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Abstract. A previsiMe process F i s  integrable with respect to a sefnimartinple X if 
and only if F belongs ta a rando MusIelak-Orlicz space L,(,,, where 67 is explicitly 
expressed in terns of the Gsigdiolris characteristics of X. Deeaupling ineguaUties and 
tanFnt procHses are the main toel uwd ia the proof. 

1. lrntdmc*w. Semimartingales form a naturd dass of processes with 
respect to which the stochastic iate~ation i s  feasible, More precimIy, by results 
of C, Dellachel-ia and R. Bichchteler, elassienl by now, they are a madmat spbm 
d processes X far wrbish the stochatic integral opetator F -+ f FdX is 
a cantinuow operator from the s p e  of b~unded pre&ctabfe pram=s with 
the supremum norm into 1E0(O, P? Pj. Each smimartingale has random 
chara~tet-isties B, 1;1 a11d C (Se~tion 4) w h i ~ h  were originally irrrodumd by 
B, GrigrjtEisnis. If X has illdependent incmznents (and only in this case), and 

sties and in the case of a sieochar;tically c~csntlnuous process 
X with independent ilae~~ments they coincide with the usual Lkvy characteris- 
ti# which appear in the Uvy-Minchiua formula for the &aract~ristic: func- 
tion o l  X .  

The pfincipal goal aE the present pqex is to describe analpically the space 
of X-integrable psedic table prosesses in terms of the GrigeHionis charastetisticr; 
B9 p and C of a sernirnartingale X, The space turns out to be a rsnnd~mimd 
Musielrak-OAiw; space and a s  explicit formula far iy as a functional of B, 
p andl C is obtained [Section 6;), 

The above goal is achieved by: 
(i) corastswctiag a decaugletJ fangent process if to X: (A la 5 m d  [l la and 

fu1Eawing an old idea of Btb [89X which, in a sage, behaves as if it had 
independent in~rmetats (Section 4); 
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(ii) slzowing, via decoupfing: inequalities, that P is X-int~pabk if and only 
if F is 2-integable, and proving that 2-integtab%ly of i; is equivde~t to 
pathwise g - in te~db i l i t~  of F (Section ti); 

(iii) obtaining a complete description of deteministis fundions inbegable 
with respect to a process with independent increments with given LLtvy 
charactelristics (Swtion Sf. 

Our exposition here is deliberately as dernentary as we could make if and 
uses only basic marthgale propertim and stopping time techniques, Essentiallyz 
no prior h o d e d g e  of the semimartingale theory or aF the gneratll theory af 
sto.ochastic integration is necessary here, 

A prirnitivle version of the ideas devdopd In this paper was used 
previously by the authors (cf. C16J and 6173) to study sinde and double 
stochastic htegrals with respect to stochaaticaIIy continuous, symmetlic 
proce-sses with hdependent increments. 

The luyderlyhg ideas of this paper can be tsaeed to many papers which 
e:xgloited the "conditioning" techniques. Let us just mention here the pagers by 
'IBurEEErolder 137, HU 151, It6 [8], Jacod [I I], Sakubowski [13], JakubalvsE 
and Sltonimski 6111-1, Kaflenberg [f 54, Szulga 1231, whieh have closest conaec- 
$ions to our sub$at matter. 

2. Dtlcoapliag inqmalrities almd tal~ngnt q m e m e - s ,  The present section is 
a mElection of bask inequdities and definitions which are necasary far the 
development aF makrial d Sections 3-5, atld which are also sf independent 
interest, The techniques are e s s e n ~ d y  those of Burkbolder 123. 

Eet (9, E P) be a lprobability space and let Fa c c F, c . . . be an 
ascending sequence of sub-&-fields (filtrartie of @? For a sequenm P = (tJ of 
randarn vafiables we put 

I 1 

DWMTION 2.1, We shaU say that two (*adapt& sequences of random 
vadables (&) and (q,) are tangent if for each i = 1,2, . . . 

ic. for each e c R  sve have P(& r cI_E-,) - B(gi ~ f & - ~ )  L.S. 

Equivalently, (&I %n$ (qi) are tanpent if* rrnd only if, far each (el-prdic- 
table, bounded sequmce ID{) (i.e. {v,) is [=q- ,$-adapted) and for each sequmca af 
Bore1 mwzlsurable, bounded functions (FJ, 

so that, ia parflcElfaf; for any stapphg time r and any tangelat sequences (tL) 
and fq,), b P 

a C 0 i ~ i C t 3  - s ~21,6o,C~3. 
Esl i= l 



Jf (ti) and (qi) art: tangent, then for any (,%)-predictable sequence Cud, the 
sequences ftrigr) and (u,qJ are mpnt as wd3. 

A simple example of angent sequences (which dso motivated our 
defiajltion) is dven by (gJ = I[o,pi) and (qJ 3- (v,P;), where (pi), (Pi) are indepen- 
dent copies of zl sequenw of indeprendent random variables a d  the r;equenm 
(vi) is prcdiiaable with respect to the fi1tc"d:tican 

In dl the inequ&ties of this paper, sequenas of random variables will 
always have only finitely many non-z~ro terns, so we sbeed not concern 
olursehes with the question of mnvergenct: of tbdr series, Izl this context the 
sign will dways mem that the summation extends aver dl i = 1 , 2 ,  . , . Also, 
by definition, 

c if t i  > c, 

t i  if G ~3 

--c i f % , < - c .  

Rautindy, the s t u d a d  trunatian [ 1' will be written as f 1 and the braclsems 
will not be w d  here for any other pufpose. The first result of this section is 
st. basic inequality which compares tail probabilities of maximal functions OF 
sums af angent sequenas. 

T ~ M M  2-1, k t  (dJ and (e,) be two taJ2yen3: sequences ofra~dom variables. 
Then, if f ,  = d l +  ... +d,, g, = e x +  .,, -+en, M = 1 ,  2* ...> then, for each 
a,  b ,  c 0 with I: 3 B, 

Pr oof, Let a, b, c be arbitrary positive mal numbers with e 3 22b, and Iet 
us define stopping timm 

k k +  l 

Q : =  inf (k: 1 C > b ) ,  A:= inf(k: I/ C ~ ( [ e ~ 3 C ( . ~ , ~ ) 1  3 Bj.  
:= 1 i - 1  

and, under the ahve  notatioa, the three terms an the ri5ght-hand side can be 
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estimated from above as follaws: 
B 5 

P(da r c) G E I(ld,f r e]+P(s  .r= a) = E I([eiI c ) + P f ~  < oo) 
i s 1  i-1 

= ZP(e* 3 c) g 2Pb" > c/2) 6 2P(g" 3 b). 

Next 

p(x" ( t d i l " - ~ ( C d ~  I fl- > $a)  

kcause, By the definitions of g and 2, 

Inequality (2.1) is t ~ v i a l  in the case 

so suppos~ that 

Then 4 5  ', b ,  and 

~ ( z *  E(CdiI" I &-I) 3 4 5 )  d ~ ( x *  Elk$[ &- 1) r b), 
which, tagether wizh two fjretjous estimata, givw inequality (2.lf Q.E.D. 

It em ask 2.2, En C18-j we obtain& a madifid ve;rsion d the ia~qwli.ty ia 
Theorem 2.9 which is more tlsf:fuI h a  some appficaiions. We proved &ere that 
if n, b ,  G &rid (ldi), (elf are as in Theorem 2.1, .then 

Zt is also groved t b ~ e  that if, ad&iionally8 Piither (63 (mid; henm dm (efP)I 
a cen&tional%y rrymmetaic sequence, i,e., d, -di ,  i - 1,2* . * ,  01. (dJ is 



a BOB-neptive sequence, then we simply have 

An interested rreades is also referred ta that paps for mare re8'111ts on 
tangent squences. 

The last term in the basic inegtldicy (2-1) of meorem 2.1 is, in gegeotrai, 
quite complicakd to evaluate. However, in the swcial case oaf conditionally 
iadepndent sequenms, to be defined below, it. is control14 by the tern 
P(g* > b), which considerably simplifiw apfsltying of zfeorem 2.1, 

EDEFMITIC~EF 2.2, An (4J-adaptd sequence (eJ is said to satidy condition 
(CJ) if them exists a a-fidd Q c ,F ":such that Y re, 1 6- = 2 ( e ,  I %') a.s- for 
i - 1,2, . . . , and such that (e,) Is a sequeam of 8-conditionally ifidenendent. 
random vzfiaibI.(=s, 

IEf (a3 satisfies condition (GI), then the s-fidd 4 ean always be selecled to 
be equal to rr(Y (e, @:,- 3, i = l , 2 ,  . . .). 

