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Abstract. In this paper we examine the generalization of the Wong-Zakai theorem
for the nonlinear stochastic functional differential equations with values in the space R
{d = 1). As the result of the piecewise linear approximation of the m-dimensional Wiener
process we obtain an explicit formula for the limit of a sequence of solutions to the
ordinary differential equations with a delay argument; this very limit is a solution to the
stochastic differential equation with a delay argument with the additional term called
the It correction term.

1. Introduction. The approximation Wong-Zakai theorem [12] was gene-
ralized, e.g., for the multidimensional case ([S], [11]), for the more general
noises than the Wiener process ([7], [10]), for the infinite-dimensional case
([13-[3]), but it did not include the stochastic differential equations with
a delay argument.

What this paper contains is just such a generalization. We have been using
the general theory of the functional stochastic differential equations ([6], [8],
[9]). Mainly, we have based our argumentation on the tools of the ap-
proximation theorem in [5].

As an example we have considered the linear equation for the delay which
is constant in time and for the noise being the one-dimensional Wiener process.

We wish to thank Professor J. Zabezyk for inspiring discussions on this
subject and to Dr. A. L. Dawidowicz for several very constructive comments.

2. Definitions and motation. Let te[0, T] and let (2, %, #,, P) be
a complete probability space with F, = (& )0, 7 being the increasing family
of sub-g-algebras of the g-algebra %#. We put J =(—~o0,0] and we in-
troduce metric spaces ¥_ = C(J,RY, %, =C((—,T],RY) and %3
= C((— o0, T], R™) = @ of continuous functions. The space ¥_ is endowed
with the metric

e = 3 27— o pge = max [,

? - n=1 1+ f—gl., ’ - " -nSI<0
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Similarly we define the metrics for ¢, and €9 with ||A|, = max |h(t)]. Here
“nEt&T

d is a dimension of a state space and m is a dimension of the Wiener process; in

the space €3 all functions are equal to zero at zero. We denote by Z one of the

above spaces.

Let #(%) denote the topological ¢-algebra of the space &. It is obvious
that it is identical with o-algebra generated by the family of all Borel cylinder
sets in 2. So we construct the Wiener space (%3, #(¥3), P"), where P¥ is
a Wiener measure ([5], Chapter I). The coordinate process B(t, w) = w(f),
we %3, is an m-dimensional Wiener process. .

The smallest Borel algebra that contains 4,, #,,... is denoted by
B, OB, ...; B, (X) denotes the smallest Borel o-algebra for which a given
stochastic process X (t) is measurable for every te[x, v]; and 4, ,(dB) denotes
the smallest Borel algebra for which B(s)— B(f) is measurable for every {t, 5)
with u<t<s<uo

We introduce the condition

(A1) for every te(—co, T the algebra #_, (X)U %_,.(dB) is indepen-
dent of %, (dB)
to give the meaning for the stochastic integrals in (2) below.

Let B%(t,w) be the following piecewise linear approximation of
B(t, w) = w(t): A
1) B (t, w) = wP(k/2") + 2"(t — k/2") (wP ((k + 1)/2") —wP(k/2")
for each p=1,...,m and kT/2" <t < (k+1)T/2" for k=0,1,...,2"—1.

We introduce the following notation and functions: "

1 [2"1] "] .
b=z w0=21, UL, my =10
where [-] denotes the integer part of the real number.

For further considerations a segment of trajectory must be defined. Let
S be a function of te(—oo, T]. For a fixed te[0, T] we define a function f, on

(—o0, 0] by the formula
5O = f(t+0).

For the stochastic process X(t, w) we define
X,00,w) = X(t+0,w), 0eJ;
therefore X,(-, w) denotes the segment of the trajectory X (-, w) on (—o0, £].

ty (t) =

27’

3. Deseription of a medel. Now we consider @, defined before by
%9 = C{{—o0, T], R"). Let X be a continuous stochastic process X (¢, w):
(—o0, T]x 2 - R4 that is, X: Q-4 =¢,.

We take the fixed initial constant stochastic process

X046, w) = Xh(w) = XF(w) = Yiw) for feJ,i=1,...,d
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We introduce the following operators: b: ¥_ — R% o: ¥_ — L(R™, RY)
(L(R™, RY is the Banach space of linear functions from R™ to R* with the
uniform operator norm ||;). We assume

(A2) b and o are continuous operators.

