
Abstract- The paper pravides a new proof of Shigekawa's theorem ~bacterizing 
admissibje translations of the Wiener mewme an a Lia group. We praua: Shigekawrt's 
conditions to be nmssary hding the "d?erivativd9 of the translation as a linear 
fwctional un a Hilbert spm, applyhg inkgals of 1-forms along the pa&s of stochastic 
processes. We use tbce; dasicd Girmoov theo~em as the main tmZ while obtajpling the 
soFfrdency En a strdghtforward way, No advan4 ~csrems c o n d o g  absolute 
continuity d MSWS induced by siachascic prosmscs ul.e u&, as wm iia Shlg&awaqs 
osiQjnd prooL 

h a series of papers [I], [2] and [3] Cameron and Maatin investi~ted 
transformaeons sf the Wiener measure, Such a transformation is called 
admissible if it produces a measure which is equivdenl to $ke previous one, The 
simple& version of the renownd Cmeron-Martin theorem ~haractea'izes 
abissi'QTe trmsla~ans of the Wiener memtrre, 

The theorem has been generalized in many ways. in L8-j Shigekawa 
p ~ s m t d  an andegua of the Cameron-Martin theorem for the lBrownian 
motion an a Lie group, He aen~oned  E8, Remark 23 that the case of right 
translations is stsondy caapected with transformations of the BrowaPian 
motion on a Nemanaian symetric space. In f91 he formulated srafficient 
canditions for a class of such trrmrrsformations to be adolissible. As an attempt 
so approach ta show their nwssity we give here ii new praof of Shigekdwa's 
theorem for righa translaGons on a Lie group. 

'The nmssify of SEgkawajs ~cron&tiornr; is proved in a, more immediate 
way by canstru~ting a Iinmr fwctiond un a fmctioa space, The suSciency is 
ra simple consequBtace of the elassiml Grsanctv theorem. 

At first Id us fur same noation and recall b s i c  defini~cms and fwts. 
nrawghout t h ~  pager, I$ will shnd far a &dimensional Lie group. A,, . . . , A, 
d~note a fmed basis of its Lie dgsbra g. 

Let T O and let X = [XJ, U < r; G T, be a Brsw&an motjaw. on G (see 
[5 ]  far the definidanb We assme it is continusus and stapts at the unit e a.s. 

Since we shall be hterested in transfarmatjlons q,f the law s f  X, we may 
assume that it hi shply t5-a eoasdinate process on WG];), the space of eon- 



huous 6-valued functions oms LO; T j  endowed with its cylindrical Q-fidd 
@(W(G)) with the probaElitjp measure P, k t  1(2 = W(G) and let B be the 
compIetion of @( W (GI) with r a p c t  to P . (q wig denote the n;rturd filtration 
connected with X ,  The probability space which will be u s ~ d  below is 
(a, 

Wi&out; Toss of generdity we may asskrme that the generator of X en 
q ( G )  i s  f xl_, A,A,, where 1 G c 6 d.  Here CP(4;) denotes the set of smooth 
real-valued fun~~orrs having campact supporS on 6. Thus, X sa~sfies the 
stochastic diEeren~d quation 

where B is a c-&mensisnal {WBrswxrlian motion, (The terminology concern- 
ing stochastic aadysis may be found in [E;1; see also L7]-[9].) 

Suppose thslt @,) is a eontinwous 6-valued function aver LO; T I .  WE: say 
that it Is absolutely coiatin~aus (has bounded vari~tion) if (fbg)) has this propedy 
for every f fCm(G). A function of baundsd variation is dearly a G-vdued 
semimartingale. If (gJ is absolutely continuous, there exist a tangent vector 
&* E T, (6;) and tt E g such that [, (g,) = 6, for almost every t E [O; TJ , Heem (gtFg,b 
satisfies the dseren tial equation 

We d e h e  an inner product B(*, .) on g by putting B(A,, Aj) = 6,, Let 
Y denate the linem subspace of g spanned by A,, . . . , A,. Let R be the set d ali 
b E G such that Ad(@) V c V mil AdCg)j, is an isometry, is,, 

If g ~ c H  and fAd(g)j)r,fdl,...,d is the matrix af the operator Ad(@) with 
respect to the bask A, ,  . . . , A,, then the matdlc (AdCg&),np,l is orthogoad, 

] I , A ~ A -  H is a, cI~~i;ecl subgr~up QJ' 6, Let k be its Lie algeha and Reg.  
Then R G h ijf ((ad A) V c 2f o d  ad A!, is skew-symme~ric, i,e,, 

B(fad A)A', A")+ B(AF, (ad A)AV) = O far ewery A'# A"E V. 

