills the condition (A,):
(5.11) o(s, 2x) < 5¢(s, x), xeR™.
Indeed, we have

I(s, 2x) = 2l(s, x)+ j({qu] 2[xu])¥(s, dx) < 2l(s, x)+k(s, x),

because [[2xu]—2[xul] <1 A (cu)® for all x, u. Hence I(s, 2x) < 21(s, x)
+kis, x), and, since k(s, Zx) < 4k(s, x), we get (5.11). Under these circum-
stances, the so-called Musielak-Orlicz space

(5.12) Le(dv) = {f: &(f):= ifp(&,f{s}}v(ds) < w0}

is a linear space. The modular @ induces on L?(dv) a topology of a complete
linear metric space in which step functions are dense (cf, e.g., [197).

The following Theorem 5.1 gives a complete characterization of functions
which are X-integrable, and we precede it with recall of a version of the three
series theorem and the Lévy-Octaviani inequality.
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ProrosiTION 5.1. Let &, i = 1,..., n, be a sequence of independent random
variables. Then:

O |X*Elo is small, then YE[E] Y{E(E)?—(ELE)Y and
Y P(&| > 1) are small.

(i) If ZE[EJ and Y E([¢])* are small, then ][Zé lo is small.

(iii) P()." & > &) < 3supy<jga P IZW &| > ¢/3) for each &> 0.

Here and thereafter the generic implication “if 4 is small, then B is small”
means that for each & > 0 there exists a § > 0, depending only on &, such that
A < 6 implies B < &.

THEOREM 5.1. feL%(dX) if and only if feL®(dv). Moreover, S(f) is
small if and only if ®(f) is small.

It is clear that to prove Theorem 5.1 it suffices to demonstrate that for
a step function f both ¢$*(f) and @(f) are simultaneously small, and to
accomplish this we need the following

LemMaA 5.1. Let A(f):= [;1{s, f(s))v(ds) and A(f):= [ (s, f(s))v(ds). Then,
for any step function f,

(5.13) A(f) = sup{A(tf): v is a step function, |v] < 1}.
Proof. Let us define
(5.14) vg(s, X) = v(s, x):=min{r: Jr| <1, Ufs, x) = I(s, rx)}.

Then v(s, x) is measurable in (s, x) because, for each «, —1<a <1,
{v(s, x) < a} = {1,(s, x) = Is, x)},

where 1,(s, x) = max_; ¢, <, (s, rx) is measurable in s and continuous in x. So
o(f)(s) = v(s, f(s)) is also measurable in s and |v(s, f(s))| < 1 for all se T. Now,
by the definition of v, we have A(f) = A(v(f)f )» and an approximation of v(f)
by step functions gives (5.13). Q.E.D.

Proof of Theorem 5.1. Let f be a step function. Without loss of
generality, we may assume that all jumps of f are contained in =" for some n.
Then, for each m > n we have
(5.15) 2Eendl =Y Y ELfEMdr].

i koo, <Trs
The function [ux]—u[x] belongs to # (see (5.3)) for each w. So, for each fixed k,

taking u = f(t') (wich happens to be equal to f(}) as long as &f—; <t < 1}),
by (5.1), (5.2), and by the definition of ! (see (5.9)), we obtain

im ¥ sﬂE[ﬂt‘,—"ld?‘]
mvon Hy <Oy
=lm Y (B/Ed— I +E ) [dr)

m-—oo M. <SRy

1 — PAMS 122
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| ] (@0-S@ D, d
o fEdBO=] | s o).

0o <sEy R Of. a0

Hence we conclude that

(5.16) lim EE[f[t"’)d’"] AW

o

Similarly, by (5.2), for each k=1, 2, ..., k, we have
im Y EBeNdrP= | (LS uds, dx)

m-om 1R, <IPSH (R gl
= | ks Ss)vs),
- 1]
so that
(5.17) lim YE(L/E)r)? = K():= [ k{s. f)ds).

Let us also observe that, by the Cauchy-Schwartz inequality, for each m
(5.18) Z’E([ﬂ[t’z")d’i"])z

< Z {(E(Lrem d”‘] — (B} + (Z ELfEP)ridr),

where 1" = sgn E[ f(t"}d]"].

Now, the rest of the proof follows quickly from Proposition 5.1. Indeed, if
o%*(f) is small, then for each step function v, |v| < 1, with jumps in 7", r > n, it
follows that for m > r

I i ofdX | = E“!;v(ﬁ")f(:z”w;"i;iﬂ

is small (uniformly in ). Hence, by Proposition 5.1 (iii), | 3" v(e) f(£r)d?|, is
small uniformly in v. Therefore, by Proposition 5.1 and (5.16) we see that A(yf)
is small, and so is A(f) by Lemma 5.1. Inserting v(t) = 7", as in (5.18), and
interpolating it to a step function »(t), we infer from (5.18) and from
Proposition 5.1 (i) that ¥, E([f(t"dr])* is small. Hence, by (5.17), K(f) is
small, and we conclude that &(f) = A(f)+K(f) is small. This completes the
proof of the first implication.