2.1. r f  cm fea$tspged seqtleEce (e,) satifle8 condition &I), thesfor 
each b =. 0, c 3 bJ4 

Pro sE If (ti) is a sequence of independent random ttarjables, then, 
following f6], for any s, t , a > O we. have 

and 

for ea~lh E for wlaich tbs: rigltat-hand side is positive. Therefore, for each 
e > t > 0 ,  
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because, for c > t, (z: [tJc t )  c { x* C, r/Z). So, if z' E 4t, then 

~ ( 2 '  k, 3 t /2) 2 t/(2(c+4t)). 

Inserting t = b/4 and applying the above implication to Ihe Q-conditional- 
Hy indepndent sequence (4, we see that ass, if z* E(&JcjlS) >r b,  then 

P(C" e,  3 hb/8 I g) b(8(c +- b))-'* 

Hen=* integratirng tlhe Iwt inequality over the event (C* E([eiY 1 g) 3 b). we get 

which, in view of eorrrfitials (CI], cuncludm the proof of Lemma 2.1. 

The above! lmma  and Theorem 2.1 imediarefy give 

T m m ~  2.2, .If (di) and ((eJ are tangent segueraces w d  (ed satisfies condition 
(CT), then fir each a,  b > O 

The next lemma shows how Ithe last term in ttae basic inquality (2.1) of 
meorem 2.1 can also be contrulld by anather expres~on which will prove to 
be useful later an, 

where 4 is- ;ishe cddss of all (8-predictable sequences (u,) such that [o,[ f I ,  
i = l 3  2, *-.  

ProoL Let: mi .= sgaE([ei]'Iq-,), i = 31, 2, ,.. Then (I~$E$, kt 

Then we have 

p ( x  la~E:ei3" 16- 111 2 b)i = P(CaiE(Ee$I%- 1) 3 b) 



where: the last inequality follaws from the following shpPe h m m a  2.3. Q.E.D, 
LEMMA 2-3, f i r  each (&)-adcaphed sequatzce qf r a n d m  variables (hi) 

p(C"hj a) G sup ~ ( l x u , h ~ l  > a). 
(VI)EBI 

The proof follows immediately by taking v, = iI(r 3 i), where T = 
= iof(k: 1 ~ : ~  :=, hil > a). 

kmmas 2.2 itad 2.3 md Theorem 2.1 hmediately give 

G U R O L L ~ Y  2.1. f i r  each. E > O there exists a 6 O such that $ (d,) and (ei) 
are tangent sEqrltsenms a d  if the i~~equality P(FCaid,E > 6) < S holks true far 
every (fl-predictabk sequence (v;) with lvil 6 1, i = 1,2, . . . , then P(X* ei 3 E )  

< E .  

1x1 general, the last tern in the inequality (2.1) of Theorem 2.2 cannot be 
omifid. This can he seen from the fallawing 

E X A ~ L E  2.1. L B ~  (ti) be a ayuence of independent random variables and 
let (ti) be its independent wpy. Define r E 2 , + ,  = ti, = -&, e2L+l, --- r ip  
e21+z = -g i l  i --r 011 1,2, * .  Beth sequencm and (d,) are (*)-adapted and 
tangmt for 8 ;;: = 44; es; j = 1, 2,. . . , i). Moxovef;, (d,) has propefly (CX) with 
Q ;= a((t,)). In view af the camtsructifrn, the garfial sum of x e i  are either O or 
& and E d i  = x{&-{,). PPe~:ace, for each a, b =. 0, 

so that it is possible far P(g* > b] to be small without PC f * r a) k i n g  small. 

3. Dmaapled ~ B ~ ~ P L I  qaencs*  Tangent sequences with property (Cay 
i;bar~ many prop~ties  with s t q w n ~ s  of kdwlendeat random variabIts ;and 
the main idea sf the present pager is lo coastrust, for a given sequence (dJ for, 
in sub~quent geceions, for a proms), a tmgent sequence (OP procss) with 
paparty (CI) (or its analague for a wocem), and then* via inequalities of 
Section 2, ddwe reaults about (8,) from results about ind~pewdent random 
variables. 



DEFINITION 3.1. Let (d,) be an (qgadapted squeace on a filtered 
probability space (9, F, 6"; (6)). For any fdtecred space (U, S') (El) md any 
probabidlty tratldtian function 9" l2 9 x 9  -9. R', a sequence (ZJ defined can 
a = 62 x 9 h n d  adapted to the frltra6oa (4) = (q@S) is  said ta be 
a deecrupled tangent s e q e n a  to (di) if 

fa) for each ul E $2, (Ji(o, - $1 is a sequence ofindepndent. random variables. 
on (M, ,F', P'(cFJ, "I), 

(b) the sequences (4) and (ZJ, where & ( c ~ ,  0 3  : = di(m), (a, W? E $2 x f i t ,  

1 = 1, 2, < .  . , are rzcngent on the filtered probability space (0, gj  p; (&))) 
where P lis defined by the formula 

(In the sequel, the trivial externion 6 of di will be shply denoted by d, ~ t h a u t .  
any risk of misunderstmding.) 

C1earl~ a, diecoupled &agent sequenm satisfies mn&tion (CI) with respat 
to the a-field @ = P (or? more p r e i ~ l y ,  'with rmpect to 8 =r d m  {a, @I). 

Far a given sequence (di) there iis a canonied way to G Q ~ ~ E I P C ~  a dw~upIed 
tangmt sequena: Let 92' = RE, @: Ire the a-fidd generated by tke Erst 
i coor&nates in RN and, finally, let 

The seqraena &(w, (xj)j = xi, i = I ,  ZI. 4 . ,  is a de~oupled tangent sequencle to 
d t $ i = = l 7 2  

be acn infinis product psobamity space with w = (a,, m,, , .. .) and let be the: 
9-fidd which depends only on the first f csordinatee m,, . , . , w,. I f  di 
= dyl;W,, . . . . LO$, 1 = 1,2$ . . . , then the sequence 

defined on ($2 x 9 , 9  @ b, P @ P; (46 .Q) i s  a ritecoupled tangent wquen= to 
(dJ. Note that in this case P @ P is just a pr~duet measure. 

f n paa-ticular, iP 5 ,  , t,, . , . is a squ~ncc  of ipzde~ndent mndom vnrjables 
and v, ,  v, ,  .. . is a prdictable sequence with aespmt to 6 st;. ( ~ ( 5 , ~  , . . , tI) li.e,, ui 
i s  8- l-measurable, i .= 1, 2., ., ,) and (tii) = (vl&), then (&:= @, &), where (el) 
is an ind~p~tgdent c q y  of I<,), is a dewupled tangeBt seque:nm ta (st) (cf. [16Jl 

The foUavviang mrollrary, which pmaikls Corollary 2.1 (but f o m l l y  does 
not follow Ewm it), will play a pipivotal role in Mfion 6 in applimtisns of the 
notion of a desanpled tangent ssquenm tto theory ef sfochasli~ intepals. 



COR~I-LARY 3.1. For m y  C: 2 0 there exists a 6 s 0 such t h d  if (4) is 
a decogpIed tangant sequence ta ((d,] rand if the iaequaiity ~ ( / z ~ , d , f  &) < S 
IFzoEds tr-r~e for every (qkpredictable sequence (uJ with lull G I ,  i = 1,2, . , . $i.e. 
( U ~ ) E @ ~ ) ,  then 

P(C* 3 E) < g 

f i r  eoary swh sequencg (uJ. 

Proof. By Lmma 2.2 we have 

a d ,  in view of the defm3ilioa of P, 
P(C*E([~*$,q~j4-~f 3 bj  = ~(C*E(Cv~a,3'j&-,) =. b). 

Sirnlilarly, 
P(C* vil l i  > a) S sup P(IC wedi[ > a) 

Wr@@i 

by Lemma 2.3, and p(x" q 4  3 a) = P(Z" ui di > a). Siace the- sequences ( ~ ~ 4 )  
and (%r%,) are t a n p f  clln (a, $, p; (fi)? m application of Theorem 2,f 
con~iudes the proof. Q.E.D, 

4. Deemap1d ElUmgead prr) Let T = ply t,] ,  Set (Q, P, P;  ( ~ ( ~ 1 3 )  be 
a probabi~t y space with filtration satisfying the sraadard asumptioms (is., 
right con~nuity and completena), ruad let X(t), t E l", be a process with sample 
paths in the Skorohod spa= DI[ T )  and a d a p d  to (Fit)), In the present section 
we descrih a concept of a decsupled tangBnt process .to X(t )  (which was 
htseduced by Jacod [ I l l  as a tangent prclmss), study cm$itioas for i t s  
existenct: and its b~rogerhies, 

Let 

be a normal gequence sf pmi~ons of T (i.a, lim,, , maxi gk 6 e, It: - 9 - 1 = lo). 
For a c h  n, consider the Nquence 

whi~h is (@ftg))-adapfed. Let [$) tx a deconpled tangat sequence to (dg 
defind on @be 8*llterd probability space (a, $, p; (gk)) (depnding on ra) as 
rle~dbed in Dehitioe 3.1. 

