ADMISSIBLE TRANSLATIONS OF THE BROWNIAN MOTION ON A LIE GROUP

BY
RAFAE RUDOWICZ (Wroclaw)

Abstract

The paper provides a new proof of Shigekawa's theorem characterizing admissible translations of the Wiener measure on a Lie group. We prove Shigekawa's conditions to be necessary finding the "derivative" of the translation as a linear functional on a Hilbert space, applying integrals of 1 -forms along the paths of stochastic processes. We use the classical Girsanov theorem as the main tool while obtaining the sufficiency in a straightforward way. No advanced theorems concerning absolute continuity of measures induced by stochastic processes are used, as was in Shigekawa's original proof.

In a series of papers [1], [2] and [3] Cameron and Martin investigated transformations of the Wiener measure. Such a transformation is called admissible if it produces a measure which is equivalent to the previous one. The simplest version of the renowned Cameron-Martin theorem characterizes admissible translations of the Wiener measure.

The theorem has been generalized in many ways. In [8] Shigekawa presented an analogue of the Cameron-Martin theorem for the Brownian motion on a Lie group. He mentioned [8, Remark 2] that the case of right translations is strongly connected with transformations of the Brownian motion on a Riemannian symmetric space. In [9] he formulated sufficient conditions for a class of such transformations to be admissible. As an attempt to approach to show their necessity we give here a new proof of Shigekawa's theorem for right translations on a Lie group.

The necessity of Shigekawa's conditions is proved in a more immediate way by constructing a linear functional on a function space. The sufficiency is a simple consequence of the classical Girsanov theorem.

At first let us fix some notation and recall basic definitions and facts. Throughout the paper, G will stand for a d-dimensional Lie group. A_{1}, \ldots, A_{d} denote a fixed basis of its Lie algebra \mathbf{g}.

Let $T>0$ and let $X=\left(X_{t}\right), 0 \leqslant t \leqslant T$, be a Brownian motion on G (see [5] for the definition). We assume it is continuous and starts at the unit e a.s.

Since we shall be interested in transformations of the law of X, we may assume that it is simply the coordinate process on $W(G)$, the space of con-
tinuous G-valued functions over $[0 ; T]$ endowed with its cylindrical σ-field $\mathscr{B}(W(G))$ with the probability measure P. Let $\Omega=W(G)$ and let \mathscr{F} be the completion of $\mathscr{B}(W(G))$ with respect to P. $\left(\mathscr{F}_{t}\right)$ will denote the natural filtration connected with X. The probability space which will be used below is (Ω, \mathscr{F}, P).

Without loss of generality we may assume that the generator of X on $C_{c}^{\infty}(G)$ is $\frac{1}{2} \sum_{\alpha=1}^{c} A_{\alpha} A_{\alpha}$, where $1 \leqslant c \leqslant d$. Here $C_{c}^{\infty}(G)$ denotes the set of smooth real-valued functions having compact support on G. Thus, X satisfies the stochastic differential equation

$$
\begin{equation*}
d X_{t}=\sum_{\alpha} A_{\alpha} \circ d B_{t}^{\alpha}, \tag{1}
\end{equation*}
$$

where B is a c-dimensional (\mathscr{F}_{t}-Brownian motion. (The terminology concerning stochastic analysis may be found in [6]; see also [7]-[9].)

Suppose that $\left(g_{t}\right)$ is a continuous G-valued function over $[0 ; T]$. We say that it is absolutely continuous (has bounded variation) if $\left(f\left(g_{t}\right)\right)$ has this property for every $f \in C^{\infty}(G)$. A function of bounded variation is clearly a G-valued semimartingale. If $\left(g_{t}\right)$ is absolutely continuous, there exist a tangent vector $\dot{g}_{t} \in T_{g_{t}}(G)$ and $\zeta_{t} \in g$ such that $\zeta_{t}\left(g_{t}\right)=\dot{g}_{t}$ for almost every $t \in[0 ; T]$. Hence $\left(g_{t}\right)$ satisfies the differential equation