The converse implication is even simpler to demonstrate. Indeed, if @(f) is
small, then both A(f) and K(f) are small, and so is 4(f). Therefore, by (5.16),
(5.17) and Proposition 5.1 (ii), we see that ||[fdX E]O is small. The same
argument applies to v-f, which implies that ¢$7(f) is small. Q.E.D.

The above discussion also justifies introduction of the stochastic integral
as a process (f; fdX, te T) with sample paths in D(T) as follows. If f is a step
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function, then the definition of the process is obvious. If feL$', and f, is.
a sequence of simple functions as in Definition 5.1, then the defining condition
ox(f,—f) -0 and Proposition 5.1 (iii) imply that

which glves the uniform convergence of processes ( j‘ f,dX, teT), which in the
limit gives the desired process (§,fdX, teT). Therefore, for feL§ we can
write

j fdx msuprdX[
teT O
Remark 5.2. If gy () is small, then also || [ fdX||, is small. This follows
immediately from the above definitions and Proposition 5.1 (iii).

In the next section we will need the following

PROPOSITION 5.2. Let f be a simple function. Then py(f) is small if and only
if both ||[7 fdX |, and ||[* vy(f) fdX |, are small, where vy is defined by (5.14).

Proof. To show the “if” part let us begin with an observation that if g is
bounded and || {* gdX||, is small, then A(g) is small. For a simple g this is an
immediate consequence of (5.16) and Proposition 5.1 (i). For a bounded g this
follows by standard approximation techniques using the Dominated Conver-
gence Theorem. Applying the above to g = vx(f) f we see that A(f) is small.

To prove that K(f) is small let us observe that, for the process
foX =(f,fdX, teT), the first characteristic is equal to

Box(t) = fl{s, [(5))dv(s).

So
Var Byox < | L(s, f(s))dv(s) < A().
T

By (5.2), it follows that, for large n, ), |E[ f(e)d}]| is small because A(f) was
proved to be small so that we obtain the smallness of K(f) by (5.18).
The proof of the “only if” part is obvious. Q.E.D.

6. Stochastic integral: predictable integrands, semimartingale integrators.
Let X(t), teT, be a left quasi-continuous semimartingale on (Q, #, P; # (1))
with three predictable Grigelionis characteristics B(t), C(t), te T, and u(ds, dx)
(cf. (4.4)44.6)). Let us define a measure voP on @x T by the formula

v® P(dw, ds) = v(w, ds)P(dw),
where

v(w, ds) = [dB(s)) +dC(s)+ [ (1 A x*)u(ds, dx)
R
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is a random version of measure v introduced for processes with independent
increments at the beginning of Section 5.

A process F(t), te T, is said to be a predictable step process if it is a finite
linear combination of processes of the form &y, ,(2), t€T, where ¢ is
& (s,)-measurable. For a predictable step process F the integral [FdX is
defined in an obvious manner. A process F(), te T, is said to be predictable if it
is measurable as a function on £ x T with respect to the o-field genarated on
Qx T by all predictable step processes.

DermniTioN 6.1, A predictable process F is said to be X-integrable (in short,
Fe L(dX)) if there exists a sequence of predictable step processes (F,) such that

(i) F,»F v®@P-ae. as n— w0,

(i) ox(F,—F,)—0 as n, m— oo, where

ox{G):=sup || g: VGdX |,

and where the supremum is taken over all predictable step processes V' such
that |[V| < 1. if FeL(dX), then

j?FdX = P-lim |F,dX.
nsw T

Remark 6.1. With some effort, one can show that the above definition
coincides with the standard definition of a stochastic integral (cf, e.g., [22]) and
that the above definition of the integral is correct, ie., that lim, {, F,dX does
not depend on the choice of F,. The correctness also follows from Theorem 6.1.

Remark 6.2. It is easy to see that, for each predictable step process F, if
ox(F) is small, then not only || {, FdX |, is small, but also | |7 FdX|, is small
(cf. Lemma 2.3), where

j* FdX:= sup | j o) F(s)dX (s)].