The additional definition of b and ¢ is necessary. Namely, we usually
assume that the stochastic differential equations of the type considered here are
satisfied for ¢t > O only. However, in the proof of our theorem and in the
definition of a correction term, our equations are to be satisfied also for ¢t < 0.
Therefore we define b(t, p)=0o(t, ) =0 for t <0 or b, (¢, @) = ble)x(t),
o,(t, ) = o(p)x(t), where y(t)=1 for t >0 and (1) =0 for t <0, if the
operators b and o do not depend apparently on ¢. This is possible because our
initial function is constant on (— oo, 0]. In such a sense the operators b and ¢ are
understood in this paper. The fact that the above assumptions are necessary can
be observed just in formula (#+) in Section 4 in the proof of our theorem.

Now we introduce the operators
b:¢_->%_ and & %_—C(J,L(R", RY),
where
b: 4_sg—{Jat—b(g(-+1)eRY),
¢ €_2g-(J21-0(g(-+1))eL(R™, RY),
that is, for v <0 and a shift transformation S,: J 3 G =841,

[6(g)1(x) = blgoS) = blg(-+7)), [(0)1(x) = algoS) = a(g(*+1)).

Remark. 1. From the above-given definitions we see that the initial
process has to be constant.

Remark 2. This construction explains why we consider (—co, 0] to be
a domain of the initial function. In fact, we shall deal only with a part of this
function on [ —r, 0] for a fixed real number r > 0. If we considered the segment
[—r,0] to be a domain, it would make impossible to define correctly the
functions 5 and é.

We consider the following stochastic differential equation with a delay
argument for every i=1, ..., d:

2) X, w) = Xi(w)+ ib‘( (-, w)ds+ Z fcr”’( (-, w))dwP(s).
4] p=10

By replacing the Wiener process by B” in equation (2) we obtain the following
approximations of (2):

(2% X™(t, wy= Xg'(w)+ _fbi(X”( , w))ds+ Z a’?(X3(, w})B’“"’[s w)ds.

,plfl\

For further considerations we formulate another stochastic differential equa-
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tion, ie.,
4 i 4
() Y't, w) = Ygw)+ [B(Y,(-, whds+ Y [aP(Y(:, w))dw?(s)
0 p=10
m d ¢
+3 % % (B0(%0 w)oR(EC, w)ds
p=1 =10
for every i =1,...,d. Further, Do'? is the Fréchet derivative from %_

L(‘is’_, R) (necessary assumptions are given below) while D,6”?(Y,(", w))
irf y({0}) is the j-th coordinate of a measure p = @?, v on €_ such that
d 4]

u@ =3 | ;).

j=1 -
We have u(A4) = p(4 n(— o0, 0)+ (A N {0}) = (A)+ p({0})do(A4), where &,
is a Dirac measure, 4e%((—c0, 0)) It is obvious that

Do (g)(®) = Z J B ,(v) 5%, 4(dv)
=1 ~a
1s a direction derivative. We notice that for a smooth function k() we have
§  B(©)8,(dv) = h(0). We introduce a function
Ajrr: ved - o(X7, (-, w))B™P(t+1, w)eR.

Remark 3. We may take in (3) the integral j:] because ¢'7 has no sense
for s <r but we have there
dX"(t+1, w)

dt =0

(see (#+) in Section 4).

We put ¥(t, w) = b(X (w)) and &{z, w) = o(X,(w)). The second integral in
(2) is the It6 integral ([5], [8]).
Let us introduce the following conditions:

(A3) The initial stochastic process X, is & ,-measurable and
d
P(IX,wW) < 0) =1, where |Xo(w)l = 3 IXow),
i=1

B - ,0(Xy) is independent of B, r(B).
(A4) For every ¢, ye¥_ the following Lipschitz condition is fulfilled:
(@) —b)? +lo(p)—a (WL < L' | |@@)—y(O)*dKO+L?|p(0)—¢(0),

where K(0) is a certain bounded measure on J, L! and L? are some constants.
(AS) For every pe®_ the following growth condition is fulfilled:

o
(b)) +{o(@) < L' [ (1+9*(0))dKO+ L2(1+ ¢*(0)).
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(A6) We have
T T
P(fb(X)lds < )=1, P([e*(X)ds < c0)=1.
0 o

(A7) b, oPe¥3(@_)foreveryi=1,...,d,p=1, ..., m, where ¥} is the
space of bounded mappings with continuous first derivative, that is, for any
numbers 4 > 0 and &> 0 there exist numbers B> 0 and & > 0 such that
I X:—Xx2|%5 < implies

0 . o
l_f @(,v)m({iv)*- _j @(v}ﬂz(d"” < [[®)2 4e.