$$
\begin{equation*}
d g_{t}=\zeta_{t} d t . \tag{2}
\end{equation*}
$$

We define an inner product $B(\cdot, \cdot)$ on g by putting $B\left(A_{i}, A_{j}\right)=\delta_{i j}$. Let V denote the linear subspace of g spanned by A_{1}, \ldots, A_{c}. Let H be the set of all $b \in G$ such that $\operatorname{Ad}(g) V \subset V$ and $\left.\operatorname{Ad}(g)\right|_{V}$ is an isometry, i.e.,

$$
B(\operatorname{Ad}(g) A, \operatorname{Ad}(g) A)=B(A, A) \quad \text { for } A \in V
$$

If $g \in H$ and $\left(\operatorname{Ad}(g)_{j}^{i}\right)_{i, j=1, \ldots, d}$ is the matrix of the operator $\operatorname{Ad}(g)$ with respect to the basis A_{1}, \ldots, A_{d}, then the matrix $\left(\operatorname{Ad}(g)_{\beta}^{\alpha}\right)_{\alpha, \beta=1, \ldots, c}$ is orthogonal.

Lemma. H is a closed subgroup of G. Let h be its Lie algebra and $A \in g$. Then $A \in h$ iff $(\operatorname{ad} A) V \subset V$ and $\left.\operatorname{ad} A\right|_{V}$ is skew-symmetric, i.e.,

$$
B\left((\operatorname{ad} A) A^{\prime}, A^{\prime \prime}\right)+B\left(A^{\prime},(\operatorname{ad} A) A^{\prime \prime}\right)=0 \quad \text { for } \text { every } A^{\prime}, A^{\prime \prime} \in V
$$

The proof is standard and uses the exponential mapping (cf. [8, Lemma 3.2]).
Let $k=\boldsymbol{h} \cap V$. If $A^{\prime}, A^{\prime \prime} \in \boldsymbol{k}$, then $\left[A^{\prime}, A^{\prime \prime}\right]=\left(\operatorname{ad} A^{\prime}\right) A^{\prime \prime} \in V$. This shows that \boldsymbol{k} is a Lie subalgebra of g.

Now we are able to formulate the theorem [8, Theorem 3.2]. Let $\left(g_{t}\right)$ be a continuous trajectory in $G, g_{0}=e$. We define a process $Z, Z_{t}=X_{t} g_{t}$, where X is our Brownian motion.

Theorem. The laws of the processes X and Z are equivalent (i.e., mutually absolutely continuous) iff the following three conditions are satisfied:
(i) $\left(g_{t}\right)$ is absolutely continuous,
(ii) $\zeta_{t} \in k$ a.e.,

$$
\begin{equation*}
\int_{0}^{T}\left(\zeta_{t}^{i}\right)^{2} d t<\infty \quad \text { for } i=1, \ldots, d \tag{iii}
\end{equation*}
$$

where ζ_{t}^{i} are components of ζ_{t} in (2), i.e., $\zeta_{t}=\sum_{i} \zeta_{t}^{i} A_{i}$.
Moreover, if Q denotes the law of Z, then the Radon-Nikodym derivative is given by

$$
\begin{equation*}
\frac{d Q}{d P}=\exp \left(\sum_{\alpha=1}^{c} \int_{0}^{T} \zeta_{t}^{\alpha} d B_{t}^{\alpha}-\frac{1}{2} \sum_{\alpha=1}^{c} \int_{0}^{T}\left(\zeta_{t}^{\alpha}\right)^{2} d t\right) \tag{iv}
\end{equation*}
$$

Remark. The arguments of the functions appearing in (iv) are trajectories. On the left-hand side of the equation they are treated as points of the measurable space $(W(G), \mathscr{B}(W(G)))$. And on the right-hand side, they mean elementary events of the probability space (Ω, \mathscr{F}, P).

Proof of the necessity. Let us assume that P and Q are equivalent (on $W(G)$). Besides the space (Ω, \mathscr{F}, P) we can consider the complete probability space (Ω, \mathscr{F}, Q) with the filtration $\left(\mathscr{F}_{t}\right)$.