Therefore, if Fisa predictable process and F, is a sequence of predictable step
processes defining [ FdX, then the sequence of processes

Y,(0):= [Ion() F (8)dX(s), teT,
. T

converges uniformly in ze T, in probability, to the process
Y(t):= [Iog(s)F(s)dX(s), teT.
T

So, as a result, the stochastic integral can also be viewed as a stochastic process
with sample paths in D(T), and the first statement of this remark extends to all
FeL(@dX).

To formulate our main result which provides a characterization of
predictable X-integrable processes in terms of Grigelionis characteristics B,
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C and p of a semimartingale X, we need to adjust (randomize) the quantities
introduced in Section 5. Since B(t), C(t) and u(ds, dx) are all predictable, there
exist predictable processes b{s) and c(s), and a predictable random measure
#w, s, dx) such that

dB(s) = b(s)v{ds), dC(s) = c(s)v(ds)
and
ulw, ds, dx) = ¥(m, s, dx}v(w, ds).

Therefore, in the semimartingale case, the Musielak—Orlicz function ¢ defined
by formulas (5.10) is random (g = ¢(w, s, x)) because all of the functions k, {, [
are now random. This permits us to introduce the space .%,(dv) which, by
definition, is the space of all predictable processes F for which

P(F)(w):= [ p(w, s, F(o, ))v(w, ds) < « P-as.

The modular ||@(F)||, equips %,(dv) with a topology of a complete linear
metric space and the predictable step processes are dense in L? (cf, e.g.,
Hudson’s [ 7] explicit work on a particular case; the general case can be verified
in a similar fashion).

Another, equivalent, way to introduce the random functions ¢, k, I, 1 is via
the decoupled tangent process X (z). Recall (Section 4) that a decoupled tangent
(to X(t)) process X(t) (obtained with the use of a partition n" which, for
convenience, is assumed to be nested) is defined on the probability space
QxQ, FRF', PP} with filtration F (1) ® F'(t) and enjoys the following
property: for each fixed e Q, the process X(w) = (X (¢, @, *), te T) defined on
(Q’ , F', P'(w)) is a process with independent increments. For each we 2, the
functions @(w), kiw), l(w), l(w) introduced above are exactly the functions
corresponding to the process X(w) in Section 5 (cf. (5.9) and (5.10)).

Let us also note that, for a predictable process F, F e %, (dv) if and only if,
for P-almost all weQ, F(w)e Lyy,(v(w, ds)).

THEOREM 6.1. A predictable process F is X-integrable (Fe L(dX)) if and
only if Fe%,(dv).

Moreover, for an Fe L(dX), ¢x(F) is small if and only if |®(F)|, is small.

Alternatively, F is X-integrable if and only if, for P-a.a. we®, the
deterministic function F(w, -) is integrable (in the sense of Definition 5.1) with
respect to the process (with independent increments) X(w).

Proof. It suffices to check that, for a predictable step function F, g,(F) is
small if and only if @(F)(w) is small with large probability, the last statement,
by Theorem 5.1, being equivalent to saying that ¢%i.,(F(e, -)) is small with
large probability P(dw).

So, let F be a predictable step process such that (without loss of generality)
all jumps of F are contained in all partitions n" for n large enough.
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Now, assume that g,(F) is small or, more precisely, that
P(U VEdX { >d8)<é
T

for each predictable step process V with V] < 1. If the jumps of V are
contained in n", then we can write that

[ VFX = Y VEDF@L,
T i

where df = X{t])— X (¢~ ). Hence Corollary 2.3, applied to the o-fields F (t})
and the sequence (F(t})dj), implies that, with large probability P® P;,

SEVEF(ENd; = j‘* VFdX"

is small (@ and X" are as defined in Section 4), ie. for a given & if & is
sufficiently small, we have

PR P j* VFdX" > &) < &'
Hence, by the Chebyshev inequality,
(p'(“*mif" > 8)</F)>1- f
So, for a fixed ¥V with jumps contained in =" for some n, we obtain
(P’(” VFdX|> 8) < /8y = 1- /¢

because the distributions £(X"(w)) -+ £(X(w)) in probability P (cf. Section 4).
The integral inside the above inequality is understood in the sense of Sec-
tion 5 for each w. The above inequality extends to all #-predictable processes
V bounded by 1 (by the Monotone Class Theorem).