Next, let us d~fifine psocess~ on (a, A@, 9) by the fa mu la^ 
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on D ( g p  by the formula 

~ ~ { W ) : = S ( ~ ( W , ' , ; ~ ) , ~ E ~ ) ,  pa=1,2 , . . ,  

Notice that by the definition of a decaupled tangent sequena, for emh a, 
tbe sto~fiastic process p ( m ,  *,  k), I: E T, on S Z i  bas independent i n ~ m m t s  with 
Espect to the probability 1I1'(m9 a ) .  

Dwm~maw 4.1, We shall say that X(@, t E 93 d ~ i t s  a decatlpired (rt")-isavagejtt 
prtsccrsx (the partition (g) usually will not he explicitly men~oned, al.though see 
Remark 4.5) if the sequence of random variablm Mg, n = 1,2, . . . , on [a, P, P) ,  
with values; being m a s w s  on DCT), converges in probaibilitp P, As uswL, the 
spme of measures on D(T) is equ ipd  with the topology sf weak ccmvermnm, 

If X( t ) ,  $E l: admits a haupled tangent process, then any process 2[os 
tcT,  defined on ( 6 1 ~ 5 2 " ~  P@%F", P @ P ;  ( ~ ( t ) @ - ~ ( t ) ) ) *  where (ft"p F, 
( ~ ' ( t ) ) )  is a BItered space and P': ax@ -+ R' is a probability transition 
funcrtiaa, i s  called a hceupiled tangent proce~s to X as fang as the following two 
con&tions am satisfied: 

(i) has sample paths In D(n and i s  adapted b F[t)@F(r), t~ T; 
(ii) for P-a-a. w E R  

9(~(w;,t),t~T]-M~@), where M,"=P-lirnM5. 
n-cm 

Once X(e) admits a diecoupled tangent process, a canoaical way 6 0  

construct it Is as follows: choose LT - BIT), F(t) = @(u'(s), s G t ) ,  9% 
sf(t,), P(m, * $ = Mg(w,  3, and set Z(w,  wrr t )  = ur"lt). 

Rerna tk 4.1. jSt is dear that; for P-a.a. ~ b )  E a, Z{W, =, t),  t E T, is a proms 
defined on (Q', P, P'(w , I), which bas indepelrdent increments and mmgle 
paths lifl BCT). 

If X@), t E T, is itselif a process with indepndent incrments, then it admits; 
a decoup1ed tangent process 2 whish can be taken to be an independent copy 
d X. More pkse ly ,  8 can be defined by the formafa 

Strongly p~dictabk pr~eerises X (ie., pro such that them 6xistS and s > 0 
such that, for dl X(e) is 9(t--c)meaurabIe) also admit a dmupled tangmt 
proms, In this we can take X(m, o" tt) = Xtw, t), I E  "P, (co,w')~ &2 x 

A proass X with smple paths in D(a") is said to be EejFt quasi-eontin~ails if 
for each E , O t h m ~  exists a 6 > O such thal for any r;t.opping times z, a, .t: $ a, 
such that P(a-t 8) e 6 we have 

P( sup IX(s)-X(t)( > 6) .r 8" 
1gS~S6b 

This definition, which is hmdy for our purposes, is qativalent to the usud one 
(d., e=g.* E$LI). 



The class of left quasi-continuaus proceszs in D ( T )  zbittiag a decoupled 
tangent process was ~harac tebd  by Jacod [ i 11. In patrticular, he proved that 
any left qd-c_cmtinuous semimartingale admit8 a dccaupled tmgent procas 
as wall. This result is what we need in Section 6, and we diseuss it below in 
some detail sketchi;ng dm its strengthening with a praof b a d  on in~qualities 
of Sccrjon 2. 

We bagin 'by introducing what we call Grigelionis eE.Laracteristies d the 
proems X, 

The f i s t  cbrraetmislic is a predi~tabb process Btt), t E T, in D(T)  d e h d  
by the farmula 

where the convergence is in the space DI'P*), and 

As in (4.1), rk . , . , ~ $ , ~ 7 b n  and (dg) i s  defined by (4.2). 
"Pfre secrrad and third characteristics we a pdictable random masure 

j.t support& on Tx fR\{Of) and a predictable process Cft), t~ which are 
simultaneously defined by the condition that for each t~ T a d  each 
f E @: = (f: f is bau~ded and ccrntinuorrs on R aad lirn,,, f (x)/xz = f'"(0) 
exists and i s  finite) 

where: #Cf)(c) - P-limn,, K,[ f ) (Q,  the limit is in 0(7"), md 

BE course, the above cl~arxcte.t.istirn n e ~ d  noat exist in general, but the 
fcl8lowing propositioa shows that once B exists, y and C do exist as well, The 
propcrsitiun can be proved using the machinew of the theory .of semimartin- 
gales but we: propose fiere an elementary proof which san be found in the 
Appendix. 

PROPQS~ON 4.1. X(E), t E 'E; i , ~  a X$r cq wnst-conginuous process md (w") is 
n wgteal n a m F  ~:equ..t?aace ojpartr:tbrrs of K awl the chmeteristic If9 exists, then 
t h  cbrmterisdes p ~ n d  C' are also well defiaed, the conoergepzee in (4.3), (4.5) and 
(4A) h usnfarm, rather tJlur?l only in D(T), ajul the processgs B, C rsnd KC f 1, 
f E B* haue sampEg paths in t h  s p c e  C(T)  oJ continuous JPunctiorns. 

lR e m ar  k 4.2, Ef X(b), 1 E T, is a ~ T O C ~ S S  witb indepndenk incremeats, then 
B, p and C are d;leteministic and sre well known as the so-called U u y  
eharacttspistics aE X. 1It is easy Ito see t h d  X i s  stochastisaly cantinlzaus if and 



only i f  the fmctians 23 aad K ( f ) ,  4~69, are ~ontinuau~.  Sn this ease B, p, and 
C are, of course, the quantities appearing in the Levy-Hine~n fornula for 
X (cf, Section 5). 

The next tbeosern, which explaim a connection between the existence of 
C.rigelionis characteristics a d  the existence of &coupled tangent promssm fox 
praeesses in D(T) ,  extends a result of Jalcod [ j  13. 

~ O R S U  4.1. A Igt. q u ~ s i - c ~ I i a ~ ~ e r ~  process X in D(T) admits a decorspled 
tangent process and only if the Criyelionis charactflistie B exists fur it, 

Pro of, We shag restrict ourseilves to the proof of the Tf' part which is the: 
only one meded in what follows. Besides, a poaf of the "only P part cm be 
found in [ll]. 50, assume that B exists for X. To Show that X admi& 
a decouplqd tangent process (Definition 4.3) we need to show the weak 
conttergence of 34%. 

f i r  each fixed :dwE md for the process with hdependent in~remierrts~ 
p [ m ,  ., .), the first characteristic B(*) and the firnctional K ( f ) ( - ) ,  f ' ~  8, 
coiadde with B,(w, - ) and K,#( f ) (m,  ). If they canverm uniformly to ma- 
t i m u s  functions B ( o ,  . ) and KC f )(mp . ) {for f in a connhble dens  set in @,, 
then, by a criterion of weak convergence for prowsses with independent 
incrments. {cf. [3E)g), the processes p ( w ,  ., .) converge weakly to a proms 
with iirrdepenr3Eent increments with first charackristic B(m, .) md the functianal 
li;[Jr)(m, ), wkch uniquely deternine the distribution of this prams, This, and 
the stmdard subsequence argument, immediately condude the proof. Q.E.D, 

R e m a r k  4.3, The above proof follows the ori@nal Jacod"s [ll] approsrch. 
However, the basic inequa-lity aof Theorem 2.1 crea&s dso a possibility for the 
fakfowing, st little more direct, proof. It follows frsm Theorem 2.1 that for each 
two stopping times c and T on (a, 46, P;  ( ~ ( f ) ) )  with values; in n" we have, for 
each ~ , 8  0, 

Now, the AIdous [I] m~thad can IE used to prove the ti&tness .of proc~rtas .ifn 
and the csmergoecr: of characteristiss prermits idenxification of the h i t ,  

fn the next few paragap& we discuss the situation when % is a semimar- 
kingal% i.e, a sum of an (a-local mrfingaile and an S.5)-a&gtr;d process with 
sample paths with r i t e  vaF-iation on dli~te inbrvds. 