Let $\tilde{X}_{t}=X_{t} g_{t}^{-1}$; the law of the process \tilde{X} under the measure Q is P. Hence \tilde{X} is a Q-Brownian motion on G, i.e., a Brownian motion on the probability space (Ω, \mathscr{F}, Q), whose generator is given by $\frac{1}{2} \sum_{\alpha} A_{\alpha} A_{\alpha}$. Since the natural filtration for \tilde{X} is (\mathscr{F}), there exists a c-dimensional $\left(\mathscr{F}_{t}\right)$-Brownian motion on the space (Ω, \mathscr{F}, Q) (briefly, Q-Brownian motion) $\tilde{B}=\left(\tilde{B}^{\alpha}\right)$ such that \tilde{X} satisfies

$$
\begin{equation*}
d \tilde{X}_{t}=\sum_{\alpha} A_{\alpha} \circ d \widetilde{B}_{t}^{\alpha} . \tag{3}
\end{equation*}
$$

Let \mathscr{H} denote the Hilbert space $\left(L^{2}[0 ; T]\right)^{d}$. We shall identify its elements, of the form $\left(h^{1}, \ldots, h^{d}\right), h^{i} \in L^{2}[0 ; T]$, with the functions $h:[0, T] \rightarrow g$, $h_{t}=\sum_{i} h_{t}^{i} A_{i}$.
$L^{0}(P)$ will denote the space of random variables on (Ω, \mathscr{F}, P) which are finite a.s., with convergence in probability. $L^{0}(Q)$ gets a similar meaning. The equivalence of P and Q yields that both $L^{0}(P)$ and $L^{0}(Q)$ have the same elements and the same topologies. We define a mapping $\Lambda: \mathscr{H} \rightarrow L^{0}(P)$ by

$$
\begin{equation*}
\Lambda h=\sum_{\alpha}(P) \int_{0}^{T} h_{t}^{\alpha} d B_{t}^{\alpha}-\sum_{\alpha} \sum_{i}(Q) \int_{0}^{T} \operatorname{Ad}\left(g_{t}^{-1}\right)_{\alpha}^{i} h_{t}^{i} d \tilde{B}_{t}^{\alpha} \tag{4}
\end{equation*}
$$

The first expression on the right-hand side is an element of $L^{2}(P)$, and the other is from $L^{2}(Q)\left((P) \int\right.$ and $(Q) \int$ denote the stochastic integrals with respect to the appropriate measures). The $L^{2}(P)$-norm of the first term equals $\left(\sum \int_{0}^{T}\left(h_{t}^{\alpha}\right)^{2} d t\right)^{1 / 2}$. The $L^{2}(Q)$-norm of the latter is estimated by the product of a constant and $\left(\sum \int_{0}^{T}\left(h_{t}^{i}\right)^{2} d t\right)^{1 / 2}$. Therefore, Λ is a continuous linear operator.

Using again the equivalence of the measures P and Q, we see that both the processes \tilde{X} and $\left(g_{t}\right)=\left(\tilde{X}_{t}^{-1} X_{t}\right)$ are P-semimartingales (see, e.g., [4, Theorem 13.12]). Thus, $\left(g_{t}\right)$ is a function of bounded variation.

Let $h \in \mathscr{H}$ be continuous and have bounded variation (i.e., its components are of bounded variation). Then on the right-hand side of (4) we may omit (P) and (Q), since the integrals $(P) \int$ and $(Q) \int$ are the same [4, Theorem 13.15].

For a continuous function of bounded variation h, h^{*} denotes the form

$$
h_{t}^{*}=\sum_{i} h_{i}^{i} \omega^{i},
$$

where $\omega^{1}, \ldots, \omega^{d}$ is the dual basis of A_{1}, \ldots, A_{d}. If $g \in G$, then $\operatorname{Ad}(g)^{\gamma}$ will denote the adjoint operator of $\operatorname{Ad}(g)$, which is an endomorphism of g^{*}. We shall use the integral of 1 -forms along the paths of diffusion processes (see [6] and [7]). We want to express the integral $\int_{0}^{T}\left(\operatorname{Ad}\left(g_{t}^{-1}\right)^{\prime} h_{t}^{*}\right) \circ d \tilde{X}_{t}$ in terms of integrals along the processes $\left(X_{t}\right)$ and $\left(g_{t}\right)$. Lemma 3.4 from [7] will be essential.

