PROBABILITY
AND
MATHEMATICAL STATISTICS

Vol. 12, Fasc. 2 (1991), pp. 311-317

ADMISSIBLE TRANSLATIONS OF THE BROWNIAN MOTION
ON A LIE GROUP

BY

RAFAL RUDOWICZ (WROCLAW)

Abstract. The paper provides a new proof of Shigekawa’s theorem characterizing
admissible translations of the Wiener measure on a Lie group. We prove Shigekawa's
conditions te be necessary finding the “derivative” of the translation as a limear
functional on a Hilbert space, applying integrals of 1-forms along the paths of stochastic
processes. We use the classical Girsanov theorem as the main tool while obtaining the
sufficiency in a straightforward way. No advanced theorems concersiing absolute
continuity of measures induced by stochastic processes are used, as was in Shigekawa’s
original proof.

In a series of papers [1], [2] and [3] Cameron and Martin investigated
transformations of the Wiener measure. Such a transformation is called
admissible if it produces a measure which is equivalent to the previous one. The
simplest version of the renowned Cameron-Martin theorem characterizes
admissible translations of the Wiener measure.

The theorem has been generalized in many ways. In [8] Shigekawa
presented an analogue of the Cameron-Martin theorem for the Brownian
motion on a Lie group. He mentioned [8, Remark 2] that the case of right
translations is strongly conpected with transformations of the Brownian
motion on a Riemannian symmetric space. In [9] he formulated sufficient
conditions for a class of such transformations to be admissible. As an attempt
to approach to show their necessity we give here a new proof of Shigekawa’s
theorem for right translations on a Lie group.

The necessity of Shigekawa’s conditions is proved in a more immediate
way by constructing a linear functional on a function space. The sufficiency is
a simple consequence of the classical Girsanov theorem.

At first let us fix some notation and recall basic definitions and facts.
Throughout the paper, G will stand for a d-dimensional Lie group. 4,, ..., 4,
denote a fixed basis of its Lie algebra g. ,

Let T>0 and let X =(X,), 0 <t < T, be a Brownian motion on G (see
[5] for the definition). We assume it is continuous and starts at the unit e a.s.

Since we shall be interested in transformations of the law of X, we may
assume that it is simply the coordinate process on W(G), the space of con-
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tinuous G-valued functions over [0; T] endowed with its cylindrical o-field
B(W(G)) with the probability measure P. Let Q = W(G) and let & be the
completion of (W (G)) with respect to P. (%) will denote the natural filtration
connected with X. The probability space which will be used below is
(Q, #, P).

Without loss of generality we may assume that the generator of X on
C2(G) is %Z;m 14,4, where 1 < ¢ < d. Here C(G) denotes the set of smooth
real-valued functions having compact support on G. Thus, X satisfies the
stochastic differential equation

(1) dX, =Y 4,0dB:,

where B is a c-dimensional (%)-Brownian motion. (The terminology concern-
ing stochastic analysis may be found in [6]; see also [7}-[9])

Suppose that (g,) is a continuous G-valued function over [0; T]. We say
that it is absolutely continuous (has bounded variation) if ( f(g,)) has this property
for every feC*®(G). A function of bounded variation is clearly a G-valued
semimartingale. If (g,) is absolutely continuous, there exist a tangent vector
g.€ T,,(G) and {,e g such that {,(g,) = g, for almost every te[0; T]. Hence (g,)
satisfies the differential equation

2) dg, = L,dt.

We define an inner product B(:, '} on g by putting B(4;, Aj) = d;;. Let
¥ denote the linear subspace of g spanned by 4,, ..., 4.. Let H be the set of all
be G such that Ad(g)V = V and Ad('g} is an Jsometry, ie.,

B(Ad(g)4, Ad(g)4) = B(4, A) for AeV.

If geH and (Ad(g));=1,.4 is the matrix of the operator Ad(g) with
respect to the basis Ay, ..., 4,, then the matrix (Ad(g)j)sp=1,.... is orthogonal.

Lemma. H is a closed subgroup of G. Let h be its Lie algebra and Aeg.
Then Ach iff (ad A)V < V and ad A, is skew-symmetric, ie.,

Bl(ad A)A’, A")+B(A', (ad A)A") =0 for every A', A" V.

The proof is standard and uses the exponential mapping (cf. [8, Lemma 3.2]).

Llethk=hnV.IfA', A"ck,then[A', A”] = (ad A) A" € V. This shows that
k is a Lie subalgebra of g. ,

Now we are able to formulate the theorem [8, Theorem 3.2]. Let (g,) be
a continuous trajectory in G, g, = e. We define a process Z, Z, = X,g,, where
X is our Brownian motion.

THeOREM. The laws of the processes X and Z are equivalent (i.e., mutually
absolutely continuous) iff the following three conditions are satisfied:

() (g,) is absolutely continuous,

(i) {,ek ae,
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(iii) ;:(Eﬁ}zdt <oo fori=1,...,4d,
L]

where (; are components of {, in (2), ie, {, =Y 04,
Moreover, if Q denotes the law of Z, then the Radon-Nikodym derivative is
given by

i) 40 exp( S [Gam-1 3 (@ dt)
d’P a=1 0 zz 1L O
Remark. The arguments of the functions appearing in (iv) are trajectories.
On the left-hand side of the equation they are treated as points of the
measurable space (W (G), B(W(G))). And on the right-hand side, they mean
elementary events of the probability space (Q, #, P).

Proof of the necessity. Let us assume that P and Q are equivalent (on
W (G)). Besides the space (2, #, P) we can consider the complete probability
space (Q, Z#, Q) wﬂ.h the filtration ().

Let X, = X,g;!; the law of the process X under the measure Q is P. Hence
XisaQ- Bmwnian momcn on G, ie.,, a Brownian motion on the probability
space (&2, #, Q}, whose generator is given by 4),4,4,. Since the natural
filtration for X is (%), there exists a c-dimensional (W}-‘Bmwman motion on
the space (2, #, Q) (briefly, 0-Brownian motion) B = (B% such that X satisfies

(3) dX, =Y A,0dB:.

Let o denote the Hilbert space (L*[0; T])". We shall identify its elements,

of the form (h',..., k%), h'eL*[0; T, with the functions h: [0, T]—g,
hy=YhA

(P} wﬂl denote the space of random variables on (2, &, P) which are

finite a.s., with convergence in probability. L°(Q) gets a similar meaning. The

equivalence of P and Q yields that both L°(P) and L°(Q) have the same

elements and the same topologies. We define a mapping A: # — L°(P) by

T T :
) Ah =y (P) g hidB{— ¥, };(Q) g Ad(g; ") hidB;.

The first expression on the right-hand side is an element of L*(P), and the
other is from L?(Q) (P)[ and (Q) [ denote the stochastic integrals with respect
to the appropriate measures). The LZ(P}-norm of the first term equals
& j o (h)*dt)'2. The LZ(Q}norm of the latter is estimated by the product of
a constant and () jﬂ (h)*dt)'/2. Therefore, A is a continuous linear operator.

Using again the equivalence of the measures P and (, we see that both the
processes X and (g,) = {55 1X) are P-semimartingales (see, e.g, [4, Theo-
rem 13.12]). Thus, (g,) is a function of bounded variation.
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Let he 2 be continuous and have bounded variation (i.e.,, its components
are of bounded variation). Then on the right-hand side of (4) we may omit (P)
and (Q), since the integrals (P)| and (Q){ are the same [4, Theorem 13.15].
For a continuous function of bounded variation h, h* denotes the form

b =} hio,

where o!, ..., ®? is the dual basis of 4,,..., 4,. If geG, then Ad(g) will
denote the adjoint operator of Ad(g), which is an endomorphism of g* We
shall use the integral of I1-forms along the paths of diffusion processes [see [6]
and [7]). We want to express the integral j'a (Ad(g; Y h¥)odX, in terms of
integrals along the processes (X,) and (g,). Lemma 3.4 from [ 7] will be essential.

If the function ¢: GxG-—G is given by ¢(x,y)=xy" !, then
}?g = ¢(X,, g,). Let us put

$.=¢(x,"): G-G and WO=6¢(,y: G-G for any x, yeG.

Let ¢, and ,¢ denote the co-tangent mappings of ¢, and ,¢, respectively.
Then for every left invariant 1-form «w we have

30.(0)0) = ~(AdBY0)),  0,6(w) = AdOY .
Hence the following holds:

j(Ad(g; Yht)od%, =Y, §Ad(g,‘1}jh’aﬂod)£

i 0
) j‘Ad(gg i hi(Ad(g) ')dg,
ij O
T " .
+ Y [Ad(g; ihi(Ad(gY o) 0 dX,
i o
T T™
= — [hfdg+ [ h¥odX,,
0 0
ie,
T T . N T ’
) {n¥odX,— [(Ad(g; 'Yh¥)odR, = [ h¥dg,. -
i} a o

X and X satisfy the equations (1) and (3), respectively, which gives

T T
[h¥odX, =Y [hdBZ,
[¢] a D

(Ad(g; 'Yh})odX, =3 Y fAd(g; Y. hidBe.

a i 0

E= A L |
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Combining the last formula with (5) yields, for every continuous function of
bounded variation he#,

T
(6) Ah = [h¥dg, P-as.
o

Thus, for he 3 the function Ah is constant, in other words, A is a continuous
linear functional on . Consequently, there exists {es# such that
)] Ah=<h, 0, hes#.

{-,-» denotes here the inner product in .

Let feC®(G) and let o' be the i-form defined by the formula
o’ (V) = v{(f), ve T(G). Then for every t, w, will denote the left invariant 1-form
for which @’(g) = w,(g). t—+w,cg* is a continuous mapping of bounded
variation, as its components are A, f(g,). Hence, using (6) and (7), we obtain

flg)—1(go) = [’ dg, = gwsdgs = ; gAi flg)tids = gf: flg,)ds.

Therefore, the function (g,) is absolutely continuous and satisfies (2).
Summing up the formulae (4) and (7) we get

i T ) T L T o
®)  X(P) [hdBi—Y Y(Q)| Ad(g NhidB: = Y [Hilidt, hes#.
& o a i 0 i 0
Let us fix I, c+1<I<d, and put ¥’ = 8iljp. The equality (8) yields
@) ~ L@ [Ad(gr VedBe = [ldr,  se[0; T].
[ 0 0

Since on the left-hand side we have a martingale, and a function of bounded
variation stands on the right, the both sides equal zero. In particular,
(10) =0 forae t,I=c+1,...,4d.

Computing the -quadratic variation of the left-hand side in the formula
(9) we get

Y [(Ad(gr P dt =0,

so Ad(g, YW < V for every t.
The formula (8) may be now rewritten in the form

T T T
(11) Z(P}g ki dB;— Z;:(Q) g Ad(g; "VihidB =Y, [ hilvdr.
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For every y=1, ..., ¢, putting h* = Io.q in (11) we easily get
(12) dB— Y Ad(g; dBz = [Ydt.
Hence dt = ) (Ad(g, ) dt, ie, Y (Ad(g  )Y)* =1 for every t.
Now, if y # &, then (12) yields
dB}—dBf— Y (Ad(g, ")i—Ad(g; " ))dB; = (7 —{))de.

Then we add the last term of the left-hand side to both sides and compute the
quadratic variation. Applying the previous result we get the equations

2dr =y (Ad(g, Di—Ad(gr Di)Pdt = 2dt—2) Ad(g, M) Ad(g, M)odt,
3 Ad(g; " Ad(gm ) = 0.

Thus, g, H for every ¢ or, equivalently, {,e k for a.e. t. Because of (10), we see
that {,ek for ae. t, which completes the proof.

Proof of the sufficiency. Suppose that (g,) is a function that satisfies
the conditions (i}-{iii} of the theorem.

Let X be defined as before. We shall use formulae for products and
inverses of semimartingales (see, e.g., [8] or [9]). By (1) and (2) we observe that

L

X satisfies the stochastic differential equation

(13) dX, =Y Ad(g)A,0dB!—Ad(g){dt

(with respect to the measur@é P).

Since {,ek for ae. t, g,e H for every t. Therefore, we can rewrite (13) as
X, = % Ad{,gilﬁ AgodBf— ga Ad(g)5ll A, dt

or

(14) dX, =Y A,0dB,

where )

(15) B =Y [Ad(dBi— T [ Ad(g ) ids.
Let e ’o

(16) B:=% j'Ad(gg)Eng, a=1,...,c.

p o
Since (Ad(g)%) is an orthogonal matrix ae, B =(B% is a c-dimensional
P-Brownian motion. Applying the formula (16) to (15), we may write

Br = Bi— Y [ Adlg)sthas.
)
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We define a measure Q' on (2, #) by the density

dQ’ r 1T ;
P=er (z [ Ad(@)ttaB—3 Y J@Ad(g-,)fxcf)idt)
af 0 x 0O B

T T
= exp (Z [eaB—¥ [ ;dt}_
a O 2 a 0

(We used here (16) and the orthogonality of (Ad(g)5).)

Now the Girsanov theorem (see, e.g., [4, Theorem 13.25]) yields that
B = (B is a Q'-Brownian motion. Since X satisfies (14) and the measures
P and Q' are equivalent, X is a ¢’-Brownian motion on G, whose generator is
3y, A,A,. Hence, its law under Q' is P and, consequently, Q' = Q. The
measures P and @ are thus equivalent, and (17) gives the formula (iv). The proof
of the theorem is complete.
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