Sima for any left quasi-centitluaus s m i m a ~ g a l e  the characteis~c 
B czrists (d Appendix), we obtain thus the faeclrjlowibpg result of J. Pacod. 

CQRQLL~U 4.1. Any l@fi qnnasi-colrzimrclus 8emimmtingtalg admits a decoup 
lenl t unge~ t  prroeess for emh normal sequence sf parzitiom (xn). 



Remark 4.4. If XCt), c E T, is a left quasi-cantinuaus semimartingale on 
(62, 9, d(t), P) ,  then the GrigeIisnis char~tcriaties B, y, and C are uniquely 
characterked by the folllovving properly: For each U F R  t h e  process 

is cs unique predictable prclmss of bounded variation such that A(u, 0) = O and 
such that exp ( iuX(f)  - A (u, t)), e E T, is a local marthgds (sE LI 11). Note that if 
X is nat ieft guasi?i-6-ontjnuous, rhea the charactedstic B need not exist as 
defiaed (cL [4]) and another definition of B is necessasy. 

Remark 4.5, Xn the case where a semimartlagale X is left quasi- 
ant inuous  the CPigelionis characterigtics @ &ad C may be defined by the 
equation (f E 92) 

and, moreover, the above limit i s  in G(J3 (cf. Appendix 7.0). This is the 
defmition of ~ s ,  and C that we will use in Smtions 5 and (4. 

R e m a r k  4.6, In general, the existence of a bngent process, as well as the 
existence of the Grigelionis ehwaclerisli~ 11, depnds on the initial choice of the 
sequeam of pauctitrions ($1, In fact, i t  is possiMe to construct a progessr X with 
continuous sample paths and a neskd sequence d partitions ($1 $LbCh that on 
twra of its subsequenms, say (71-1) and (@), X admits decrrupled ($1- and 
[~$z)-tmgant processes with digerent Grigelio~s ckraracteris~ca. (This solves 
a prabkrn posed by Jacod [1 Zj,) 

Inded, let P ; ,  n = 1 ,  2, ..., k = 1, 2 , ,  .,, be indepndent Wadema- 
 her rtatadam variables on [a, 9, P).  Define 

1 4"-" 

X=.- ~i{(l-l4~t-4k-rP-.aI)va) for t ~ e B ,  1]=T, 
nZ 8 - 1  

and then put 
U1 

w h e ~  the series i s  uniformly canvergenk in u i ~ w  of I tz / . lW ;o so that ( X J  
is in C(T) because each (x) is in C(T),  and 

If nf = (k/44")1, Cc - 0, 1,2,  . . . , $", is a sequence of partitions of 60, 1 J, then 
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sa that 

C E(AXkE4n l q k -  alIrl.rO ' XIf4nlg4~ = X t .  
n - r m  k f 4 R S t  ~ ) I - ( c Q  

Hence B exists and B - X. Also 

so that p = 0 and C EE 0. 
On abe other hand, if n", ...(2k/47, k = 0,  1, ..., 4?1i2, 

E(dxT~4- 1 $2[k- i ) ,&ml 

AxTk i4~  if m $ m or if m = n and k is odd, 
=z 

O=dX2k14n-~-2rji i f m = = = a  a d  k is evert, 

X 2 k ~ 4 n  For odd k, 
e(dX2k/4ifi I P2(k - x),@) 1̂  -2 n dX2k/4m-~ F, for even k,  

and 

Clearly, BN(t) does not corrverge in any sense as n -+ m, 
The above eonstruetion can be easily fine-tuned ta yield the desird 

counterexample. 

5" StmRs~stile in&g~~Is: detwnniaWie iPrtwnalEs, h t ~ t . ~ ~  wi& imdeplendent 
imcr.emerrts, In the preBant section, which is independent of the rmainder d the 
paper, we coUecr basic facts on 'Mlienof-type intesabs of the form [ J d X ,  where 
j i s  a detemirristic functiae and X is  a process with independent increments, 
As we shall see iin Sec.tion 6 understanding of such integrals is critical for 
explaining the structure of general predictable processm which are iategable 
with respect to semimartingaIes. A tlumber af authors ~tudied these integfals in 
a similar spirit rander vadous re~tricrions an X {cff Urbanik and Woyezyriski 
[2S) for symmetiq sta.tianary and sboctaas~sdy: contstixlszous X, Urbanik 1241 
for X sy rmsretri~~ stochasticstkly continuous bur nut ae~sssrzdy stationary, arcad 
Rosihki C213 for gtationary, stschastid1y ~aetint~ous, but not necessarily 
s y m e t ~ c  A?). $jaw what we need in $ecdoa 6 are rmdts in the gctaeral cme? 
with rao assumptions on stationarity or syrrrmetry of X, for the benefit sf the 
reader, we provide these results below (even vvithot3t assumption of stoclaastic 
continuity) with concise proufs. 

Let X ( t ) ,  t~ T, be a prasess with indepndent inc~nacnts with samplie 
paths; in the Skarcthod spat: B(T), md let, as bafore, .It" = be a s ~ m d  
n~sted s6quenee e,f paditions P3E T, i.e*, max, - ti - 1 -+ O as ri sp a d  
7tn c n?", m = 1 2, - We wi3U asgume tbat W,rsn contains all the point8 d 



stochastic discontinui.ty of the process X. The U Y ~   har raster is tics B, p and 
G (compare with Section 4 Remark 4.5) crf X are deftned as fo'ollowsr 

I5.U BCt) = lirn B, = aim C EEd;], t E T", 
n+co b:lE$l 

where & - X ( t i ] - X ( g , , ) ,  Bft) is a well-defined furmctioa? in D(T) and the 
rranvergenct: h 2snifosf.m (see Appendix 72)  From now an, in this $=tion, we 
will assum that B(t) is a functim of bounded v ~ a t i o n  on T (BE BV(n) .  It 
was noticd by Prekopa [203 tbzt the condition B E BV( T )  is a nGassary- and 
sacient condition for the stochastic integral with r ~ p e c t  to X to exii;t (under 
any reasonable &finition of the integal), This fact also f~Batllrs easily from the 
methods dswelopd beloiw. If B f B V ( T ) ,  then (see Appendix 7 2 )  

In the case of BEBV(V, the condition 

gabtided for i f  9:= (8 f is bounded aaa$ cslntinu~ws on .R and 
limf,, fi(x)/x2 .= f'"Q exists md is finite) udquely determines a positive 
measure g supported on T x {R\(O)) and a Eunc~ama C:  T -+ R'. The measuse 
p fdfdes the condition 

atad the funcgon C is continuous .axad non-dwreasing. 
R d  that if X is sto~hasticallg continuous, &en the L k ~ y  ~Karactedsti~s 

of X intradu~cd above detertnjne its charactesistis functions and 
1 

a" j [(icrh""-- 1 -iu[x]ly(&, dx) 
ft 0 

f;er 1.1 be a measure on T defined by the fornula 

If? f is a step function, i.e. a linear oaanbination of fulachons lt,s,l, WE define 
j, f dX  in ala obvious way, and in this =se define 

Here: and theseafter ]I ell, 2 E ][{]I =; E n 1. 
DEFM~OW 5.1, A deteminiastie function S: T 4 W is said ta be X-iurtet- 

grab b [in short, j' E Pw(dX)) if there exists a rSequeme (fa) d step functions rsu& 
t h ~ t  



(i] jF, -* f v-ax.; 
69 ~pfL-f~)+O as n , m - + c o .  
If f E ~ ~ ~ ~ { d q ,  f hen, by clefidtion, j, f dX =. P-iirn, j, &a. 
Remark 5.1. It fallows from Thmrem 5.1 that [ f d X  clefin& in swh 

a way is hdependmt of the choiw of (jR], 

Our main goal in this section is to characterize functions in L;de'(dq in 
terms of the three L&vy characteristics .of X, and in order to accomplish this we 
need to intsodrxw the follawing notation. Let, by the Rnndon-Nikod9m 
Theorem, 

and let 

represent the desimtegra~on crf p. Furthermore* let 

Ib, XI = SUP bts, y3 
IYI 61x1 

and, fmdly, let 

The fu~l t i sn  cp is measrrrable in q eonthuous and symmetric in x, and 
increasing in x for x >, 0. Moreaver, for each s, cp fulfils the condit;ion (A,): 