If the function $\phi: G \times G \rightarrow G$ is given by $\phi(x, y)=x y^{-1}$, then $\tilde{X}_{t}=\phi\left(X_{t}, g_{t}\right)$ Let us put

$$
\phi_{x}=\phi(x, \cdot): G \rightarrow G \quad \text { and } \quad{ }_{y} \phi=\phi(\cdot, y): G \rightarrow G \quad \text { for any } x, y \in G
$$

Let $\delta \phi_{x}$ and $\delta_{y} \phi$ denote the co-tangent mappings of ϕ_{x} and ${ }_{y} \phi$, respectively. Then for every left invariant 1 -form ω we have

$$
\delta \phi_{x}(\omega)(y)=-\left(\operatorname{Ad}(y)^{\prime} \omega\right)(y), \quad \delta_{y} \phi(\omega)=\operatorname{Ad}(y)^{\prime} \omega
$$

Hence the following holds:

$$
\begin{aligned}
\int_{0}^{T}\left(\operatorname{Ad}\left(g_{t}^{-1}\right)^{\prime} h_{t}^{*}\right) \circ d \tilde{X}_{t}= & \sum_{i, j} \int_{0}^{T} \operatorname{Ad}\left(g_{t}^{-1}\right)_{j}^{i} h_{t}^{i} \omega^{j} \circ d \tilde{X}_{t} \\
= & -\sum_{i, j} \int_{0}^{T} \operatorname{Ad}\left(g_{t}^{-1}\right)_{j}^{i} h_{t}^{i}\left(\operatorname{Ad}\left(g_{t}\right)^{i} \omega^{j}\right) d g_{t} \\
& \quad+\sum_{i, j} \int_{0}^{T} \operatorname{Ad}\left(g_{t}^{-1}\right)_{j}^{i} h_{t}^{i}\left(\operatorname{Ad}\left(g_{t}\right)^{\prime} \omega^{j}\right) \circ d X_{t} \\
= & -\int_{0}^{T} h_{t}^{*} d g_{t}+\int_{0}^{T} h_{t}^{*} \circ d X_{t}
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
\int_{0}^{T} h_{t}^{*} \circ d X_{t}-\int_{0}^{T}\left(\operatorname{Ad}\left(g_{t}^{-1}\right)^{\prime} h_{t}^{*}\right) \circ d \tilde{X}_{t}=\int_{0}^{T} h_{t}^{*} d g_{t} \tag{5}
\end{equation*}
$$

X and \tilde{X} satisfy the equations (1) and (3), respectively, which gives

$$
\begin{gathered}
\int_{0}^{T} h_{t}^{*} \circ d X_{t}=\sum_{\alpha} \int_{0}^{T} h_{t}^{\alpha} d B_{t}^{\alpha}, \\
\int_{0}^{T}\left(\operatorname{Ad}\left(g_{t}^{-1}\right)^{\prime} h_{t}^{*}\right) \circ d \tilde{X_{t}}=\sum_{\alpha} \sum_{i} \int_{0}^{T} \operatorname{Ad}\left(g_{t}^{-1}\right)_{\alpha}^{i} h_{t}^{i} d \tilde{B}_{t}^{\alpha} .
\end{gathered}
$$

Combining the last formula with (5) yields, for every continuous function of bounded variation $h \in \mathscr{H}$,

$$
\begin{equation*}
\Lambda h=\int_{0}^{T} h_{t}^{*} d g_{t} P \text {-a.s. } \tag{6}
\end{equation*}
$$

Thus, for $h \in \mathscr{H}$ the function Λh is constant, in other words, Λ is a continuous linear functional on \mathscr{H}. Consequently, there exists $\zeta \in \mathscr{H}$ such that

$$
\begin{equation*}
\Lambda h=\langle h, \zeta\rangle, \quad h \in \mathscr{H} . \tag{7}
\end{equation*}
$$