Finally, take V(w, s, X) = 0g(»{®, 5, x), where v is as in (5.14) but defined
using Grigelionis characteristics. The ¥ {w, s, F(s)) is predictable and bounded
by 1 (by the argument similar to the one following (5.5) which was used to
prove the measurability of v). So by Proposition 5.2 we see that, for a given &, if
¢' is small enough, then

P(ofe(F(@) > &) <e.
This concludes the proof of the first implication.
Conversely, let F be a predictable step process with jumps contained in

some 7™ and such that

Ple¥t)(Fw) > &) <.
By Remark 5.2, for a given & > 0, if £ is small enough, we have

P(P([* VF(@)dX (@) > &) < &) > 1—¢ |
T
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for all # -predictable step processes ¥V bounded by 1. Now, if V is a fixed
Z -predictable step process with jumps contained in #™, then for » large enough

P(Py([* VFaX (@) > &) < &) > 1—e,
T

because Z(X"(w)) » £(X(w)) in P, and hence we get
PRP([*VFiX"> §) <e+(1—8)d.
T

Since
[ VFdXr = ¥* V(e F (e,
T

by Theorem 2.2, we see that, for a given é > 0, if &’ and & are small enough,
then
P(Y* VIEHF(eDd! > 8) < 5,

so that, finally,
P(|[VFdX|> )<

for any & -predictable step process ¥, which, in view of the arbitrariness of V,
gives g4(F) < é. Q.E.D.
As a consequence of Theorem 6.1 we also obtain the following

COROLLARY 6.1. A predictable process F(t), te T, is X-integrable if and only if,
for P-almost every weQ, the deterministic function F(w, t), te T is X-integrable.

Remark 6.3. After a preprint of the original version of this paper has been
distributed Jacod and Sadi [12] extended the concept of tangent processes to
processes which include the class of all semimartingales. This extension was
possible due to the introduction of random predictable partition (z"). Namely,
for a given semimartingale X one can find a nested sequence of random
predictable partitions (ie, 1§ are predictable stopping times) such that
max,[ti— 4] = 0 in P as n— oo, and such that | J, #" contains all predictable
jump times of X. For such a sequence #n" and each sequence of stopping times
A, We have

sup | X{4)—-X(®|—=0
AnEt<on(in}
in P as n— o0, where o,(t) = min{tfen": 1} > t}, and this property can be
used, instead of left quasicontinuity, and after some modifications, in the proof
of the existence of characteristic B and other characteristics as uniform limits
(see Section 4 and Appendix). As a result the main theorem of Section 6 can be
extended to the case of general semimartingale integrators.

7. Appendix. This appendix contains proofs of facts we referred to in
Sections 4 and 5. We felt that these facts were too technical to include in the
main body of the paper and would distort what we judged to be the proper
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balance of exposition of the principal resuls. Also, the nature of these facts is such
that, despite the tediousness of their proofs, they are not surprising and could be
anticipated by an expert. Finally, once again we would like to call the reader’s
attention to the fact that Jacod and Sadi [12], in their recent paper, obtained
results from which many resuits given below can be deduced. However, our
proofs are more direct and elementary, and make this paper self-contained.

The standing assumption in what follows is that the process X is left
quasi-continuous,

Subsections 7.A through 7.M contain a complete proof of Proposition 4.1,
subsection 7.N completes the proof of Corollary 4.1, subsection 7.0 proves
Remark 4.5, and, finally, subsection 7.P contains proofs omitted in Section 5.

T.A.If ¢: R— R is a bounded continuous function such that ¢(0) = 0, then
P-lim max [E(p(d})|F (1) =0.

nay 1 ShkSkn

Indeed, let
Ay=min{k: 1 <k <k, [E(e@)] F(5-1)| > a},

and 4, =k, if the set is empty. Then
P(max [E(o(d) | # (G- 1))| > a)
.

<a 'E Y I(i, = bIE(p@)| F(@-1)| <a™'E %I(An = i) lp(d})
k

= a 'E|p(X(r,)~ X ()| < a H{cP(IX (z,)— X ()| > 8)+¢),

where 7, =1j, 1, T =1}, ¢ =sup.gle(x), and & J are such that |x| < é
implies |o(x)] < e. Now, since 7, and 7, are stopping times with |r,—1,| less
than the mesh of partition =", the left quasi-continuity gives statement 7.A.
7.B. By 7.A we have
P-lim sup{B,(t)—B,(t—)| = 0.
n~roo tel
Thus, if the sequence B, converges in D(T), then it converges uniformly in P and
the limit B is continuous.
7.C. If the characteristic B exists for X, then for each f € & the sequence of
processes K, (f) is uniformly convergent in P to a continuous process K(f).
The proof of this fact will take several paragraphs, and the first step in it
consists in the observation that

7.D. The assertion in 7.C holds true if and only if K, (f) is uniformly
convergent in P to a continuous process for f(x) = h(x) =:[x*] and for each
feRy:={foeR: fo(x) =0 for |x| <& for some &> 0}.