DeriNITION 1. We say that the d-dimensional continuous stochastic
process X: {—oo, T]x %9 — R? is a strong solution to equation (2) with a given
‘process w(t) if conditions (A1), (A2), (A6) are satisfied and equation (2} is valid
with probability 1 for all te(—c0, T].

The uniqueness of strong solutions is understood in the sense of
trajectories, that is, if for every two strong solutions X and X to equation (2)
defined on the same probability space we have

P( sup |X(t, w—X(t, w)] >0)=0.
tef — 0, T]
DermiTION 2. We recall that the absolutely continuous stochastic process
X" (—o0, T]x €% — R?is a solution to equation (2") if conditions (A2), (A3) are
satisfied and equation (2") is valid with probability 1 for all te(—co, T].

Let us notice that conditions (A2){A7) ensure the existence and unigue-
ness of the strong solution ¥ to equation (3). Indeed (see [6], Sections 5 and 7),
under conditions (A2}{AS5) there exists a strong solution to equation (2). The
uniqueness may be derived from the proof of Theorem 11, Section 10 in [6], for
the multidimensional case with an additional remark that measurability is
a consequence of continuous dependence of solutions on the initial condition.
Now we consider the term

(*) B(Y(, W)+ D0 (Y, w)a? (¥, w))
in equation (3). Since ﬁ]@‘*’ is a measure, we have
1D;0"(0)a”(g)] < Clo™ (o),
D67 (9)™ () D5 W) o ()] < Clo™ ()~ (Y),

where C is a constant. Thus conditions (A4) and (AS) are fulfilled for the
term (#). It is obvious that other conditions are also fulfilled and equation (3)
has also exactly one strong solution.

Moreover, for every ne N, under condition (A4) there exists exactly one solution
to the ordinary differential equation (2%) with a delay argument (see [4] and [6]).
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The following limit Z7 in the space € _ is understood in the norm sense:
Yt () — X
z:,() — hm gfﬁ—h( )i ) t( )’
=0
that is
max [h~Y(X74(0)— X3(0) - Z1(0)] 0 as k>0, OeJ
- < BE0

(we choose a_n appropriate norm on [—v, 0] from the famﬂy of seminorms),

We have

Z20) = 4 X3(0) = X0 +0), O,

Putting u = t+0 we have

XMe+): E%dxw)», —w<u<st
du
Moreover, it is obvious that
dX (6) (6)
dt d

because X, (0) = X(¢t-+0).
If we understand t as a vanabls we have

Xm: te[0, T] - XTe¥_.
4. The Approximation Theorem. We shall prove the following
TueoreM 1. Let the conditions (A2)-(AS5) and (A7) be fulfilled. Let B"{t, w)
be the approximation of type (1) of the Wiener process. We assume that X" and

Y are solutions to (2") and (3), respectively, with a constant initial stochastic
process. Then conditions (Al) and (A6) are satisfied and, for every T >0,

lim sup E[IX"(t, w)—Y(t, w)*] =0.

o OLreT

Proof The assumptions of the theorem ensure the existence and unique-
ness of the solutions to equations (2") and (3). For every i = 1, ..., d we write
the subtraction of equations (2") and (3):

X, wy—Yi(t, w) = H, () + H,(t)+ Hy + H,(t),
where :

H, () = Z 5 DX, W)B(s, wds— 3 o (Y0, w)dwe(s)

p=1tn

=1
1md
ER Y

5,07(X,(-, W) (T,(:, w))ds

"'Hu{t)‘- z H{z(t —H5(1), {

p=1
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H,(t) = i i a*?(X7(-, w))B"P(s, w)ds — i j' ?(Y,(-, w))dw’(s)
p=1 1f2» p=1 1f2%
—3 Z Z f D;a?(Y,(:, w)o™ (Y,(:, w))ds,
2 =1 j=1 12
m  1/2n m 1/2n
H,= 2'1 g a”?(X3(, W))B”'F(s, w)ds— 21 go-w(y( , W))dwP(s)

d 1)2»
£ T o o, s

miH
Ma

1

B-
Ha® = [BOGC, w)ds— gb"(lg(-, w))ds

Further, ¢;, 1 =0, 1, ..., 25, denote some positive constants.
From (2") we have

@ X (e, w)—X"(s, w)| < cof Z .f | B (u, W)Bdﬂ+(t-S))

~ p=13
From fhe boundedness of ¢ we obtam

B[ sup |H, 0F1=E[ sup | 3 { (X2, w)B(s, wds]’]

0<1&T 0Lt<T p=1 1m

<E[ sup | Z (2~ "supa’F(X“( w)))* (f Brr(s, w)tds)|]

0<I<T p=1
27"E[ sup ([ |B™ (S,'w)ids)’j
0157 tn
and we estimate
&+1y2n

E[ sup (tf |B™P(s, w)lds)*] < E[sup( [ [|B"*(s,w)|ds)*]'?

05tsT ta k kfan

m(T) (k+1)2n k+ 1);‘2"

<ECR (] 18w (R Bl [ 102 whas] ]

k=1 kfan

[Eer )T
[T

< (m(T)3(1/2)* < ¢, (2*(1/2P)M2 = ey (1/2)2.

11 - PAMS 122
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Therefore ‘
E[ sup [Hy O] < c3(1/292 >0 as n— oo.

O=t=T
Further we estimate

E[ sup [HE()*]1=E[ sup | o?(¥- (-, w))dw?(s)

0=srET O€¢ET tn

+ [ (0P(T0 W)= 0(% C, w))aw @[]

<E[ sup | [ o"(¥,; €, w)iw* (9]
O=tsT

kf2n+t

+E[ sup  sup | [ (¢ P(YL, w)— (Y- (-, w)))dw{(s)m

O=kE=m(T) 051120 kj2n
= H,@0)+H, ().
From the Hélder inequality, the well-known inequality for the It6 integrals, the
assumptions on ¢ and (7.32) in [5] we have
H, () <E[ sup j o'?(Y,- (-, w)fds] < c4(j' ds)?

O0=t=sT 1o
L ¢ (12" -0 as n—co.
Let w' be the Wiener process translated in time, ie.,
w'(t) = w(t +k/2") —w(k/2").
It is obvious that the process ¥, ;n+, may be considered as the solution to (3)
after replacing w by w and ¥§ by Y. defined by the formula
Yijon(0) = ¥ (k/2"+0).
Let # be the smallest g-algebra such that Y. is a stochastic process with
respect to it. Let Y, be a solution to (3) with the initial condition Y§ = £ Let E/
denote the expectatiom and conditional expectation standing for the integration
with respect to w'. Since the increments of the Wiener process are stationary,

we may replace the computing of E of the original process by the computing of
E’ of the translated process. Therefnre, using (A4) we have

H,0 < ZE’{E[Mﬁgﬁ"( (02 (Yuanars s W) =" (Taganl:, w)))dw? )18}

1/2»

< e Z E'{E[ 5 (e™(X (-, w)— o™ (2) ds] | %)
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1/2n 0

cs(m(T)+1) z E{E[§ (] [YE(U) — Yyyan()*dK (4)

+ L2|Y4(s)— Y (k/2")%)ds] | &},
where ¢(6) = Y (k/2"+0) and, as in (7.57) of [S], we get

Hz(t)sc,%—»o as n— 0.
Therefore, we obtain
V() — Yo(e/2)2 = | jb‘(Y“*{ w))du+ Z jaiv(yﬁ{ W) dw? ().
From (A7) we have

" d
E[ sup |H 0P1=3E[ sup |} ¥ [ D;6?(%(, w)a™(Y,(, w))|*ds]

0%tsT 0T p=1 j=1tn
f L
< cglf ds]> < (/277 -0 as'm— 0.
I

To estimate H,(t) we shall first present the integral [:’E as a sum

Zl"i“{‘ ,::,,wzn. At first let us observe that for —co <u<0
ttuy

Xt +u, w) = X (0)+ f bi(X3(-, w))ds

m f4u
+ Y | a?(X3(, w)B™P(s, w)ds
p=l 0

= X"+ [ B(X20u(-, w)ds

F 3T Ol W) B (s, wds

p=1 —u

= X"+ X0)— XM Q)+ [ B(XEral, w)ds
0

w1
+ % [a(X0.,(, w)B*P(s+u, w)ds,
=10
where we used the assumption that the initial process is constant. Therefore, for
—o0 <1< 0 we have

el .
() LWy iz W) T KRl W) B4, W)

p=1
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Now we take into consideration