The: pmaf is st and uses the expsnenrial mapping [cf: 18, ternma 3.23). 
Let A = Is: n V, If A" A"E a%, then [A', ia'7 = (adA')pk"'~ T/. This shaws that 

t is a Lie subalgebra of g, 
Maw we. are able tto fornulate the theorem EX, Tlaeurem 3,2]. Let fgJ be 

a sontinolous tra,jectory in C, g, = e .  We define a prowsr; Z, Z, = Xtgrr where 
X is our Brownian motion, 

THE OR^. The iaws! qS rkc pro-aet:,~~es X arrd Z me equ i~a ln t  (i.e,, m~mekt%balSy 
absolu1:ely matinuoars) &F the faldowirw I B E I E  conditiom are sati,$fi~"d: 

(i) dcr, 3is ab~o;lute.ely mntinuous, 
(ii) t e k she., 



Translnf Eons qf the Browtttfna motbn 

w k r s  [f are components of [, in (21, i.e., 4, = x,gf~,, 
Mo~eover, f & de~zo1:es the h w  of Z ,  the% the Radon-Nileodjm de~iuaziva is 

giejen by 

Rem ark. "khe argumnts of the ful~ctiorrs apwabng in (iv) are traqjectories. 
On the left-hand side of the equation they are treated as p ints  of the 
measurable space (W (q, B(W (08. And on the fight-hand side, they mean 
elementary events of the probrtbjlay spam (43, F, PI. 

Proof af the  necessity. k t  us asume that P and Q are quivalent (on 
W(G)),  Besides t h ~  spa= (a, F, P )  we can considm the completr: pmbability 
space (LC?, P, Q) with the filtmtion .(a. 

Let = Xg g; " the law of the process 8 under the measure & is P. Hence 
2 is a Q-Bromian motion on 6, i.e., a Brownian motion on the prsbab~ty 
space (52, F7 Q),  whose ,,rator is given by $xe A,A,. Since the namsal 
filtration for iis [el, there exists a c-dheesiond (eQ--Bsowaian motion on 
the space (9, S.r, Q) @rjefly, Q-Brownian motion) = (By such that 2 satisfies 

Let A? denote the Wilbert space (LZKO; ;rlId. We sbaE identifjr its elemmts, 
%xlF the form (h', .,,, h"), h%p[0;  97, with the finnctiona h; [O, TI 4 g, 
A, = Z*JEI1Ai' 

La(PIft will denote the space of random variables on (0, P, P) which are 
Enik as., with conve;rpnce in. probability. Lo(&) gets a s A a r  meaning. The 
equivalence of P arrd Q yields that both [?(PI and Lo(Q) have the same 
elements and the game tapdogies. Wa define a mapping A: 8 -+ P(P) by 

The kst expression o;a the right-hand side is an element of LTIP), and the 
other i s  from L2@) ((P) 5 a d  (Q) f denote the stochastic integrals with respecL 
to the appropriate measures]. The LZ(P)-nam al the Pist tern equds 
(C fc(h32dr)u'. The Ly(e)-norm of the latter is estimated by the product of 
a constant and J:(h32dt)'iz. Therefore, A is a continuous linear operator. 

Using again the equivdenee of the masures P and Q, we see that both $he 
pscacesses if and (gal = (x; lX,) art P-semimartingaie~ (see, e.g., [4 n e o -  
sem 13.121). Thus, (g,] i s  a fua~tion of bounded variation, 



Let h E &@ be continuous and have bounded varhtisn five., Its components; 
am of bounded variation), Then an the right-hand side af (45 we may omit (P)  
and (Q), s in~e the integrals (I-')! and (&IS are the same [4, "Ikeorem 13,151, 

Far a continuous fune~an of boullded variation h ,  )rq derao&s the bm 

where a', . .. , cod iis the dual basis af A?, . . ., A,. If ~ E G ,  then Ad(gy will 
denote tbc adjoint operaor of Ad(g), whch is an eadornarpbism of g*. We 
shall use the integral of I-form along the paths af diffusion proasses (sm C63 
and [?I). We want to express the integral 1: (~d(~;'ylq*) o dZg in terns of 
btepds alclng the processes (X,) and (g,). Lemma 3.4 from [TI will be essential. 