This reduction follows immediately from the fact that for each & > 0 and
feR there exists an f, e %, such that (3" (0)—g)h+f, <f<BS"O)+e)h+,.
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TE. Let
K@) = ., E(fdD| 7 (- 1)

msr
If the characteristic B exists for X, then

P-lim sup |[KS(/U)—K (D=0 for each feR,.

n-+on 1eT

Indeed, by Lemma 2.2,
P(sup [KR (&)~ K, (/)] > b)

=T

<8427 % p(5 |l B # - )~ Fid)] > o),

where ¢ = sup,g|f(x)]. Also, by 7.A,
P-lim sup [E([4]| # (8- )| = 0.

a=x  k
Thus, since .
lim Y |f(di—eD—f(dp) =0
n-+on k
for each (¢f) such that
lim suplefl =0,
n-+on  k

and for each w such that X{(w, -)eD(T), we immediately get 7.E.
7.F. Suppose that fed, and that X has the property

(7.1) glf(dﬁ)! <M

for some M >0 and all neN. Then K2(f) converges uniformly in P.

Without loss of generality, we can also assume that f > 0. For m > n, let
us introduce processes

(7.2) KonlNe)y:= 2 B( Y  fE@MFE-1)

gt o <Epsey
Since K2(f) is a non-decreasing process in t, and K5(f) has only jumps in ",
we have

P(sup |K(N)(6)— K3 (N)(t)| > b)

eT

< P(sup [KS(N)— KN > b/2)+P(sx;p E(f(d)| F (§-1) > b/2).

texn
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By 7.A, the second term converges to 0 as n — oo. The first term is estimated
from above by

(73)  P(sup|Kn(N)()—Kra(f)®)| > b/4)

+P(sup |KR(f)(t)— Kum(f)0)| > b/4).

By Lemma 2.2, the second term in (7.3) is estimated from above by

4a 2b SM
(7.4 B Pl T san-sal> )

Hence, since for each @ for which the sample path of X is in D(T)
XX f@n-fdg-o,

k tp <tpsp

the second term in (7.3) converges to 0.
Now, since {KS(f)(th)— KS..(/ X} is an F (t})-martingale, we get, by the
maximal inequality, that the first term in (7.3) is estimated from above by

EIK (Nt)— Knm( )t

ﬁi-g Y{E( Y EfEFE)fP-E Y f@nFE-)))
fiea”

oy <psy §oy <SG

<p LB T B(anI )

ten® L <rpsg

<~:«1-§E Y 2B(f@MFE)E( Y fEPIFEL)

b2
Renm P San(ty)

2B Y f@E( Y @ F )

b? 7 piim <P an()
<§%M3P{ supE( ¥ fUpIFE 1))>’-’~)+3§M3=
b enm LIPS anlt) b

where o0,(t) =min{ffen" t <tj}. To estimate the above probability we
proceed as in 7.A. Let

A=inf{f" E( Y SN FE)) > e
1S <oty
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Then
(7.5) P( sup E( Y f@NF ) 2 e:)

ten™ ISP <ol

<¢'E ) IA=mE( ) fENFE)

P P S oaltl)

=e'E 3 [}

ALt Sanld)

<Me 'P( sup |X(®)—X() > ),

ASst€ontd)

where & is such that f(x)=0 for |x] < 4. Therefore, in view of the left
quasi-continuity of X, the probability in (7.5) converges to 0 as n—» co.

Thus, the first term in (7.3) also converges to 0 as n, m — oo, and this
proves 1.F.

1.G. For each fe®R,y, KX(f) converges uniformly in P to a process with
continuous sample paths.

In the general case, where X need not satisfy property (7.1), fix M > 0 and
et X(t) = X(t A t), where
r=inf{teT: Y |f(X{t)-X(t-))|>M
i=1

for some neN and 0<t, <t,<...<t, <t}
Now, the process X has property (7.1) and is also left quasi-continuous. Let

RAN@:= Y E(f@IF (-1))s
<t
where d = X (t7)— X (t2_,). Then, in view of 7.F, K2(f) is uniformly convergent
in P. On the other hand, by Lemma 2.2, for any b > 0 and ¢ = sup.g | f/(x)|,

P(sup RO ~K2()01 > b) < 275 P(E1/d)~f(d0) > 0
< EE%%PW,,(Q # X(t) for some teT)< 25-;2%
for M sufficiently large, so that
lim P(sup|KS(/)6)— Ko )®) > 3b) < 6 *;2“3,
n B e teT

which gives, for general X, the desired uniform convergence of K2(f) for
f€R,. Now, the continuity of lim, K(f) = K°(f) is assured by 7.A used as in
the proof of the continuity of B. This completes the proof of 7.G.
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Hence by 7.E the assertion in 7.C holds true for each fe 2,. It is worth of
noticing that to prove this we did not use the assumption on the existence of
the characteristic B.