Indeed, we hwe 

2x1 = 2E(s, x)+ ([2xu] -2[xu])t(s,, dx] G 2l(s, x)+ k{s, x), 
R 

$muse 1[2x4 -2 [xu] !  G 1 n (xteI2 for all x, u. Heme I($% 2x1 6 21@, X) 

+ k(s, x), aad, sin= k(s, 2x1 d Ikfs ,  x), we gel (5,11). Undm these cixum- 
stances, the s o - c d d  Musidakarlicz space, 

i s  a linear spa=. The modu1ar Qi induces on LB"(dv) a topology of a complete 
Xinear metric space in whit& sstcp functions are de~se  ( G ~ ,  e,g,, [19[1), 

The fslllowing Theorem 5-1 gives a camglele cbaracteizatian of Eunctbns 
which are X-integrable, and we premde it with rwdl sf a version of the three 
series theoram and aha Gvy--@t%~iiKIi iplequality. 
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P~POSFTION 5,1. Lert ti, i - 1, '. . . , ~1 , be a seqsrefice of -independear ~aadom 
vaclrisrbks. Then: 

li~ r f  JlX* e,\J, s ~ a ~ ! ,  then z~tcig~ 2 {E(c~J)~ -(~tc,3)1 and 
Pfl&t > 1) are small, 

4i) Pf B[{J and E{[{ J)%ibl"~: ?mII, then 112 {i l l  a is small. 
(iii) P(X* ti 2 E )  C 3 s ~ p t  Gj40 ~ ( 1 ~ ~ .  > 8/31 f i r  each H 0, 
Here and tberedter the generic implication Tf A As small, then B is smdg'  

mems that for each E > 0 there exists a 6 =. 0, hending  onfly on 8,  such that 
A < 5 implies B .E: e ,  

"FEOWM 5.1. g " ~  L~'' (dXf and o~zly 8 f E E q ( d ~ ) ,  Moreover, Q ~ P {  f) is 
smaR i j r  a d  only if @(j)  is small. 

1% is clear that to prove Theorem 5,1 it $ a c e s  to demonstrate that for 
a step function f both p p ( f l  and @(f) are simdtanesvs1y small, and to 
accompJplisb this we need the fallowing 

L E M ~  5.1, Let A(Jc):- j,.l(s,f(s))v(ds) and J(f):= j,l(r;,f(s))v(ds), Then, 
for a ~ y  step function f P  

(5.13) A( f )  - sug(A(vf3~): v is a step finetian, Ivf g 11, 

Proo' Let us defme 

Then u(s, x) is measusaMe in [s, x) because, for each a, - 1 g a < 1, 

where 19(s, X) = rnaxI1 & r S , I ( ~ ,  TX) IS measurable in s and continuous in x, So 
u(a")(s) = V ( S ,  J'(s]) is a1so measurable in s and (s, f[s))j g 1 far all SE 2: Now, 
by the definibon aF u, we have A ( j )  = ,x(u(f j and an agproximarioa rrf a( f) 
by step functions gives (5.13), Q.E.D. 

Pra of a f T h e o  sem 5.1, Let f be a step function, Without loss of 
gnetabty, we may assume that aU jumps af f are mcaakained in .tc" for son~e rz. 
Then, for each m .r ryl. we have 

The frmctlon [ux] - --M [XI belong to B (see (5.3j?) for each u* So, for each fixed k, 
raking ts = fi(tF1 (with happens to be equal to f i le) as long as t i  -c t$ g GI, 
by (5.11, Q5.2)3r)l, and by the definition of I (see (5.9)), we ribrain 



Hence we conclude that 

Simjilnxly, by f5,2), for each k = 1, 2,  ., ., ka we have 

so that 

Let US  SO ~bsemf: that, by the I6auchy-Schwartz iquality,  for each m 

where ry - s;%n E [f(ty)dg "3. 

Naw, the rest of the proof fallows quickly from! Proposi'Eisn 5.1. Inded, if 
g F t ( f )  k smdl, then for each step fimtc~on u ,  jal C 1 ,  with julanps in E', r 3 n,  it 
foUows that far m r 

is s d 1  (unilEamly in u], Hence? by Praposikicln 5.1 (iii), [I x" u($) f(tadr[\, ia 
small zmiformly in w, Themiom, by Proposition $,I m d  (5.16) we see that x ( ~ f )  
is smdl, and so is A(f l  by Lemma 5.1. Inserting u ( q )  = r r ,  $5 in (5-181, and 
inte~akr~ng it to a step function a($), we i r z k  from (5.18) and from 
Proposition 5.1 (i) that Cl~([f"(t~]d'pff)2 is small. Hience7 by (5,17), K ( f ]  is 
aman, md we coaclde that @(f)  = A [ f ) +  K(n is smd.  This completes the 
proof of the first impliciitian. 

The converse implication is even simpler to demomtrate. Prided, if @Q f) ik 
small, then both A (J) and KU') are small, and ss is i%(f.), nerefore, by (5.116b, 
(5.17) and Propositian 5.1 Qii), we see that / I  .fdX/lo is smafl, The =me 
argwxent applies to u - f ,  whi~h implies tkat p Yf) is small, Q-E.D.. 

The above discussion ;also justiFI~rj introduceon of the stochastic integrd 
as a proass (So f d X ,  t s T )  with sample paths in D(T) as follows. If f is a step 



func.tjon, then the defirultion crf the process is obvious. If SELF, and jJ', is 
a sequlenee of simple functions as in Dehitian 5.1, then the defining codt ion 

-fm) -+ O and Propasition 5.1 (iii) imply that 

which gives the uniform convergence of processes (r, L I X ,  r E T ) ,  which in the 
limit gives the desired procos~ ( C f d X ,  t s  T). Therdcre, for  ELF' we can 
write 

# 

j * f d ~  = sup IlfdX-1. 
T EST O 

Remark 5.2 If e,li) is mall, then also 11; f  XI, is small. Tbis follows 
ierrxmediately: from the above definitians and Propogtisn 5.1 (iii). 

In the neat s d o n  we wig need tbe folllowing 
SPnro~mrno~ 5.2, Lpt f k a simple fgnccta'lan, "l"hen g,(f) is small f and only 

if bath lIJ:fa]l, and /Ij'v,lf)fdXjl, are small, where vx is defined by (5.14). 

IProoK To show the T part let, us begin with an observation that if g is 
bournadd and I] l'g~l/, is small, then R@) is small, Fm a simple 9 this rS aa 
immediate consequenctt sf (5,15) and Proposition %,I (i). For a Zlounded g this 
fallows by ~taadirPd approxhtian techniques using the: Dominated Coarer- 
gate Theorem.. Applying the! above to g = v,(f)-f we see that Am is smalf, 

To prowe that K ( n  is smdl let us obseme that, far the pacess 
f a  x = (jb fdx, t E T), the first chasarcteris'Eic is equal to 

By (5,Zji i t  f~uows that, for large ra, C, fE[f(G)rEaI is s& LPemuse A ( f )  was 
pxoved to be small SO that we obtain the maIIness of K ( f )  by (5.18), 

nt: praaf of the "'only if" part i~ obviaus, Q.E.D. 

6. tStcacBastic htqrdr prdctslhle imtegraeds, ~ s e r  b fw~tam 
1Lie;t X(t1, r E be a Ie:W quasi-continuous sewimmhgde on (O, @, P; FCt)) 
w i h  three pmdictable G r l g a l i o ~  chasa&eristics 8(@, G(6, t~ T, and plds, dx) 
(69: f4.4H4e6$), k t  us deflirae a meMurf: v oP an D x T by the fornula, 
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is a rarndom version of meuure v introduced for processes with independent 
inc~merats at the beginning of Section 5. 

A process FCt), t E T, is said to be a prdictable step process if it is a, finite 
]bear arcombinatian of processes sf tbe form {JEsisZl(tf, t ~ ? ;  Wsjhere 4 IS 
$"(s,)-measurable. For a prdictable step process F the intepd IFdX is 
defined in an obvious manner, A proms EIt), r E a: is sdd to be predktahle if it 
is meaurablr: as a function on $2 x T with reswct to the a-fidd generated sn 
91? x T by d1 predidable step processes. 

TSON 6.1. A predictable pmeess F is said to be ~-ince~Pabie (in short, 
F E LCdX)) if there exists a sequence af predictable step processes (F,) such that 

(i) E, -+ F v @  I"-a,e. as n-, oo, 
(ij) aX(Fn-Fm] -+O as n, jsn -+ a, where 

afld where the supremum is faken over all prdictable step processes F" swb 
ahat ] VI G 2. If P E L ( W ,  then 

Remark 6, I. With som eRort, one can show that the above definition 
cahcides ~ t h  the sbndard definition of a stockastie integal {cf., e.g., [22]) and 
that the above defiarition af the inkcgrd is correct, ie., that Em, f, F,dX does 
no8 depend on the choice of F,. The correctness also follows from meorem 6.1, 

Remark 6.2. It is easy to see that, far each predictabIe step process F, if 
p,(F) is maU, then nut only IIj,F$X/I, is maU3 but also /lJf F ~ x ] ! ~  i s  mall 
(dm Lamma 2.31, where 

Therefow, if F i s  a predictable process md F, is a sequence sf pwdiclablc s tq  
processes defining j FdX,  then the sequ~nm of processes 

~ ~ n v e r g e ~  d o d y  in r E T, in probability, to the p r a ~ ~ s  

So, as a resdt, the sto~hastic iawgral. can also be viewed as a staehastic prowas 
with sample paths in D ( n ,  and the first sbkmerrt sf this remark extad8 'to all 
F E L(dX), 

7% fsmdate our r n h  ragu1t which ~ ~ f i b l ~ d e ~  a ~haracte~ztiean of 
prdctable Xint~gilble prow~es in l l e h e  of Qpig~fionis chractedstia B,  



C md y of a semimartingale X, we need to adjust (randornh) the gua~tities 
introdumd in Section 5, Shce Brt), C(t )  and p(&, dx)  are a11 gredictablq tbae 
exist predictable procwses b(s) and e.(s), md a p~dictnblr: random rnea8ul.e. 
$(a, s ,  d x )  suck that 

Therelfore, in the ~emimatingale case, the MusieIak-QrIicz function g, defined 
by fomulas (5.30) is random frp = q(w, s, x) because ;all of the functions k ,  1 ,  1 
are now mndc1.m. This pernits us to inkodum the space 9p(dv)  which, by 
definition, is the space of d1 predictable processes P fa"orhich 

The modular II@(F)[l a equips Zp(dv) with a topology of st mmplete  near 
metric spstce and the predictable step promses are dense in L9" (d, e,g., 
Hudson" a173 e;#pGcit work on a particular case; the grnera.1 ease can be verified 
in a similar fasfEion), 

dmo~er ,  eqjuivaleflt, way to irrtro-duee the random funcriom 9, k, E ,  1 is via 
the ddecoupled tangeal proms $(t) ,  Recall (Section 4) that a decoupled tmgent 
(to X(t1) grams$ x(t) (obtained with the use of a partition x" which for 
co~venienm~ is assumed to be nesed) is ddned on the probability space 
(r;E x a', @ P. Q 8  P @ F) with mtration F @)@ &F1(tf and er?joys the fallowing 
proprey: for each fix& ~l E a, the process W(m) - (x"(t, w, - $, t G T) defined sn 
(U, F', P'(w)) is a proms with independent increments, For each w E Q, the 
functions rpltu), k ( @ ,  F(w), 1Cw) intradueed above are exactly the functions 
corresponding to the promss g(w) in Seetisn 5 (d (5.9 and (5.118)). 

Let us dm note that, for a predictable proms F ,  F E  g p ( M  if and ody if, 
for P - a h ~ s t  all co L)E $2, F(m) E Lgtw,(v (a, &)). 

"m;Emm~ 6-1. A predictable promss P is X-irategrabk (F~LfdXlf  if clad 

onfy i j  F E 3p(dv) ,  
Marer~wr;, for na F E LCdX), ex(F") is snsall if a d  only @(F)/l, is snralj- 
AlternatEuely, F a's X-integrrrbb if a d  unly iJ $,br P-&a. brl E SZ, the 

deterministic finct-ton .F@, * )  is integrable (in the sense of Definition 5.1) with 
respect to the process f d t h  i ? f d e p & ~ d e ~  Stinmements) Xfw). 

P t Q o fi It 8uEes to check that, for a pe"dicrable stzp fuasticm F ,  h ~ ~ , ( f l  k 
s m d  if and ody if tP[p;3(@) k small with large pmbability, t h ~  lava statement. 
by T b e o ~ m  5,X, being equivdcrat to sayiq that ~ & " ~ , ( F f a ,  . )) is sqsll with 
large prababairy Pl[dm), . 

SO, Jet F IFF: a predictable 8tep prwess such that ( ~ t h a u t  lass of generality) 
all jumps of F are contain& in dl partitions n" far n large enough, 



Now, msume that g,(n iis small or, mart: pxeeisely, tkat 

for each predicbble step proass V with jYI G 1. If' the jumps of Y am 
warkahed in na", &en WE: can write that 

where d! = X[r:)-X(t;-,),  Hence Corollary 2.3, a,ppIiesE to the @-fields 9( t3  
and the squence fF(tq)df), impfies that, with large probability P @ K ,  

is s m d  (3 md W" are as defined in Section 41, i.e. for a given 4' if B i s  
sumcieody small, we have 

P ~ ~ ( 1  V F ~ P ~  at) 6'. 
T 

Henee, by the: Chebyshev iaequdity, 

P(P;(~  j? VFdd"/> 8) s @) > 1 - 3 .  
T 

So, for a fixed kr with jumps contained in ff for some 8, we obtah 

Mause the astdbutions ~ i ( p ( m ) )  -+ Y (x(m))  in probability f (ef, Section 4):). 
%he integrd inside the above inequdility is: mderstood in, the sense of See- 
tiosh 5 for e a ~ h  m. The above inequality extends to d p-predictable processlea 
Tf b o d e d  by I (by the Monatom Glass Theorem). 

Firnay, take Vdw, s, x) = uxlcmj(wl, s, x), where =u iis a ~ :  in (5.14) but defined 
ushg Grigalionis ctjlarade~tics. The V ( u o  s, F(s)) i, pmdjctable and bound& 
by f (by the a r w e n t  s i d a s  t s  the one following @,S) avhlsh was used $0 
pave; the mea~;ursrbility of uj", So by Proplasiti.ion 5-2 we see tkat, for a @yen 8 ,  if 
6' i s  matll enough, then 

~ ( g V m , ( F ( w l : )  > 4 < 8% 
This concludes the praof of the first hpli~azian, 

Cr~savemeiy~ let F be e predic&ble step prseess vvith jmps csnrahd in 
~ o m e  rrm md $U& that 

P ( Q ~ ~ ( : , ( F ( ~ ) )  8) 8 %  

By Kern&& 5.2, fur a given 6' 3 0, if E i s  sara;i]i1 exaau&, we have 



far dl @-predictable step processes V bounded by 1, Now, if V is a f w d  
f -predictabb s t ~ p  process with jumps contained in z"', &cn for n brge enough 

because 9(@(0)) -+ ~ ( x { m ) )  in P, and hence we get 

P @ P ; ( ~ *  VF~P =-+ 8) .r: e + ( ~  --qit.  
T 

Since 
f* VF~P = C* Y ( ~ ; ) F ( E ; ) $ ~  
T 

by meorem 22, we see that, for: a ~ v e n  6 0, if S' and e: are small enoragk 
then 

~ ( 2 "  V(t;)F(t:)d; 6)  < 6 ,  

far any 9-p~dictabile step process V, which2 in view of the arbitrariness of Vx 
&YB Q,(F) .= 6 .  Q.E.a= 

As a sansequencl: of Thearern 6.1 we also obtain the knowing 

~ R Q L U Y  61. A predictdJ7Ie poeess F ( @ ,  t E T, is X-ineegmble ij and only $ 
for Pnlmost emry EI) E a, tke detmmindstic faarction F[acu ,  t), t E T is X-integrable. 

R e m a r k  6.3, M'ter a preplrint of rbe osi+a1 version of this paper has been 
distributeel Jaeod and Sadi [I21 extended the c o n ~ p t  af'tangerat powses  to 
proeBses which include the: dass of dl sernha~ingales. This extenslion was 
posdbIe: due ta the lintroductisn af random predictable partitian (n") NmYndy, 
far a given scmimarlia@1e % an% can find a nest& sequellce of random 
prediirtable partitions (i,e,, ti we predictable stopping times) such that 
max,lg- tj- -t O in P as n -+ wl , and 3 ~ ~ 5 1  that U, mn contains pdietable 
jump times of X. k t  such ab seque~m n" and each mquence: af stopping times 
A,, we Inaave: 

sup IX(AJ-X(t)f+O 
&Ef<an(XnJ 

in Ilh as FZ -+ m, where 5,jt) = min (t.; ~ x " :  tea t ) ,  and this property can ba: 
used, in~tead of left qgua&icantinui~y, and aRer some modifica~mq in the proof 
of the existeam of characaciel.istic B a d  other charactefistiics as mifarm limits 
(6% Swtion 4 a ~ d  Appendix). As a r~suZr the inain theoteffn af Section 6 a n  be 
extended b the case of general semimartilagde integrators. 

7, pjippcndfsr. 'This appndh contdns proofs of fads we, referred to in 
Seaiona; 4 and 5. w@ felt that thae  facts wefe loo technical to indude in the. 
main body of the gapaa and wodd digtort what we judged to be the propr 
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balance sf expsition of the ppindpa1 resuls. Msa, the n&ure of these facts, is such 
that, despite the tedioumess of their proofs, they are not surpsising and could be 
antidpat& by an exprt  Fbdly, once! again we waul$ like to d the readm's 
atten~on to the fact that jacd and Sadi t127, in heir remat paper, obt&ed 
results from which y rmults given below ean he deduced. Wowever, om 
proofs are more $ired and. elementwy, and m&e this paper ~1f-contsj~e-aed. 

The standing =suption in what foUaws is that tfie process X is tcft 
quai-con tinuous, 

Subsections 7.A through 7.M wntain a complete proof of Proposition 41, 
subsection 9.N compbtes the proof of C ~ ~ o l l a r y  4.1, subsection 3,0 proves 
R m N  4.5, en$, finally, subsee~on 7.P contajtxas proofs ololtted in Se~tion 5. 

TA, JJ 9: R -+ R is a boutadd eo~tinrsous function slac!? that q [ O )  = 0, than 

pl- Iisn max f ~ ( y l ( & ) [ ~ i ( $ - , l ) l =  0. 
n-rm Idh$lrm 

Indeed, let 
A, =.min(k: 14 k 2s k,, lB(p{dalF(t;-,))t > a ) ,  

and = kn if the set is errapty. Then 

whem = ttl;, - Z; - en, G -'. supxEa Jq {x')J, and E, 6 are such that 1x1 d S 
implies Iq(x)l f 8 .  Now, since s;, and z: are stopping times with I.t,--~i~i less 
than the mesh of partitian a", the! left qu~i-co~tinuity gives statement T.A. 

P-lim aupEB,(t)-B,(s;-)I = 0. 
n-co 1sT 

Thus, if the seqwnce HZ, mnverges in D(n, then r'r covauerges ta~$fori-lrly in P a d  
lEhg limit B is conci~tsuus, 

TeC Pf the ~iFIa~a~trcrpisbic B exists for X, itken f i r  emh $ E @ the seqrLenc9 of 
procegses K,(f )i is mifDm1y cnnuerljent in P to a oovrtinuaus process K [ j ) ,  

The prod sf this fact will take several paragraphs, w~d the first step in it 
consigts in the a;bsemation that 

7.D. Th& assertbn in 7,C hoE& tru f#' and sub if K,(_t') i.q laggor~~ly  
cQnuergenl: im P to a contiirzuocss proms$ for f (x )  = h{x) ==:[x2] a~zd fop each 
J ' E ~ , : =  { f a ~ B :  fo(x) - O far Ixf < 8 fw SOW 6 > 8). 

This rduction follows immediately from the fact that for M G ~  8 > 0 
j' E &@ them mists an f, G .%, such that (if"( 0) - 8)h +lo 6 f 4($ f "(0) -1- 8) h -if. fO 
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7.E Let 

If the chsnw~teri~tic B exists for X, than 

Indeed, by Lemma 2.2, 

where G = supxE& Jf(xl)if A~so, by YrA, 

P-lim sup lIE([da 1 S(t:-I))I =; 0. 
n-m k 

n u s ,  since 

fur each (4). such &at 
Iim slag l ~ f l  = 8$ 
w-+m k 

and for each w such that XCw , ") E D(T), we immediately get 7.E. 

9.Fa S ~ p p ~ s e  that f E ,go and that X fIcts the pvoperry 

Without loss of generality, we can also msume that f 2 7;. h r  m :, n, kt 
uc irmtrodua processes 

f7.2) = r: f ~ ~ r ~ ~ ~ ~ ~ - z l ) -  
q G r  rg,, - = t ~ s r g  

S ~ ~ G G  Kz($"), i s  a rioa-deer~aing proass in t ,  and K!( f bas only jumps in 1T", 
we have 
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By 7.A, the second term 5:onverges to O as pr -t rr;, , Tire first. term is mfirn~t& 
from above by 

By Lmma. 2.2, the second term in ('7.3) is estimalied from above by 

Heam, since far ewh w for wbich fie sample pa of X is  in D(n 

the second tern in 17-31 wnvexges to 0. 
Mow, since { K z ( f ) ( g )  - M$,m( f )(6]] is an #(@-martingale, we get, by the 

m a x h d  hquality, that the first term in ("9.3) Is estimated from above Ibg 

where anft] = min {tf E $: E 6 ti). To e~timate the above prabattilitg we 
ipxocd ras in 7.A Let 



Then 

where 8 i s  sac& that f ( x )  = 0 for 1x1 < 8. Therefore, in view of the left 
qunsianrin~itg of X ,  the pbabiIity in (7.5) converges ta 0 as 12 -a XI. 

Thus, the first term in (7.3) also converges ta O as a, ~n 4 orr, and rhis 
proves 7.F. 

4,G For emh f E BO, PC:P(f) eonverges laraifermly in P to a process with 
~a:anria~luous sample path. 

In the ge~~reral cage, where X need not satisfy proprty (7.13, fix M > 0 and 
let Bft) = X ( t  A 21, where 

for some  EN and O G t ,  <t ,  < . , . < t , G  t f .  

Naw, the process 2 Eras property (7,6) and is also left quasi-continuous. k t  

wbme & = 846)- if&- Then, in vim of 7.F, Ruf is unifammly convergent 
in P. On the ether h n d ,  by k m m a  2.2* for m y  b > O and c = supx& If(ac31, 

b+2c b -I-2o 
g %-B(~~(G $ XX(t) for same ~ E T )  < 2-8 

b b 

for M s~ciently Iwge, so that 

wMch gives, for general X, the desired uniform cozlwrgeam of #z(f) for 
$ E S # ~ .  NOW, the ~onCirllsitg of Ern, K:( J") - K"(f j is itesured by '7-4 us4 as in 
the p u f  of the continuity of B. This completes rh~; proof of 7,G, 



Hence by 7.E the assertion in 7.C balds: true For each f~ W,. It Is worth of 
noticing that to prove this we did not use the assumption on the e~srence of 
the chara~teristic B. 

The case of I? = [x23 is reebnicafly mere complex, however the main i&w 
;are similar to those in the case of jr.8,. 

7.M. Let us define vvz = [da-B(([d;]\F(tEE1)) oract let 

a,(pir(l") = G E ( ( W ! $ ~ ~ ~ I ~ L , I ~ ) .  
rEGr 

s'Fse~s X,Qh)-K,(h) converges un~ormly to zero in I". 
The proof afof this statement i s  almost the same as in the case af 7.E. We 

have only to observe that since for aU x, U E R  

where 8; = E([da F($- ,)), and that 1 [a- @ - Cdf:  - converges to zero 
in P since man,/r;/ converges to zerokin P. 

7 ~ .  ~ e t  8~1) = ~ ( t  A 2.) for t~ 3: where I- is a stoppimg time. n e n  for each 
$ 3 0  

Since for each x, y, u, 

Hence Lemma 2.2 with c = 16, a = O groves the second inequdity of 7.1, The 
fist itlqudity is even easier a d  it is pravgrd in a h i l i z r  way, To grove the last 
shtment of 7.1 kt us sbserva that if .t is itt stoppjng h e s  then on the st% 



because 

t = 0 on {a 4 t;]  for k > I ,  

and I(t;f < s)([4] - Ed;]) = 0- Hence we get 

because; 

Hence, by k m m a  2.2, we have 

4a b+4 
+- fZ -~ ( IX ( r r~ (z ) ) -~ (? . ) [= .a )  b b for each a , b > ~ ,  ud1. 

This-, the left quasi-continuity of X and 7.8 prava the last statement sf 9.1. 

7,& 6,j the chrsracteristic 9.S qf X exists, tlzel~ Es(I1) is nngormly csnuergga 
in P. 

