
Abstsoct. In this paper we exmine the generdization of the Wmg-Zakai rhaorem 
far tha nonlinaar stochastic functional Mesmtiial equations with values in the spsrce Rd 
[d $ 11, As the result ofthe piemwise linear approximation af the m-diwensioaiil Wilener 
prasess wa obtain ao explicit fornula for the limit of a aequeaw crf sdations to the 
ordjnaq daemnntial eqwtioas with a delay argument; this very limit is  a solution to the 
stachastic daerential quation with a delay =&urneat with the addi~unf term c d l d  
the I"t& com~ction 1emz. 

1, IatPodu~doo. The approximation Wong-Za-kai fheorem E12J was gene- 
riili~~d, e.g., for the muftidimasional ~ S I S  ([ti], [ll]), For the more generd 
noises than the Wiener promss (C?], [lO])J far the mite-dimensiond case 
(EE]-[3]), but it did not include the stochastic differential quations with 
a delay argument, 

M a t  this paper contains is just swh a generdizatican, We. have h e n  using 
the general theory of the hncz;ionaf stachastjc aerential quation8 f[631 E8J9 
[[k)l). Mainly, we have based out ar$umentatian on the ta01,ls af the rrp- 
praximagaa theorem in 151. 

A8 an example we have mnsidered the linear eiqwtinn for the delay which 
is copastat in t h e  a d  far the noise being the o n e - d i m e  Wmer process. 

We wish to thank Professor J. Zabczyk leer impiring dimusgir?.xas on this 
subject and to Dr, A. L, Diiwida~viez for several very wmtrucfive mmats. 

2. DeBd~ons a~aarll mtatr"on. k t  l e [O,  TJ and let (a, F, 9,, 5) be 
a campl~te probability space with F, = {P,hefoq, being the hcrwing dajmily 
of sub-a-dmbrasl of the a-algebra FF;". We gut 1 = (-m,01 arsd we in- 
troduce; metri~ q m z s  %- = C(J,  Hd), %, .= G(( - m, n, dCg) and @ 
= C(f-- oo, TI, Rm) = fi Of cnrltinucaus functians. The space Cb?- is endowed 
with the metric 



Similarly we define the metrics for -%', and %?q with /]hl[ ,  = max IrFr(r)[, Mere 
- n > t G T  

d is a dimension of a state s p m  and m is a dimension of the Wlesler pracms; in 
the space: %: aZI functions a e  equal ta zero at zero. We denote by $? one of the 
above spaces, 

Let 9($) denote the tapological Q-dgebea of t21e space X. It is obvious 
that i t  is identical with 0-dgebra generated by the family of all Bur& ~ylinder 
sets in iK Sa we construct the Wiener spa% (Wq, B(g$), P')? where P" is 
a Wiener measure {[5], Chapter 1). The wordinate process B{t, w) -. mr(t)- 
w E %!, is an m-dimensional Wiener p m ~ ~ s s .  

The. smdest Barel algebra that contains @,, @,, .., is denoted by 
@, u B2 LJ . . . ; O,,(X) deaote~ the smallest Bore1 s-dgebra for which a given 
s t aeh~ t i c  praass X(t)  is  measurable for every e E [ts, 01 ; and BN,, (dB) den0 tes 
the smallest Bore1 alge0t.a for which B[s)-B(t)  is measurable for every {t, s) 
with ts g t g s G a. 

We intraztuce the becondition 

(AI) for every t ~ ( - m ,  the algebra @-,,(X)vB-,,(dB) is indepen- 
dent af @tvT(dB) 

to give the meaning fm the stochastic iatapals in (2) below. 
Let Bn(t, w)  be the following pieawise linear approximation of 

B(t ,  tv) = wtt-): 

far each p==  I ,..., m and kT/2n~ec (k+f )TJ2"  for k=0, 1 ,,,,, 2"-1. 
VVs: introdurn the fo l lo~ng notation and functions: 

whew C.3 denotes the integer part of the real numkr. 
Far 6'uFtfier ~unsideratia~s a sement of trajectory m u x ~  be defined. k t  

f" be a fux~etian af 1 E (-- GO, TI. Far a 'fixed t E [a, T ]  yve define 8 functicsn jr, oa 
(-- m, QJ by the formula 

S,lm - $@+ @. 
For the sts~hagistic process X{t, wj  wc define 

therefore X,[-, vu) denotes the sewant elf the triljmtorg~ X(;-, ME) oo a -  ao, t ] -  

3. Dewdpdan of a madel. Now we ecmnsider d"$, defined bshre by 
Vg - G((-ae, J'I, R"), Let X be a continuous stochastis p rwss  A"($,, w): 
(-a, T ] x ~ + R ~ ~  that is, X: a--,%=%L. 