The case of h = [x?] is technically more complex, however the main ideas
are similar to those in the case of feZ,.

TH. Let us define wi = [di]—E([d7]|F (t;-,)) and let
K, ()t = Y, E(WD*F (1)

e
Then K, (h)—K,(h) converges uniformly to zero in P.
The proof of this statement is almost the same as in the case of 7.E. We
have only to observe that since for all x, ueR
0x) — [ — (e —u)?) < 3|0x] — [u] — [x—[]]],
we have
sup |K, (1)) — K, ()| < 3 ). E([df]—& — [di— 1| Z (- 1))

=T k
where & = E([df]|# (t]-,)), and that ), |[d{]—e}—[di—e}]| converges to zero
in P since max,|ef] converges to zero in P.

7.0 Let X(t) = X(t A 1) for te T, where t is a stopping time. Then for each
b>0

P(sup|B,(t)—B,(t) > b) < EﬁiéiP{r <ty)
el

P(sup ]:I%,B(h}(t)uﬁ—n(k){ﬂl >b) < 2?%}5 Pz <t,).

1T

Moreover, for each a, b > 0 there exists n, which does not depend on 1 such that
for all n> n,

P(sup]B,(t)—B,() > b) < a.

Since for each x, y, u, veR
W[x]—[u)* —([v] — [ < 4100 - [v] + [wl—[ull,
we have
K, (00— K, 00 < 8 B[] - [al| # (¢-)).
k
Hence Lemma 2.2 with ¢ = 16, a = 0 proves the second inequality of 7.1. The

first inequality is even easier and it is proved in a similar way. To prove the last
statement of 7.1 let us observe that if 7 is a stopping time, then on the set
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{ti-y <t <t} we have
B,(©—B,(t A7)
= ¥ E(d1-[d1F @G- )+ < & A QB([d]1# (15-,)

<Az
because
E([d1#6-))=0 on {<} for k> 1,
E(I(r < tﬁ»x)({fiﬂm[d‘ﬂ)lﬁ(iﬁ—a)) = on {tj-; <t} for k<l
and I(t < 7)([df]~—[d}]) = 0. Hence we get
sup|B,()—B,(t A1) < mui ([ 7 (- 1))

el

+ %E(I(xﬂ_l <1< 2|[X (0,(0)- XD |F &-1)

because
161 < © < - [43] < 2[X(o o) - X(@)]|

Hence, by Lemma 2.2, we have

P(sup|B,{&)~B,) > b) < ( x|E (W]lff‘“ (- 0)| > b/2)

1eT

+4§+2?—ﬁ}’(lx (e () — X(t)l >a) for each a,b>0, a< 1.

This, the left quasi-continuity of X and ‘7EA prove the last statement of 7.1

7.0, If the characteristic B of X exists, then K,(h) is uniformly convergent
in P.

This and 7.H imply 7.C since
sup |K,(W)()— K, (W)t ) < max ax E(([d])* 17 (k- 1))

teT

and by 7.A the uniform limit of K, (k) is a continuous process.
For fixed m > n and a stopping time 7 let X(z) = X(t A 1) and let
Kﬁ,m(h}“);—“ z E({ z W?)zl‘%—(tﬁw 1))9

st . <Kl
where WI" are defined as w{" in 7.H with X instead of X. By arguments as in 7.E
we have

sup | K, (1)) — K(h)(0)] < sup [K(h)(1)— K ﬁ)(t}l+maxﬁ((£d”])2lﬁ(ﬂmn))

tsT f el
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This yields the following inequality:
(7.6)  P(sup R, (B)(1)—K,,(h)(1) > 5b)

tel
< P(sup|K,(m)(0)— K, (h)()] > b)+ P{sup K .(h)(5)— K (W)(®)| > b)
teT el
+P(sup R (0~ Ku w(B)(®)] > b)+ P(sup | K, (1) (1)~ K m(h)(®) > b)

R

+ P‘(mfx B(([dz))*|# (t-1)) > b).

By 7.A the last probability is convergent to zero as n — co. Therefore, to prove
7.1 it suffices to show that, given a, b > 0, if n, m are large enough, we can find
a stopping time t such that the first four probabilities on the right-hand side of
(7.6) are less than a. By 7. the first two probabilities are estimated by

26216” £).

Now we will make the stopping time 7 more specific. For a positive integer
mand M >0 let

T, =min{ten™ t>t, or | Y, [d']| > M or |B, ()] > M},

(7,7) ' ri'&%t N
T, =min{ten™ i > t, or E (wry? > M3},
Ti= 'fm,ﬂ' = TI A Tzu
Since
E(g (w}”)z) E( Z W“')’ - E( z [d¥]—B (TR]) < (M +20,
LA Sy
we obtain

P(z, <t,) < Pz, <t,)+(M+2)*/M>
Moreover, we have

P(r, <t,) < P(W?I?! E; [dr] > M)+P(sup B, > M).
e <t
Since B, is uniformly convergent in P, the above inequalities imply that if M is
large enough, then P(r <t,) <a for all m. Thus 7.J will be proved if we
manage to show that for each fixed M if 7 is defined by (7.7), then the third and
the fourth probabilities on the right-hand side of (7.6) are convergent to zero
when n, m — o0.
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7K. If the characteristic B exists and the stopping times t,, i are defined by
(7.7), then
lim P(sup|K m(h)(t ,”,,(h)(r)l >b)=0 for each M > 0.
P00~ O tenn
This can be demonstrated by mimicking the prmf of the estimate of the

first term of (7.3) in 7.F. With K,,(h) replacing K2(f), K, ..(h) replacing K2,.(f),
and (W")? replacing f(d™ we have

YOS MP4+4 =M
i

and the proof carries over to the current situation with the following change in
the replacement of (7.5):
e lEYIA=2) Y (WP
[ S Sonttl)

=g 'E( Y P <e Y @M+2PP( Y wl>0)+6).

A< an(d) AT S anld)
Since B,,(t) = B,,(t A 1), the last probability is estimated by
P max |3 W-[ 3 > o)

B ten™ sstl <t sEIl St
i i
|s~t] S meshz®

+P(IX (A,) — X (A,)] > 6/3)+ P(IB(A;) — B,u(Ay)] > 8/3),

where 4, = 0,(A) A 1 and A, = max{t]": ' <A or 7 <t} (4, is a stopping
time since {A ="} is in F(ti*,)). Since I.lz—nlll < mesh n" and since B, is
uniformly convergent to a continuous process in P, the last three pmhabzhtles
are convergent to zero when n, m — c0.

T.L. If the characteristic B exists and the stopping times 1, 5 are defined by
(7.7, then

lim P(sup IK (h)(t)— m(h)(r) |>by=0 for each M.
T oo tex™

Wd,=fi—fe-1, & =gy—gx-1, k=1, 2, ..., |, are martingale differences

with respect to (%), then

E Z [E(diei] 1) < (B2 (Egh)'2.

Hence we easily infer that if 2 is a stopping time with respect to (#,) such that
1£ils lg.) € M', then for each b,c >0

18 P(Y [Baldi| > b) < PG < 0+2L 00 (P11 > ) 40).
k=1
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We apply this to the following situation: for k=1,2,...,I=k,
dy=wi— Y W, e=wi+ ) W, H=F),

0 < 0 <<
j' - — A o
A=min{j: j>1or |¥ [d]| > M or |B() > M}.
k=1

By the definition of A and t,, i we have |f}], lg;] < M+ M +4 =: M. Since
for each ten"
(19)- K, ()0~ Kom)(t) = 3, Eldse,| i),

fre

7.L will follow by (7.8) if we show that for given a > 0 there exists M such that
P(A<l <a for all n,m and that lim,,.,P(fi* > ¢)=0 for each ¢>0.
However, this follows easily by 7.1, the uniform convergence of B, in P and the
estimates

P(% <) € P(max | i (4] > M)+ P(sup|B, (1) > M)

j k=1 =T
< P(sup| Y. [d]] > M—1)+P(sup|B,(t A ©)—B,(0)| > M/2)
teT st ieT
+ P(sup |B,(1)] > M/2)
teT
and
P(fi*f>¢) < P{max] Z [a¥]— }: -1 E tiﬂ[ > 0/3)
ten™ I &t th € oni) ey < <t
+P(sup|B,()— B,{t A 7)| > ¢/3)+ P(sup B, (t)— B,(t) > ¢/3),
el =T

where o"(t) = max{tfen": 1} < t}. This concludes the proof of 7.L and, thus, by
7K, we have also completed the proof of 7.C.

7.M. To complete our proof of Proposition 4.1 it remains to show the
existence of the characteristics u and C. This implication follows from the
proved existence of the functional K(f) and requires only a standard
observation that the form and obvious properties of K (cf. (4.5)) uniguely
determine p and C. (

T.N. For any left quasi-continuous semimartingale X the characteristic
B exists.

Initially, we assume that X = 4+ X', where as.

{(7.10) VarAt, )€ M and sup|X'(t)) < M,

el
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A is left quasi-continnous and X’ is a martingale. Since X' is a left
quasi-continuous martingale, by 7.G, X' has the characteristic B. So it is
sufficient to prove the uniform convergence of B, in the case of X = A. In this
case it is a known fact on “laplaciens approches”. It can also be directly
deduced as follows. Consider, without loss of generality, only non-decreasing
A, and then follow the pattern of estimation of the first term in (7.3).