(k+ 1)[2"
H= [ o(X1(, w)B*"(s, w)ds = a'?(X7(:, w))B"?(s, w)ffs:/2"
kfar

+6ip(Xg/2n{‘, W))BH'P (“‘!E“g';]z, w)—«fr“'(szn(', .W))Bﬂ.p (E%}‘, W)

(k+1yzn dX*(s+-, w
- [ pova, ))——-—————-‘ AR
Kfan

o) (50

k
("j (XGs 1y2nlcs W))“‘ P (Xizn (s “’))E”( ;l’w)

B™P(s, w)ds

=7 b, ) X W
kf2n ,
(k+1)2n
=Jyl)+ § Da(X3(, w)(B(Xi(, w))

kfzm

+ Z Ap“)(a”(kg;l,w) —BrP(s, w})ds

d (k+1)2n O

=J,(0+ Y " f P(X.( ,W)) i, x(dv)

=1 kam  -w

(i) oo

d (k+1)2% O

+2 [ T oP(X0, W) BV (s+0, w) i x(dv)

j=1 k2 = p=1

X (B”“’ (k ;; ! s w) —B"P(s, w}) ds

d (k+1)2" m » ) .
+Y | X De(Xa(, w)o(Xu(-, w)B (s, w)

=1 K2r p=1

X (B”“’ (k ;; 1 , w) B, w}) ds

3 4
S ACTDWA

r=] j=1

B™F(s, w)ds
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m{t)—1 k+1)/2"

#7150 Wi W)

k=1 kizn

X (E"’f’(s, w) (B"*" (k;; 1 , ~)-— B™"F(s, w}) —c,(277, rz))) ds

1 mi) -1 (k+1)2n

+5 Y[ (DXl WP (Xiyan(-, W)

2 2% wen

— Do (%, W) (X, w))ds

m{f)—1 (k+1)/2" ‘ ‘
+ Z j ‘*‘;'"Djﬂ'w(ﬂnn(', W))EJP(XE,Z..(', w }
k=1 i 2 .

1 1y A mact
(o n)-a)e 5

=Is1 )+ ... +1s6lt),

where

¢;t, n) = t"E[iE”’j[s, w)(B™(t, w)—B™(s, w))ds],  lim c,(1/2", n) =%

R

(see [5], Lemma 7.1). ‘ ,

Since X" is uniformly continuous on the finite interval, X7 is continuous as
a function of the variable s with the functional values and we may estimate
(analogously as in [5])

B[ sup Wsi(®)*] <cre—0  as n— oo,
0T 2

3

, "
E[ sup [Is,()*] Sceig5; =0 as n— oo,
0%1sT ’ 2

E[ sup s3]0 asn— oo,
QST

. 2
E[ sup |Iss(6}*] < ¢1g(c,,(§;:= n)—%) -0 as n—co,
LESE ) ‘

Ef sup {ss(t?] -0 as n— co.
Oz T
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Further, using (Ad4) and (7.68) of [5], for every t, &[0, T] we obtain

E{,ﬂiug Hsa(@®F] < Czo(j E[Y (s, w)—X"(s, , w)|*1ds
+§(_§ EIIY,, (-, w)— X7, (-, W] dK(s,)ds)

%cu(jE[Y(s w)— X(s, w|*]ds+ j[E | X*(s, w)—X*(s;, w)|¥]ds

1]

)

+§(§ BOY 61, - X8, WK (s )ds
f

(f E[X5,(, W} — X3z, (-, WIP1dK (s,))ds)

< ng( fEOY (s, w)—X"(s, w)|*]ds
L]

1 0 zn

+ (. BOT,C, W= X5, wilK )+ zw)

It is obvious that |H,| < sup |H,(f)l; hence
0SIST

B[H,*] -0 as

n-» oo,
For every t,e[0, T], using the Hdélder inequality and (A4) we obtain

E[ sup IH4(t}JZ}<Cz:«UEUY(s, w)—X"(s, w)|*1ds
RS £ 13

# §(J BO%Com= X8, wP1aK 6,)as).

Now we shall use the generalized Gronwall lemma ([8], Lemma 4.13)

LemMa. Let kg, ky, k, be nonnegative constants, let u(t) be a bounded
function for every te(— oo, T and v(t) be a nonnegative integrable function. We
assume that K(s) is a nondecreasing nonnegative right-continuous function such
that 0 < K(s) <1 and that

u(t) < ko +k, g v(s)u(s)ds+k, g v(s)( _j' u(s,)dK(s,))d
Then

u(t) < ko exp((k, + kz)} v(s)ds).
0
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