If the function 4: G x G - r G  i s  given by g(x,y)=xy-5 &en 
8, - $(x,, 143, k t  us put 

4 ,=4 f~ ; ) :G+G and # f f i r a n y x , y f G '  

Let and d,q5 denoh the eo-tangent mappings of 4, and ,~5, respectively. 
Then for every left i n v ~ r a n t  1-Sam o we have 

Hence the following holds: 

X and g satisfy the equations (1) ansf (31, r~pectively, which gives 
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Combirring the laat formula with (5) yidds, for e v e q  continuous fun~tion of 
bounded va~atiola h E X ,  

Thus, far h E A@ the function Ah is constant, in other words, A is  sz. continuous 
linear fural=tiond on S. Consequently, there exists C E %  such that 

(-, -) denotes b m  the: inner product in X, 
kt f ~ C ~ ( q  and let wZ tFe the I-form d~Pzned by the formula 

w f ( z ; )  = v(  f ) ,  u E T(G).  Then for every t ,  o, will denote the left invariant 1-farm 
for yvhieh wf (gd = at(gJ. I r--b eo, E g* is a continuaus mapping of bounded 
v&afion, as Its corsaponeaents sum R , f ( g J .  Hence, using (6) and (71, we obiah 

Therefom, the fundan is abolutely eontinurns and satisfies (2). 
Summing up the fomulae (4) and (7) we get 

k t  US fix I, c + l  G I  sg d ,  an$ put hi - Sj.JTlo;sl. Thg equaGty (8) yields 

Since sn the left-hand side we have a raartingale, and a function af bounded 
vasiatioln ~tands on the right, the both sides equal zero, la piaurtieular, 

i la3;) [ f = i a  far ae. t ,  J = c + l ,  ..., d .  

Computing the- Qdquradratie varia,tion of the left-hand side in the formula 
(9) we get 

j (~d(g;  ')$'dt = 0, 
e O 

sa Ad(@; 9 Sa" rz: V fur every t ,  
'Xlbe fcamuls (8) may be now   written in the form 



Far every y = 1, . . . , c ,  putting F8a = dl;fIiotsl in (11) we easily get 

(12) dB,Y- C Ad(&- "id@ = [ ;dl .  
8 

Mace df = L(Ad(~;"$)~dt, i,.e,, x,(Ad(g,P)l)2 = 1 for every 1 ,  
Now, if y f 6, then (12) yields 

dB: -dB; - (Ad(@; "$ -- Ad(gpL):)dR = ((5; - I,")dt. 
a 

Then we add the last term of the feft-band side to bath sides and compute the 
quadra~ic variation. Applyjag the previous result WE get the equations 

Thus, gr E H for every t or, equivalently, c, E k for a.e, t .  Because of QO), we see 
that [ , ~ k  far a.e. t ,  which cempletm the proof, 

P r o o if 0 f t h e s u f f i c i e n c p. S~%gpose that (g,) is a fk~nc~on that satisfies 
the conditians (iSp-Iiil) of the theorem. 

Let be defined as before. We shall use Formulae for products and 
inverges of semiimar~ngaleas (see* eg., [8f ar C94). By (1) and (2) we observe that 
2 satisfies the stoehrtstic diRerential equa~oh 

(with respect tto the masure PI. 
Since 6;, E & for a.e. t ,  g, iz H for every t .  nerdore, we can mwsite (1 3) as 

Since [A:Ad(g,);) is an orthogonal matrix a.c,, 8 = I$") i s  st c h c m i o n a l  
P-Brownian molion. Applying tlrc formula (16) to (15)? we may wri& 
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We d e h e  a masure Q" on (Q, 9) by the density 

(VWt: used here (16) and the orthogonality sf (Ad(g,G).) 
Now the Girsanov theorem (see, e.g., [d3 Theorern 13.251) yields that 

8 = (139 is a Q'-Browizjan motion. Since 4 f  satisfies (14) and the measures 
P and 9" are equivalent, 2 is a q-Brownian motion on 6, whose generator is 
+C,A,A,, Hence, its law under Q" is P aad, ccrmquently, Q" -- Q. The 
measures P and Q are thus equivdent, and (1 7) gives the formula (iv), The proof 
of the theorem is complete. 
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