This and 7.M imply 7.C since 

and by 7.A the ladom limit of R,(h) is a eo~ltinueus pracess. 
For fixed m % n and a stopping time .G let %(a) = X(t A a) and Iet 

kB.t,a(at~ = c E(( FH- , I )~  
tX6t ~ ~ - , < t ~ ? s t ~  

wherf: W are delind as wy in 7.M with instead of X. By m ~ m e n t s  as in 7.E 
we have 

I KRthHt) - Krn(hXt)! 8 gbjrp jR,(k)(t) - K,(h)(t)f c max ~ ( [ d ~ ) Z I F ( g  - -1)). 
r*P tenm k 
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This  Heids the faFollowing inequality: 

 flax E(([dalZ f B($- b). 
k 

By 7.A the last probability is convergent to zero as n -* a. merefore, to prove 
7.5 it s d c e s  to shaw tlhak, given a,  tr 0, if n, m are larp enough, we can find 
a sfol~ping .t such that the first four probabilities on the xi@-hand side af 
(7.6) am less than a. By 7.1 the first two probabijities are estimated by 

Maw we wiU. make the stopping time 2: m r e  spcific, Far a positive integer 
m and a > O let 

Since B, is p1nli.fomly conv~rgent in Ip, thehe abave heqdities h p l y  that if 42' k 
Ialege enau& theas Bit < k,) .=. a for all m. Thus 7.1 will be pruvd 8 we 
managg to show fiat far ea~b fixed if z i e  dehed by (3,7), then the third and 
the fbarth pr~lsabili.tie~ on the ri&t-hand &e of (74 are convergeat to azro 

n, rn -., m. 



7,K, If the chamclterr'stfc B exi8s.t~ a~zd the ~ t o p p i ~ t g  times T,,,@ ape d f f i n d  by 
(7.73, the8 

Thk caa be demonstrated by rJoiKli~king the proof af the estimas* of the 
first term af (7.3) in 7.F. With k.(h) replaciw Kt(/), R,.(h) repla&ng Kit,(n, 
sad (3,irYl2 replacing f ( d 3  we have 

and the proclfcmjes over to the cut-rent situation with the EaUawiag change; in 
the replacement af (7.5): 

Since g,(c) = B,(c n r), the last probability is estimated by 

s , m m  8 6 t T G i  sC$'St 
Is- tj$mcsbrP 

where A, = ~,(;1) A 2 and A, .= max{F: 4 < A or t y  G rHA, is a stopping 
time since ( I  = b?) is in 9(q! ,)). Since [A, - A, 1 g mesh n" and siwc Bm is 
uni fad y  canvergent to a caatlnuaus proass in P, the last three prababijities 
are cantrefgent to zero when n, m --b CXE. 

7L. if the! chmactwis~ic B exislsts an$ the stoppimg t i m s  arc defined by 
(7.7), then 

J.f& =ifk--fk-lr erl-= gk-gk - - r s  k - 1,2, ..., E: are naatingde Merenms 
with rt~p& to (flk), then 

Hence we easily infer; that if A, i s  a stopping rime with r e s p t  bs; (Fk) such that 
jjJ, fgnl G M', then for each b ,  c r O 
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We apply this ta the following situation: for k = 1,  2, . . ., 1 = k, 

By the definition of d and T,,M we have If,l, ]gJ G @+ a+-4 =: IW', Since 
for each Z E ' I F ~  

7.L will follow by (7.8) if we show that for given a O there exists swh that 
P(;Z < 1) < a i'or all pa, m an3 that lirn,,,, P(4;* c) = O for each c > 159, 
However, this felfows easily by 7.1, the rmn80m convergence of B,, in P and t be 
estimates 

whgrrs rrn[t) -; m m  f tg E n": tj;: d $1, This conc111des the proof of 7.L and, thus, by 
7,K, we haw also icompletd tbe proof of 7,C, 

iraAI. "To complete our proof of Proposition 4.1 it m a i n s  to show the 
existenm of the ~bsa;~te:r i s t i~~  p and C. This implisatjan fallowe from the 
growd existemrm of the functional Kl(f-2 rrnd r e q u i ~ s  ody a stmdud 
nbarmtion that the: farm and obvious properties of K (cf, (4,511 estziquety 
determime p land 6, 

7.N. For any lajt- q * m G ~ m t i a t l ~ u ~  ~emimmti~~g~11e X tlae eharacte~is%ic 
B 

Triiridly, we: assum that % = A +X", whem as, 

(7.10) VarA(t,)$M and supfX'(t)/gM, 
te-T 
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A b left quasi-continuous and X' i s  a martingale. Since X' is a kft 
quasi-cotl$inuous mat.tingale, by 7.C, X' has the characteristic Bm 3.5 it i s  
sugicimt to prove the uniform convergence of B, in the case of X - A. In tiinis 
case it i s  a h o w n  fact on '"lapladens appsoches"". It ma also be &direcay 
deduced as Eaflows. Consider; without loss of generdity, oniy nan-de~masing 
A, and than follow the pdtiem of estimarian of the first term in (73). 

The! reduction of the: general ease to tile case considered above pame"& as 
in T.G. Take a general semima&ingale X - A +X', where A is a left quasi- 
-continuous process of locally bounded variation and X' ix a local martiqale, 
and in&oduce 

z = inf (t E T: Var A It) 2 M or IXf(t)f 3 M )  . 
Let R(t)  = [X(Z n t]-J2". Then the rest of the proof mimiclrs the remainder of 
the proof of 7,G. 

"1.0. To prove: Remark 4 5  it. sufices to demonstrate that if X Is a iefk 
quasi-conti~tkotrs semimmre#~rgale and j E 9, then K,( f) - K f ( f )  is arnfortrzly 
contrergtaent 0 i~ P (K;(f] is defined by (7.2)). 

As in 7,D it is enapgh to prove thre above statement fur j ~ @ ~  and j' - 6. 
tf f~ go, then it follows from 7.N. If j" = h, then, once again, assume ill4tiaUy 
that X satisfies [T.IO). Then we have 

where a; = A(t;)-A(t;lnl) and $(XI = [ : X ~ - [ X ] ~ ~ ,  SO that 

By 7.63 the se~oad term canverges to O ixr 3a as rt -t a, and the k t  81x1 
converges tcr O in P because, by 7 - 4  the sup goes to z e r ~  in P and because, in 
view of k m m a  2.2, we have, for each b r 0, 

Now, in the generrtl case, we can titkc ?? a iia 7,N, a d  the proof a n  ba 
~ctacludad by tf-stlmating bath 
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If Xf,E), t E S: is a promss with idependcnt increments Mrftk ~ ~ m p l s !  
paths its D(T) and such that 9,~" co~ztain~ all tkae paints of siocha~lic dis- 
continuity of the process X,'tEzen B, is unyorrurly coiiZuergent sn T to a f ~ ~ n ~ t i ~ n  
B in D ( n .  If IBEBV(T), r b n  

I n d ~ d ,  define 
&to- 2 Cd"k3- 

tgat 

Then, for eaGh t and far each w such that X(w, . )ED(T )  k(T):== 1h&l(t)  i~ 
we11 defined. 

Moreover, {&(t), t E J") is also eanvs=rge:ent in D(T] to fgll?(t -+ ), t E T) for 
o as above. Thus, by iinequaEty (2.2k for a hrge enough and all n E M, we have 

EX: < "I _<4(a+l). 
1/2 - P(X$ > la) 

Here for ih proms Y, Y9 : =  sup,^ 1 T/ @)I. Thcrdore, we get 

Let B(t) = ~ g ( t )  (which i i ~  well defined for each r in view of (7.11)) and let 
4 = 8( tb  -2f(g- Then for e ~ c h  n, any a > 0, and m y  selection oT d p s  
8; = + I I  we have (by (2.21) 

far emh 0 such that %(a, . ) E D ( q ,  the ldt-hand side of (7.12) converges to 
B as PS--tag. 

Hence firady, 
lim sup iB,(t) -B(t)f  = 0 

it+ Tr) re114 

md, since B i s  a cont,Jnuaus function away from U,nn, we infer that the 
uniifsm convewnce sf i&t, to B takes place an dl of T, whi~h implies that- 
B E  BIT). The fact that B is csnkucsus away from U, i f  can be s ~ n  as follows: 
k t  so$ U, F?. 'Then far each 8 r 0 them e~~ists aaa iatervd I -; (lFfll, ~$1 far 
same 12, k ,  coaiai~ing t., and such that 
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and s ere fore 
 sup 12(t) - 8~t')l F.) < E. 

rr'd 

Thus, ats befare? by (2.21, 
8 +E sup )x(t) -g(~")ii 

arnd since, by (7.1 11, ~ l f *  ..r oo, we get 

if I is suffidently small. Hence 

if I is s&ciently small. 
Seeondy, (7-12) also implies that 

whish proves the swond statement of T.P. 
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