$\langle\cdot, \cdot\rangle$ denotes here the inner product in \mathscr{H}.
Let $f \in C^{\infty}(G)$ and let ω^{f} be the 1 -form defined by the formula $\omega^{f}(v)=v(f), v \in T(G)$. Then for every t, ω_{t} will denote the left invariant 1 -form for which $\omega^{f}\left(g_{t}\right)=\omega_{t}\left(g_{t}\right) . t \mapsto \omega_{t} \in g^{*}$ is a continuous mapping of bounded variation, as its components are $A_{i} f\left(g_{t}\right)$. Hence, using (6) and (7), we obtain

$$
f\left(g_{t}\right)-f\left(g_{0}\right)=\int_{0}^{t} \omega^{f} d g_{s}=\int_{0}^{t} \omega_{s} d g_{s}=\sum_{i} \int_{0}^{t} A_{i} f\left(g_{s}\right) \zeta_{s}^{i} d s=\int_{0}^{t} \zeta_{s} f\left(g_{s}\right) d s .
$$

Therefore, the function $\left(g_{t}\right)$ is absolutely continuous and satisfies (2).
Summing up the formulae (4) and (7) we get

$$
\begin{equation*}
\sum_{\alpha}(P) \int_{0}^{T} h_{t}^{\alpha} d B_{t}^{\alpha}-\sum_{\alpha} \sum_{i}(Q) \int_{0}^{T} \operatorname{Ad}\left(g_{t}^{-1}\right)_{\alpha}^{i} h_{t}^{i} d \tilde{B}_{t}^{\alpha}=\sum_{i} \int_{0}^{T} h_{t}^{i} \zeta_{t}^{i} d t, \quad h \in \mathscr{H} . \tag{8}
\end{equation*}
$$

Let us fix $I, c+1 \leqslant I \leqslant d$, and put $h^{i}=\delta_{I}^{i} I_{[0 ; s]}$. The equality (8) yields

$$
\begin{equation*}
-\sum_{\alpha}(Q) \int_{0}^{s} \operatorname{Ad}\left(g_{t}^{-1}\right)_{\alpha}^{I} d \widetilde{B}_{t}^{\alpha}=\int_{0}^{s} \zeta_{t}^{I} d t, \quad s \in[0 ; T] . \tag{9}
\end{equation*}
$$

Since on the left-hand side we have a martingale, and a function of bounded variation stands on the right, the both sides equal zero. In particular,

$$
\begin{equation*}
\zeta_{t}^{I}=0 \quad \text { for a.e. } t, I=c+1, \ldots, d \tag{10}
\end{equation*}
$$

Computing the Q-quadratic variation of the left-hand side in the formula (9) we get

$$
\sum_{\alpha} \int_{0}^{s}\left(\operatorname{Ad}\left(g_{t}^{-1}\right)_{\alpha}^{\eta}\right)^{2} d t=0
$$

so $\operatorname{Ad}\left(g_{t}^{-1}\right) V \subset V$ for every t.
The formula (8) may be now rewritten in the form

$$
\begin{equation*}
\sum_{\alpha}(P) \int_{0}^{T} h_{t}^{\alpha} d B_{t}^{\alpha}-\sum_{\alpha, \beta}(Q) \int_{0}^{T} \operatorname{Ad}\left(g_{t}^{-1}\right)_{\alpha}^{\beta} h_{t}^{\beta} d \widetilde{B}_{t}^{\alpha}=\sum_{\alpha} \int_{0}^{T} h_{t}^{\alpha} \zeta_{t}^{\alpha} d t \tag{11}
\end{equation*}
$$

For every $\gamma=1, \ldots, c$, putting $h^{\alpha}=\delta_{\gamma}^{\alpha} I_{[0 ; s]}$ in (11) we easily get

$$
\begin{equation*}
d B_{t}^{\gamma}-\sum_{\alpha} \operatorname{Ad}\left(g_{t}^{-1}\right)_{\alpha}^{y} d \widetilde{B}_{t}^{\alpha}=\zeta_{t}^{\gamma} d t \tag{12}
\end{equation*}
$$