The reduction of the general case to the case considered above proceeds as
in 7.G. Take a general semimartingale X = A+ X", where 4 is a left quasi-
-continuous process of locally bounded variation and X' is a local martingale,
and introduce

t=inf{teT: VarA(t) > M or |X'(t)| = M}.

Let X(f) = [X{z A t)]*™. Then the rest of the proof mimicks the remainder of
the proof of 7.G.

7.0. To prove Remark 4.5 it suffices to demonstrate that if X is a left
quasi-continuous semimartingale and feR, then K, (f)—K2(f) is uniformly
convergent to 0 in P (K2(f) is defined by (7.2)).

As in 7.D it is enough to prove the above statement for feZ, and f = h.
if fed,, then it follows from 7.N. If f = h, then, once again, assume initially
that X satisfies (7.10). Then we have

K, WO—-KW@ = Y (B 7 @-0) +E @] # @-)P)

Bt

= T (Bl # (G- 0)f +Ev @) # @-0)f)

S

where af = A(tf)— A(th-,) and Y(x) = [x]—[x]*¥, so that
sup K, () — K3(h)(®)] < sup [E(@1 F(@- ) T |E(ak | F (- )

teT Ienn Hien®

+ sup [E(W @) Z (@ - )| KR (WD (t)-
!gﬁfl‘!‘"‘
By 7.G the second term converges to 0 in P as n— oo, and the first term
converges to 0 in P because, by 7.A, the sup goes to zero in P and because, in
view of Lemma 2.2, we have, for each b >0,

‘ \ M _b+2M
P( Y [Blatl# (-1)| > b) < -+2—
ten®

M

=
Now, in the general case, we can take X as in 7.N, and the proof can be

concluded by estimating both

P(sup [KR(M)(t)— KW@ > b) and  P(sup K, (h)()— K, (1) > b)

=T teT

P(Var A(t,) > M) =

as in 7.L

3 -~ PAMS 122
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1P. If X(t), teT, is a process with independent increments with sample
paths in D(T) and such that | J,=" contains all the points of stochastic dis-
continuity of the process X, then B, is uniformly convergent on T to a function
B in D(T). If BeBV(T), then

VarB(f)=lim ) |E[df]l, teT.
R+ 1REL
Indeed, define
X0 = 3, 4.
Pt

Then, for each ¢ and for each o such that X(w, -)e D(T) X(T):= lim X,(t) is
well defined.

Moreover, {X,(f), te T} is also convergent in D(T) to {X(t+), te T} for
o as above. Thus, by inequality (2.2), for a large enough and all ne N, we have

a1

Y ‘S:,
X < Pxisa

< 4(a+1).

Here for a process Y, Y*:=sup,.r|Y(#)]. Therefore, we get
(7.11) EX* < 4(a+1).

7 Lgt B(t) = EX (f) (which is well defined for each ¢ in view of (7.11)) and let
&=X-X (ti-1). Then for each n, any a > 0, and any selection of signs
g = +1, we have (by (2.2))
a+Esup, [[4]—d}l

(7.12) B Y ({41 —d < 12—P(L 1 —dil > @)’

Since, by (7.11),
sup|[df]—df < 2X*+1el' and lim ¥ |[&]—d =0
k

)i =<
for each « such that X(w, -)e D(T), the left-hand side of (7.12) converges to
0 as n—co.
Hence firstly,
fim sup|B, ()~ B(t) = 0
n-top feR”
and, since B is a continuous function away from Unn", we infer that the
uniform convergence of B, to B takes place on all of T, which implies that
Be D(T). The fact that B is continuous away from Uﬂn“ can be seen as follows:
Let tgéuﬂ 7", Then for each &> 0 there exists an interval I = {t] 4, t}) for
some 1, k, containing t, and such that
P(sup | X(0)—X () > ¢) <&,

ti'el
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and therefore

P(sup |1 X()— X () > ¢) <&.

t'el
Thus, as before, by (2.2),
e+E sup [X(1)— X ()|
sup |B(t)—B(t)] < piel ,
SopIBO=BEN < 15~ Floup KO- X @ > 9

and since, by (7.11), EX* < o0, we get
Esup|X()-X(t) <&

tt'el

if I is sufficiently small. Hence
. sup|B()—B(t)] < 2&(1/2—g)"?

t.t'el
if I is sufficiently small. :
Secondly, (7.12) also implies that

tim ¥ [E[4]—Edj =0,

n-+oo flent
which proves the second statement of 7.P.
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