We rake the fixed initial constant stochastic: F ~ O ~ S S  



We istraduce the fofaUowing operatars: b: V- -+ Itd, 6: @- -+ LC&", R? 
fL[Rm, R"E)Is the Barrach space of linear funclions from Rm to Rd with the 
uniform operator norm 1.1,). W assume 

(A2) b and ct are wnfinu~us operators. 

The additional defigition of Er and r5 i~ nemssary. Namely, we?. usually 
assume that the stocllastic dwerentid equa~ons of the type considered here are 
satisfied for t Z O only. However, in the proof af our theorem and in the 
definition of a correction tern, our equations are to be satisfled also for t r 0, 
Therefort: we define b(t, q) - o(t ,  cp) = O far t < Q or Erl(t, ys) -- b ( p ) ~ ( t ) ~  

ar(t3 9) = a(q)x{t), where ~ ( t )  = il for t 3 Q and ~ ( t )  = 0 for t < 0, if the 
aperatos b md cr do not depend apgarendy 011 tw This is possible because our 
g t i d  hndiern is wnstant an (- GO, 61. In such a sense the operators b and rr are 
tandersrood in &is papr. The fact that the above asumprions ar% rrmssary am 
be observed just in f01muIa (**) in Swtiun 4 it3 the proof of our &eorem. 

Nctw we introduce the operators 

A": %--+%- md 5: V- -, C(J, E(Rm, Rd)), 
where 

/?: %- 3@ + ( J -~z  4 b ( g ( . + t ) ) ~ ~ d ) ,  

that is, for T < 0 and a shift transfornation ST: J 3 9 -t 9 +I-, 

Remark, I, From the a;i?ove-~ven definitions w e  see that the initid 
process has to be csrastant. 

Re rn a r  k 2. This construction explains why we consider ( - a, OJ to be 
a domain of the initial fucnction, In fact, we skdl ded o d y  with a part of tplis 
fuixs~tion on [ - r ,  01 for a fixed reat rlumber r 3 0. JC we consider& the sement 
E--r, BJ to be a domain, it would make in~possible to define wrrectly the 
fun~rions 6 and 8. 

We consider the follnwring stochastic diEereatkl equation with a. delay 
argum~nt for every i = 1, . . . , 8: 

By eepla~ng the Wiea~r  process by 8% inequa~olil(2] we o b t ~ n  the following 
approximations of (2): 

Far fizrther consicleratisns we krrnarla* annr;fier stochastic digerentid equa- 



for eveq i == 1, . . . ) d. Further, DQ.@ is the Frbehat derivariw Elram g- ito 
UFb:-, R) (necess~q assmptisns are given betow) while D j a i ~ ( ~ ( - ,  wlr) 
= I U ~ ~ ~ ~ Y ( ( O ] ~  is the j-th eaordinate of a measure g = on %- such &2bt 

d 0 

PC@) = C j" @i{u)$(dul. 
j - 2  -a 

We batre p(A) = p(A n - ao $ 0 ) )  + p(d n (Of-) = PfA) + p{(O))d,(A), where 6, 
is a Dirac measwe, AE$((-w, 0)). It is ot3;V;ious that 

is a cliration de:rivative. We notice that for a smaaath function k(-) we have 
I!, h(v)8,(dv) = h(O). We introduce a function 

Remark 3. We may take in (3) the integral because dp has no sense 
for s G r but we have there 

dXR(t + z , w)  
dt 

-0 

(see (**I in Smiurr 4). 

WB put P(t, w)  = bbQX,(w)) ~ n d  @(t, w) = aB(X,[w)). Tbz swsnd htegsal in 
(2) is the It6 intern1 @I, [83). 
kt us introduce the followhg cenditiuns: 
(A31 Tfie initial sfclcbastic prows8 X, i a  Ijrso-measrrrabie and 

d 

pQ]Xe(sv)l < a)= 1, where / X ~ f ~ u ) l ~  C Ix'o(w)lg 
i=  1 

9-,,(X,) is hdependent of' @o,T(B)- 

where KqB] is a wxtain bound~d measwe on d ,  Lhazld LZ are some ccsMmts, 

(AS) For every q a ~ @ -  the f o l l o w i ~  growth ~oadition is fulfilled: 



Stechastic digerential equations 

(A71 b\ pa"@ E %?i (W,] for every i = I, . . . , Q, p = 1, , . , , where %j is the 
space of boundd mappings with wnhuous first derivative, that is, for any 
numbers A > O rand e > O there exist n w h r s  B > O and 6 > 0 such that 
IlX,l- 11 tB < 6 ImpEes 

nm 1, We say that the d-dimemlond cantinusus skodastie 
process X: (- co , J1 x @ -, R"E6 a stravlg solatton to eguatian (2) with s givm 
process w(t)  if' conditions (All, (s82)1 (Ac6) are satisfid and equation (2) is valid 
with probability 1 for dt t a(- ca, n. 

The umriquenms of strong sdu~oxxs is understood in the sense d 
trajecto~a, that is, if for every two strong solutions X and 3 ta equation (2) 
def"med on the same pm'babiiiity aspace we have 

N 2. We recall tbat the ahollutely coatinaous stocbmtic process 
Xn: (-- oo , T'J x @$ -+ Rd is a solution to equati~~l (T) if conditions (A2), (AJ) are 
ssetisfied and equation (2vis  valid with pprobabGty 1 for dI EE(- ao, a. 

Let w noticx that condiSions (A2-fA7) emwe the e ~ t e n e e  and unique- 
rims of .the strong solution Y to equagion (3). Indad fsm && Seceons 5 and 71, 
under conditions fA2HAS) there exists a stPong solution to eqmtion (2). The 
~ q u e n e s s  may be derived fram the graaf of neorm 1 I, Section 111 in [6] ,  for 
the m&~slhensianal m e  with an additianal remark that measurability is 
a ccsnseguenm of continuous depndenm of solutions on the: Mtid mdition. 
Now we comider the 

in equation (3). Since fiiai~ is a measwe, we have 

where C is a constant. Thus ~ ~ n d i t i o n ~  (A41 and (As) are fulfilled for the 
t m  (+I. It iS obvious that other con&tiaas me aIso FulWFilled and equation (3) 
has also ex-xacay om strong solution. 

a d o m v ~ r ~  far every M EN, mder mndi8ion (A4) there e ~ s t s  exactly one salutioa 
to tlae ardinapy d&mn~aI eqraa~on (2'7 vvih a d&y argument [m [4] and [ti]. 



The f o l l o ~ n g  Emit Z: in the space Q- is understood in the norm sense: 

that is 
max ~ l ( ~ ; , , ( 0 ) - ~ ( Q ) ) - ~ ~ ( @ ) l - , O  as h+O, OEJ 

- a s < b C B  

(we choose an appropfiate norm on 1-r, 01 from the family of semhoms), 
We have 

Putting u = E- + 8 we have 

Moreover, it is  obvious that 

fl,tS) dX,(@1 -- -- 
dl* do 

becs~t~se; X,(@ = X ( t  -+ (3). 
If we mderstand t as a v ~ a b l e  we have 

T m m ~  1. Lab t h  cmditions (A2MA5) and (87) be fuwlbd. k t  Bm(t ,  w) 
be the approximation of Eype (1) of the Wiener pr~cess, We assume chat X" and 
1)1- w8 $ @ I ~ ~ ~ ~ B Y I s  to (2") alua (31, re@ec.tively, with u cansi@~t- initial stuchraszir: 
procgss. Tkm eonditioivts (kl) altd (A61 are statisfled and, for e u s q  T > 0, 

h sup E [tX" ( t ,  w )  - Y (t , w)lZj - 0, 
n-co O f t - e T  

Pro sf. The assumptions sf the &earem msue the sxisten~e and unique- 
ness of the ~ ~ I u t i ~ n s  to quations (2") and (3). For every i = 1 ,  . .. , d we mite 
the subtraction d tpuatims (2') and (3): 



Further9 c,, l = Q, 1, . . . ,25, denom same pogi~ve constan@. 
From (2-\we have 

From fhe bouaddn~s  of 8 we obtain 

EL sup IHll(tf12] =E[ sup 12 f P(X:( . ,  w))&a~(s, w)dsj2] 
O C t C T  OGtCT p a 1  rn 

m rit 

G EL sup I 2  sup a*(~t(-, w)))'( BP*#(s, w)'ds)l] 
O&tGT p = l  s f 

(.m$ we estimate 
r$ (tf 1y2.h 

sup ( I @ ~ ( S ,  WNpJSf2] 8 E[5up ( I@-~(S, W)I B9)"I1f2 
OSrdT m; r yz- 



k i 2 "  +r 

+E[ sup sup I J (dp(~ ( - ,  w))-ggP(Y,-  (*, w)))dwp(x)12] 
OSALGmlT) O G i G l f Z n  k / Z n  

From the: HBZder inequdlty, the weU-known inequdity for the It6 int:grds, the 
ae;sumpGons on oiir pdnd (7.32) in [51 we have 

kt w1 be the Wiener prcvmss tmslated in time, i.a, 

Lt is obviaus that the psoce~s may be coslsidemd as the sohiion te (3) 
dter repPa&g w by w' and Fd by d$efirnr;d by the few~ula 

Let I be the smalllest a-arlgebr~ swh that Y,,,, is a stoeItas.ai@ process with 
r~spect to it. Let Y, be a solution to (3) ~~litfi She Mfial wnditi~n F$ --' {. Let E 
&note the exptation a d  eand;ieiona1 ~xpecta~aa s lanhg  far the iatqraGora 
with 9:mpect to we. Shce the k c m m t ~  of the Wiener process ars: swtionq, 
vve may mp1aoe the mmpufiag of E af the od&d pror;as by the computing of 
E-f ta%6? trmlaM ~ ~ O G G S S .  Therefore, l ~ ~ i n g  (64) vve have 



+ L" I Y " ~  - Y (k/2nj[2)d~] la), 
whlest: c(8) = I l r {k f2a~B)  and, as in (7.573 of clij, we get 

From (AT) we'bavhave 

To estimate H,(t) we shall first present the integral 6 as a sum 
&r)- r + i ) p n  

IYzD . At fir& let US observe that 101 --m < 11 < 0 

the assumption that the IFJI;OG~BS i s  constant. Thltefore, f o ~  
--m < s d O  we have 



Now we cake into wnsideration 







@@ @L a 7.1). 
Sin~e Xn is u s o r d y  mnbinuous on the finite interval, i g  ~antinuous as 

a fum~tiaet of the variable s atifl.1 the funaisnd tlvafues md we way estima& 
(andogigusly m iap [Sj) 

B[ slap II,3{t)12]-t.0 rn n-+mao, 
O . i r 6 T  



Further; using (Ad) and (7.68) of [53, ibr every t, E[O, aJ we obrzrin 

Now we shall use the generagH Gro?onwall l a m a  f[8], Lemrrtr;r. 4.13). 

Let k,, k , ,  k ,  be non~segntive eonstants, Ls a{t) be a h d e d  
f ~ w t b n f o r  every t E[ - GO, rsnd a(t) k 4 nanigegatitle integrablcf~nctim We 
m;rsarm that K@) is a mndgmeasing nmnegaWne r$kt-can~uous h c t h n  mck 
&at 8 G K ( 4  6 3 and that 

t t 1 

G kko+kl f v(~ )zs (s )ds+k .~  j@(sj( d; n ( ~ ~ ) i d K ( s , ) ) h .  
a 5 --a 

Then 
I 





[lj P, Acqnistapacc and B, Terrcni, An @ppraack to It4 finear qualions b H%lbt%t 
spaces by ap~poxtn~atlon 4 white nohe wEtk co!ourtld iroLve, Stoch. And, Plppl. 2 (19841 
pp 131-186. 

[2] G lsla Prato, Stochasr& d~P@re.nt;ial eqWInns wfth ncmco~timous w@cients iva Hg&;~br?rt 
spacers, Rend. S m .  Mat. Unlv. Politc. Torha, Edurrzcra sp&le (1982), pg. 73-45. 

[q H. Doss, tiens mtre 6quotions dtpdrentielh stuchasiligues et mdi~ires ,  Am. bst# M, 
Poincd 13.2 fZ977), pp 99-125. 

143 J. W a l e ,  Theory of Fundionof BiTerennriaE Eq~qeratiam, Springer-Verlag, New Yark-Heidal- 
hrg-&rGn 19J7, 

[5] No 1 keda and S. W a tanabe, Stochasa'c DtgereahI E~uatr'ons and B~Tusiart Processes, 
North-Hallaurd PubX. Co., hsterdam t981. 
K. Eta and M. Wisio, Qn stamnary mlutiatns oj" a stochmdf diflermtial eguasion, J, Msth. 
Kyoto Univ, 4-1 (1864)1 pp. 1-75. 
F. Koneczn y, On Wow-Z~fclxi approximtiom of stochmtic di$wential quatians, I, MWliuIti- 
vari8t.c Anal. 13 (19831, pp, 6 0 5 4 1  1. 

[8] R Liptser md A. Shiryayev, Statis~cs of Random Prwesses, Spring~r-Val% Hh:w 
Yorli-Wddclberg-Berlin 1977, 

[9] S. E. A. Mohammed, Stockastic Flmc@onal Dzr~rentiaf Equations, I*itman htubhhing kc., 
MarsScld 1984. 

elo] 3. N ak a0 and 5, Yam at o, Applthatfon &eowm on s~chas tk  diye~ential eptfams, Pnx. 
Inkm Symp, SIX, Kyoto 1476. 

611-j D.W. Strook and S.R.S. Varadhan, On t k e s u p ~ o f d ~ f i i o r r p r a c e s s e a  rvitkappltcatia~s 
ta the strong maximm prindp1e7 Proc. 5-th BerkeIey S p p .  on Math. Stat. and Pwb, 3 (19721 
pp. 333-359. 

1121 l% H on g aad M. %a k ai, ON the COYIUBI~CW~ of ordinmy f n t e p f s  ta s tmhst ic  integrak Ann. 
Math. Statist. 36 (1965X pp. 156&1564. 

Enstitute of Mahmatics 
Wmaw Technieat University 
pt PolislecMi 1 
ElO.661 Wars-$ Poland 