Hence $d t=\sum_{\alpha}\left(\operatorname{Ad}\left(g_{t}^{-1}\right)_{\alpha}^{y}\right)^{2} d t$, i.e., $\sum_{\alpha}\left(\operatorname{Ad}\left(g_{t}^{-1}\right)_{\alpha}^{y}\right)^{2}=1$ for every t.
Now, if $\gamma \neq \delta$, then (12) yields

$$
d B_{t}^{\gamma}-d B_{t}^{\delta}-\sum_{\alpha}\left(\operatorname{Ad}\left(g_{t}^{-1}\right)_{\alpha}^{\gamma}-\operatorname{Ad}\left(g_{t}^{-1}\right)_{\alpha}^{\delta}\right) d \widetilde{B}_{t}^{\alpha}=\left(\zeta_{t}^{\gamma}-\zeta_{t}^{\delta}\right) d t
$$

Then we add the last term of the left-hand side to both sides and compute the quadratic variation. Applying the previous result we get the equations

$$
\begin{gathered}
2 d t=\sum_{\alpha}\left(\operatorname{Ad}\left(g_{t}^{-1}\right)_{\alpha}^{\gamma}-\operatorname{Ad}\left(g_{t}^{-1}\right)_{\alpha}^{\delta}\right)^{2} d t=2 d t-2 \sum_{\alpha} \operatorname{Ad}\left(g_{t}^{-1}\right)_{\alpha}^{\gamma} \operatorname{Ad}\left(g_{t}^{-1}\right)_{\alpha}^{\delta} d t \\
\sum_{\alpha} \operatorname{Ad}\left(g_{t}^{-1}\right)_{\alpha}^{\gamma} \operatorname{Ad}\left(g_{t}^{-1}\right)_{\alpha}^{\delta}=0 .
\end{gathered}
$$

Thus, $g_{t} \in H$ for every t or, equivalently, $\zeta_{t} \in h$ for a.e. t. Because of (10), we see that $\zeta_{t} \in k$ for a.e. t, which completes the proof.

Proof of the sufficiency. Suppose that $\left(g_{t}\right)$ is a function that satisfies the conditions (i)-(iii) of the theorem.

Let \tilde{X} be defined as before. We shall use formulae for products and inverses of semimartingales (see, e.g., [8] or [9]). By (1) and (2) we observe that \tilde{X} satisfies the stochastic differential equation

$$
\begin{equation*}
d \tilde{X}_{t}=\sum_{\alpha} \operatorname{Ad}\left(g_{t}\right) A_{\alpha} \circ d B_{t}^{\alpha}-\operatorname{Ad}\left(g_{t}\right) \zeta_{t} d t \tag{13}
\end{equation*}
$$

(with respect to the measure P).
Since $\zeta_{t} \in \boldsymbol{k}$ for a.e. $t, g_{t} \in H$ for every t. Therefore, we can rewrite (13) as

$$
d \tilde{X}_{t}=\sum_{\alpha, \beta} \operatorname{Ad}\left(g_{t}\right)_{\alpha}^{\beta} A_{\beta} \circ d B_{t}^{\alpha}-\sum_{\alpha, \beta} \operatorname{Ad}\left(g_{t}\right)_{\beta}^{\alpha} \xi_{t}^{\beta} A_{z} d t
$$

or

$$
\begin{equation*}
d \tilde{X}_{t}=\sum_{\alpha} A_{\alpha} \circ d \tilde{B}_{t}^{\alpha} \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{B}_{t}^{\alpha}=\sum_{\beta} \int_{0}^{t} \operatorname{Ad}\left(g_{s}\right)_{\beta}^{\alpha} d B_{s}^{\beta}-\sum_{\beta} \int_{0}^{t} \operatorname{Ad}\left(g_{s}\right)_{\beta}^{\alpha} \zeta_{s}^{\beta} d s . \tag{15}
\end{equation*}
$$

Let

$$
\begin{equation*}
\hat{B}_{t}^{\alpha}=\sum_{\beta} \int_{0}^{t} \operatorname{Ad}\left(g_{s}\right)_{\beta}^{\alpha} d B_{s}^{\beta}, \quad \alpha=1, \ldots, c . \tag{16}
\end{equation*}
$$

Since $\left(\operatorname{Ad}\left(g_{t}\right)_{\beta}^{\alpha}\right)$ is an orthogonal matrix a.e., $\hat{B}=\left(\hat{B}^{\alpha}\right)$ is a c-dimensional P-Brownian motion. Applying the formula (16) to (15), we may write

$$
\widetilde{B}_{t}^{\alpha}=\hat{B}_{t}^{\alpha}-\sum_{\beta} \int_{0}^{t} \operatorname{Ad}\left(g_{s}\right)_{\beta}^{\alpha} \zeta_{s}^{\beta} d s
$$

We define a measure Q^{\prime} on (Ω, \mathscr{F}) by the density

$$
\begin{align*}
\frac{d Q^{\prime}}{d P} & =\exp \left(\sum_{\alpha, \beta} \int_{0}^{T} \operatorname{Ad}\left(g_{t}\right)_{\beta}^{\alpha} S_{t}^{\beta} d \hat{B}_{t}^{\alpha}-\frac{1}{2} \sum_{\alpha} \int_{0}^{T}\left(\sum_{\beta} \operatorname{Ad}\left(g_{t}\right)_{\beta}^{\alpha} \zeta_{t}^{\beta}\right)^{2} d t\right) \tag{11}\\
& =\exp \left(\sum_{\alpha}^{T} \int_{0}^{T} \zeta_{t}^{\alpha} d B_{t}^{z}-\frac{1}{2} \sum_{\alpha}^{T} \int_{0}^{T}\left(\zeta_{t}^{\alpha}\right)^{2} d t\right) .
\end{align*}
$$

(We used here (16) and the orthogonality of $\left(\operatorname{Ad}(g)_{B}^{\alpha}\right)$.)
Now the Girsanov theorem (see, e.g., [4, Theorem 13.25]) yields that $\tilde{B}=\left(\tilde{B}^{\widetilde{\alpha}}\right)$ is a Q^{\prime}-Brownian motion. Since \tilde{X} satisfies (14) and the measures P and Q^{\prime} are equivalent, \tilde{X} is a Q^{\prime}-Brownian motion on G, whose generator is $\frac{1}{2} \sum_{\alpha} A_{\alpha} A_{\alpha}$. Hence, its law under Q^{\prime} is P and, consequently, $Q^{\prime}=Q$. The measures P and Q are thus equivalent, and (17) gives the formula (iv). The proof of the theorem is complete.

REFERENCES

[1] R.H. Cameron and W. T. Martin, Transformations of Wiener integrals under translations, Ann. of Math. 45 (1944), pp. 386-396.
[2] - Transformations of Wiener integrals under a general class of linear transformations, Trans. Amer. Math. Soc. 58 (1945), pp. $184-219$.
[3] - The transformation of Wiener integrals by nonlinear transformations, ibidem 66 (1949), pp. 253-283.
[4] R. J. Elliott, Stochastic Calculus and Applications, Springer-Verlag, New York 1982.
[5] G. A. Hunt, Semi-groups of measures on Lie groups, Trans. Amer. Math. Soc. 81 (1956), pp. 264-293.
[6] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland Publishing Company, Amsterdam 1981.
[7] I. Shigekawa, On stochastic horizontal lifts, Z. Wahrsch. Verw. Gebiete 59 (1982), pp. 211-221.
[8] - Transformations of the Brownian motion on a Lie group, Taniguchi Symp. SA, Katata (1982), pp. 409-422.
[9] - Transformations of the Brownian motion on a-Riemannian symmetric space, Z. Wahrsch. Verw. Gebiete 65 (1984), pp. 493-522.

Institute of Mathematics
Wroclaw Technical University
Wybrzeże Wyspiańskiego 27
50-370 Wrocław, Poland

Received on 6.3.1990;
revised version on 20.2.1991
:

