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ASYMPTOTICAL QUESTIONS
OF SIMPLE HYPOTHESES TESTING

BY
YU. N. LIN'KQOV (DONETSK)

Abstract. In this paper we consider the problem of the asymptotical behaviour of
a power of the Neyman-Pearson test §;* with level «, as t— oo under different
behaviour of &. This problem is investigated for different types of an asymptotical
distinguishability of families of hypotheses and, in particular, for completely asymp-
totically distinguishable families and contigual families. In the case of completely
asymptotically distinguishable families the rate of convergence to zero for the probabili-
ty of the 2nd type errors B(5; ) is investigated. In the case of contigual families the
behaviour of B(&,") is also studied when the distribution of the logarithm of the
likelihood ratio converges weakly to the distribution which is not normal in general. At
first these problems are considered in a general scheme of statistical experiments, and
then in the schemes generated by semimartingales.

1. Introduction. Let (X*, B, (P, P)), t >0, be a family of statistical
experiments generated by the observations & (see [S]) and let H* and A’ be
simple hypotheses according to which a distribution of the observation ¢ is
defined by the measures P* and P, respectively. Let §, be a measurable
mapping from (X*, B') into ([0, 1], #([0, 1])) (here #(A) is a Borel o-field of
subsets from A), which is called a test for testing the hypotheses H' and H'
under the observation & (we assume that §,(x) is a probability to reject H'
under the condition &' = x) and 4° is the collection of all tests 8,. Let a(5,) and
B(8,) denote the probabilities of the 1st and 2nd type errors, respectively, for the
test §,€ 4, namely

a(ét) = Eta‘n ﬂ(ét) = Et(l - t):

where E’ and E* are expectations with respect to P* and P, respectively. a(3,) is
often called a level of the test §,, and 1 — p(d,) is called a power of the test §,. Let
4, denote a family of all tests d,e4, with a(d,) < a.

Let f = 271(P*+ P") be a probability measure on %, and let 3, = dP'/dQ"
and §, = dP'/dQ' be finite versions of Radon-Nikodjm  derivatives. We
introduce the likelihood ratio z, = §/3, putting for definitions 0/0 = 0 (it is
unessential because Q'(3, =0, §,=0) =0). We put

izzP'(§¢>0), E:F(3:>0)-
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It is easy to note that
PgPef =1 P<Pog=1

Obviously, if & = 0 or [, = 0, then P' L P, Therefore, in this paper we shall
assume that @, > 0 and f, > 0 for all ¢, that is why the case of the orthogonal
measures P* and P* is out of the question.
For any «,&[0, 1] we introduce the Neyman-Pearson test d,"* with
level o,:
8% = I(z, > ¢)+el(z, = ¢,

where I(A) is the indicator of the set 4, and ¢,&[0, o] and &[0, 1] are
parameters of the test 3,"* defined by the condition a(5;"™) = «, (we set ¢, = 1
when «, = 0). Since, obviously, §(5,"*) =B, for ¢, =0 and B(5,*) =0 for
o, ef[d,, 1], everywhere in the sequel we shall assume that o,€(0, &).

We shall consider the problem of the asymptotical behaviour of a power of
the test &;7* as t— oo depending on the behaviour of the level «,. An
asymptotical behaviour of the test §,"* depends on the behaviour of the set

W = {(2(3). BG)): 5,e4'}

which is defined by a type of an asymptotical distinguishability of the families
of the hypotheses (H*) and (F*). A complete group of types of an asymptotical
distinguishability of families of hypotheses is introduced in [19] and charac-
terizations of introducing types are given in [19] and [21]. Here we consider
this problem for different types of an asymptotical distinguishability of families
of hypotheses at first in a general scheme of statistical experiments, and then we
adduce examples of a solution of this problem for semimartingales and for
more particular models.
For short, in the sequel we shall use the notation

Ay=Inz, d =Ing
setting In0 = — oo, Then the test ;" takes the form
5 = HA, > d)+e (A, = d,).

For the families (X);»0, (H)20,..- we use the notation (X)), (HY),...
Moreover, everywhere in the sequel the indication “f-»c0” is omitted.

2. Completely asymptotically distinguishable families of hypotheses.
DermaTioN 2.1 ([19]). The families of hypotheses (H') and (F*) are said to
be completely asymptotically distinguishable (which is written as (HY) A (HY) if
there exists a family (d,) of tests J,€ 4' and a sequence (¢, )ney Such that t, — co as
h— oo and
lim a3, ) =0, limB(5,)=0.

A0 Ll <]
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In the case of a complete asymptotical distinguishability of the families of
hypotheses (H') and ('), we say that the families of hypotheses are of type e of
asymptotical distinguishability. If the families of hypotheses (H*) and (H') are not
completely asymptotically distinguishable, then we write (H) A (Y.

A Hellinger integral of order e for the measures P* and P* is denoted by
H,(e) and defined as

H,(®) = H(s; P', P') = Epdiai ",

where Ej is an expectation with respect to Q'. Moreover, we introduce the
distance in variation V(P*, P') between P' and P' and the Hellinger distance
H(P', P*) between P' and P as

V(P', P)=2""Egl}—3l. H(P, P) = (BRI -3y

The following theorem gives us a characterization of complete asymp-
totical distinguishability of the families of hypotheses.

TueoreMm 2.1 ([21]). The following conditions are equivalent:

(1) H)AH);

') imP(A,> N)=1 for all N < c0;

(3) im P'(A, < N)=1 for all N > —o0;

@) liminf{a(d)+ B(d,): d,eA'} =0;

(5) limH,(e) =0 for all £€(0, 1);

6) imV(P', Py=1;

(7) im H(P', Py = 212,

Now we consider a behaviour of a power of the test §;"* in the case of
a complete asymptotical distinguishability of the families of hypotheses. At first
we introduce the following conditions:

Al Ptlimy; ' A, = —1, where y, — 00;

Al lim PY(A, > —ay,) =0 for all a < 1;

A1", im P4, < —ay) =0 for all a>1;

al. lime, > 0; o2 hmai <1

dai. lzmx; < —1; d2. limy 'd, > —1;

pl. limy 'In g ) < —1; P2 limy 'n B3 =) = —1.

Here P'-lim means a convergence in measure P, namely, the condition Al
means that lim P'(jy;7*A,+1| > &) =0 for all 6> 0.

Obviously, {(A1', 1“}@‘41 Moreover, from Theorem 2.1 it follows that
under the condition Al' the families of hypotheses are completely asymp-
totically distinguishable.

The following theorem gives us a relation between an asymptotical
behaviour of a,, d, and p(5;"*) under the conditions A1' and Al1".

Treorem 2.2 ([207, [22]). The following implications hold true:

Al al =>di=f1, A1, a2= p2=>d2.
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From Theorem 2.2 it is clear that under the conditions A1” and A1” for
obtaining the relations §1 and f2 it is required the conditions a1 and «2 to be
satisfied which forbid for the level «, to approach 0 or 1, respectively, as t — c0.
However, if the likelihood ratio z, satisfies stricter conditions, the relations f1
and 2 rest valid for the level , which can approach 0 or 1, but slow. For exact
formulations we introduce the following conditions:

al’. limy  'lne, =0; o2, limy, ‘In(l—a,) = 0;

A2 lim lime 'y *InH,(g) < —1;
210 t—=w>
A2". lim lime ™' 'InH,(g) 2 —1;
gt0 t—w
where y, is a function from the conditions A1’ and A1”.

Obviously, A2'= Al’ and A2" = A1”. Moreover, it is easy to note that
under the condition A2” there exists t, < oo such that P* < P for all t > t,;
hence & =1 for all ¢ > ¢,.

The following theorem gives lower and upper bounds for §(8;,"*) for all
«€(0, 1) and ¢t > 0. These bounds permit us to get the relations 1 and f2
under the conditions al’-and 22'. They are a generalization of well-known
Krafft-Plachky’s bounds [11].

Tarorem 2.3 ([20], [22]). For all 2€(0,1) and ¢t 20
@1) O > (1= V(A -0, 2> 1,

(2.2) B < (1—8)(/o) ' ~O(H,(1—g) ™9, 0<e<l.

If &, < 1, then it is easy to show that H,(¢) = oo for all ¢ < 0. Hence under
the condition & < 1 the bound (2.1) has the trivial form: p(5,"% = 0 for all
ae(0, 1). Also we note that §(6,"%) = 0 for all e e [&,, 1]. Notice that the bound
(2.2) is not tight. However, from (2.1) we have lim&, = 1 under the condi-

tion A1”. In addition, as was noted above, under the condition 42" there exists
a number t, < o such that & =1 for all ¢ > t,.

THEOREM 2.4 ([20], [22]). The following implications hold true:
A2, ol = dl = Bl1,
A2", a2 = B2 =>d2.
~ Theorems 2.2 and 2.4 generalize the following well-known Stein’s lemma
(11, 2D
Lemma 2.1, Let & = (84, &,, ..., £), t = 1, 2, ..., where &, are i.id. random

variables under the hypotheses H* and F* with distributions independent of t and
0< —E!'lnz, =a<oo. Then for all xe(0, 1)

lim:™'n B8 = —a,
ie., the conditions P1 and B2 hold with y, = at.
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Stein’s lemma was generalized to Neyman-Pearson tests with level «,
depending on ¢ and satisfying the condition lima, = ae(0, 1) (see [26]). Then
Stein’s lemma was generalized to Neyman-Pearson tests which satisfy the
conditions a1’ and a2’ (see [11]). In the works [11] and [26] the observations
are such as in Stein’s lemma. We note that Theorem 2.4 is a generalization of
Krafft-Plachky’s results [11] to general statistical experiments.

Theorems 2.2 and 2.4 establish the generalizations of Stein’s lemma and
Krafft-Plachky’s results in the case of completely asymptotically distinguish-
able hypotheses when the law of large numbers for 4, holds. Now we consider
the case of completely asymptotically distinguishable hypotheses when the law
of large numbers for A, is not valid. With this end in view we introduce the
following condition:

A3. 27 A, | P)S L, where f, — oo and L is a probability law with the
continuous distribution function L(x) which is strictly increasing on (I, I),
I=sup{x: L(x)=0}, I=inf{x: L(x)=1}<0 (here sup@ = —o0,
inf@ = oo, #(-|P") is a distribution law with respect to P' and the symbol =
means a weak convergence of laws).

From Theorem 2.1 it follows that the families of hypotheses are asymp-
totically distinguishable of type e under the condition A3.

THEOREM 2.5, Assume that the condition A3 holds true. Then for all 0 (0, 1)
Inp (§w+ %)

(2.3) lima, = g<>lim 4 =l _,«lim =1y,

g 2

wi;t?;e I, is a p-quantile for the law L. In addition, the following implications are
valid:

(5. e -
(2.4) lima, = Oﬁl_i_'m_@;iif’» = ‘Tw-}i@gﬁ(&i ) =1,
Ll | [
) JR— R +:“E‘
(2.5) lime, = 1@1imﬁgg¢ﬁml‘1ﬁ5‘ )g;,
¥, ¥,
(2.6) limy, 'd, = I=limy; * In (&, *) = I,
2.7 limy; 'd, = l<=limy;  In B(5,7*) = L
Proof. We can write
(2-8) o, = P'{K > y1)+5zjﬁ(}‘; = .:’F’t)a

where Y, = ;' 4, and y, = ¢ 'd,. From the proof of Theorem 4.1 in [20] it
follows that

(2.9) lim P{(Y, = y) =0,
(2.10) limeo, = a<slimL(y) = 1 —a
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for all [0, 1]. The implications €2.3) for all x&(0, 1) were proved in Theo-
rem 4.1 of [20] (see also the proof of Theorem 4 in [22]). From the implications
(2.10), obviously, we obtain

limg, =0=limy, >, lima =1=limy <[

The inverse implications can be deduced easily from the equalities (2.8)
and (2.9) and the condition A3. To prove the right implication in (2.4) it is
sufficient to use the estimate

ﬁ(5t+ ) = Elzrﬂ ""5:'“') =z E!I(I—E < Y; =< y:)z,(l -—5;+“’i)
> P(l—e < Y, < y)exp((T—e)y,),

where ¢ > 0. The right implication in (2.5) follows from the inequality
B(6; ) < exp(d,). The proof of the implications (2.6) and (2.7) is similar to that
of the corresponding implications given in (2.3) for a€(0, 1). Thus the proof is
complete.

Remark 2.1. Theorem 2.5 makes formulations as well as the proofs of
Theorem 4 in [22] and Theorem 4.1 in [20] more precise. If ] = —co, then
(2.4y+2.7) imply that the implications (2.3) are valid for all ze(0, 1]. Hence, in
this case Theorem 4 of [22] and Theorem 4.1 of [20] are correct in their
formulations.

3. Contigual families of hypotheses.

DerFINITION 3.1 ([19]). The family of hypotheses (H") is said to be contigual
with respect to the family of hypotheses (H') (which is written as (H*)<a (H) if
for each family (5,) of tests d,ed'

lim a(8,) = 0= lim f(5) = 1.
Otherwise, ie., when there exists a family (3, of tests §,€ 4" such that
lime(d)=0, Ilimpi)<1,

the family of hypotheses (FI*) is said to be narwomlgual with respect to the
family of hypotheses (H') (which is written as (Hl)'ﬁﬁ (HY). If (HY)<a (H") and
(H") < (HY, then the families of hypotheses (H') and (F') are said to be mutually
contigual (written as (H')<e=(HY).

If (H")<z=(H"), then we say that the families of hypotheses (H*) and (HY)
are of type a of asymptotical distinguishability.

The following theorem gives characterizations of the contiguity (H)
<1 (HY.

Treorem 3.1 ([19], [21]). The following conditions are equivalent:
(1) (A=< (H;
(2) lim P!(z, = ) =0 and liMy SUP;»o I(z, > N)z,dP' = 0;
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(3) limy-. o lim,, , P'(z, > N) = 0;

(4) lim,y; lim,. o Hig; P!, P) = 1.

The equivalence (1)<>(4) can be proved by using at first the equivalence
(4)=(PY<a (P") (see [6] and [13]), and then the equivalence (F)< (PY)
<> (H)<a (H') (see [19] and [21]). Here (P")<t (P*) means a contiguity of the
family of measures (P*) with respect to the next one (P?) (see [3] and [19]).

Mutual contiguity of families of measures was introduced by LeCam in
[12], and then it was studied in detail when the logarithm of the likelihood
ratio A4, is asymptotically normal (see [20] for references). Here we consider the
case where the distribution of the logarithm of the likelihood ratio 4, converges
weakly to a distribution which is not normal one in general. Let us introduce
the following condition:

A4, P(A,|P)S L, where L is some probability law on R! = (—o0, o)
with the distribution function L(x), xeR™.

We say that the condition A4’ is satisfied if the condition A4 holds true
with the continuous function L(x), strictly monotone increasing on (I, I), where
I=sup{x: L(x)=0} and ! =inf{x: L(x) = 1}.

THEOREM 3.2. If the condition A4 is satisfied, then
(3.1 LAIPYSE,

where L is the probability law on R = [— o0, oo] with the distribution function
(3.2) Lx)y= | e*dL(y).

In addition, without loss of generality, L(c0) < 1 and

lim lim (4, > N) = 1~ L(c0).

N—w t=ron

The proof of Theorem 3.2 is similar to the proof of Theorem 6.1 in [20], so
we omit it.

Remark 3.1. Let the condition A4 be satisfied with the law L which is the
mixture of normal laws 4 (—0¢?%/2, o2) with respect to the parameter ¢ with
some probability law K on (0, o). Then it is easy to show that [ = — o0, T= o
and the distribution function L{x} is continuous and strictly monotone
increasing on R*. Hence the condition A4’ is satisfied and in this case the law
L is the mixture of normal laws .#(6%/2, %) with respect to the parameter
o with the probability law K, and hence L(c0)=1.

Using Theorem 3.2 we obtain easily the following theorem:
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Tueorem 3.3. The implication
A4 = (HY= (A
holds true. In particular, if the condition A4 is satisfied, then
(Ay< (H)<L(w)=1, )<4HY=L(w)<1.

Remark 3.2. Theorem 3.3 implies that if the condition A4 is satisfied, then
the following dichotomy is true: either an asymptotical distinguishability is of
type a or it is of type b. Namely,

a<>L(w0) =1, be>L(w) < 1.

Notice that the asymptotical distinguishability of type b means that (H')< (HY)
but ()<t (H) (see [19]).

The following lemma, interesting in itself, will be used in the sequel.

LemMa 3.1. Let (2%, W, 8%, t 2 0, be a family of probability spaces and ¥,
be a measurable mapping from the measurable space (Z', ) into the measurable
space (R, #') such that

L1855,
where S is a probability law on R* with the continuous distribution function S(x),
and S(—o) =0, S(c0) < 1. Then for any family (y) of the numbers y.€R!
satisfying in the case S(c0) < 1 the additional condition limy, < o we have
lim §°(Y, = y) = 0.
In addition, let the function S(x) be strictly monotone increasing on (x, X), where
x =sup {x: S(x) =0} and % = inf{x: S(x) = S(c0)}. Then for any families (y,)
and (g,) of the numbers y,€ R* and e,€[0, 1] for which the following limit exists:
Im[S'(Y, > y)+& 8 (Y, = )] = 8,
Jor all f}s_(}_ ~S(c0), 1) the limit of y, exists and limy, = 5,_, for =1 the
inequality lim y, < x holds, and for f = 1—S8(c0) the inequality lim y, > X holds,
where s, is a p-quantile of the law S.

Lemma 3.1 can be concluded by reasons of Lemma 4.2.1 in [27] and of
Lemma 6.2 in [20], so we omit it.

Remark 33. If § = 4 (a, *), where aeR?, g&(0, o), then Lemma 3.1
implies a well-known result (see Lemma 4.2.1 in [27] and Lemma 6.1 in [20]).
If § = h.¥ (a, 0%), where he(0, 1), then Lemma 3.1 implies also a well-known
result (see Lemma 6.2 in [20]).

THEOREM 34. If the condition A4' is satisfied, then for all ae[0, 1]
(3.3) lim o, = <= lim B(5;"*) = L(l; ),

where 1, is a p-quantile of the law L, and L(x) is a distribution function of the
law L defined by (3.2).



Simple hypotheses testing 225

Proof. The condition A4 and Theorem 3.2 imply the weak convergence
(3.1), where L is a probability law on R* with the distribution function (3.2) and
L{wc) < 1. From (3.2) it is clear that

sup{x: Lx) =0} =1, inf{x: L(x)=L(e0)} =T
and the function L(x) is continuous and strictly monotone increasing on (I, 1).

Suppose that «, —o. If 0 <a <1, then by Lemma 3.1 we obtain limd,

= I, _,; hence limd, < co. Then again by Lemma 3.1 we obtain F/(4, = d,) - 0.

Further, taking into consideration (3.1), (3.2), the inequality Iffﬁd, < oo and the
uniform convergence P'(4, < y) to L(y) on (— 0, N) for all N < o0, we obtain

(3.4) B — L, ).

If o = 0, then by Lemma 3.1 we have the inequality limd, > 1. Hence, for
all Ne(—co, I) there is ¢’ = ¢'(N) such that d, > N for all ¢ > ¢ Therefore, for
all t >7¢

ﬂ{‘ét_"'a‘} = ﬁf‘(*’dc < d:) = ﬁI(A: < N)

Since N is arbitrary, from this inequality we | have (3.4) for o= 0.
If @ = 1, then by Lemma 3.1 we obtain limd, < [. Then for all Ne(l, «)
there is ¢ = t"(N) such that d, < N for all ¢ > ¢". Hence, for all t >’

(3.5) BGH) < P4, < N)+ P4, = d).

Obviously, limd, < oo; hence by Lemma 3.1 we have P'(A, = d,) — 0. There-
fore from (3.5) and (3.1) we obtain (3.4) for « = 1 because N is arbitrary.
Now we assume that (87 *)— L(l,-,). Then 1—p(5; %)~ B, where
B=1-L(-)e[1—L(w), 1]. For 2e(0, 1) we have fe(l—L(cw), 1), and
hence by Lemma 3.1 _ B
d,— 1 -p= Iﬂih —a) = I —as

where Y; is a p-quantile of the law L. Taking into consideration the condition
A4 and using Lemma 3.1, from this relation we obtain

o, — 1—L{l.) =a.

Ifoa=0,then ff = 1- —L(o0), and hence by Lemma 3.1 we have limd, > I.
Then for all Ne(—co, I) there is ¢, = t,(N) such that d, > N for all ¢ > 1,.
Hence for all 1 >t,

o, < PH(A, > N)+ P (A, = d,).

Using the condition 44 and Lemma 3.1, from this inequality we obtain &, — o
for « = 0 because'N is arbitrary. In an analogous way we prove that o, — « for
o = 1. Thus the implication <= in (3.3) is proved. Now the proof of Theorem 3.4
is complete.

Remark 3.4. If in the condition A4 we have L = 4 (a, %), where ac R* and
oe(0, o), then Theorem 3.4 implies a well-known result (see [207], Theorem 6.3).
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Moreover, Theorem 3.4 yields that in the case a < —o?/2 the assertion of
Theorem 6.3 in [20] is true for all xe[0, 1] (note that in [20] this statement
was proved only for ae(0, 17).

Now we consider the complete asymptotical indistinguishability of fami-
lies of hypotheses (i.c., the asymptotical distinguishability of type a,) which is
a subtype of type a.

DeFINITION 3.2 ([19]). The families of hypotheses (H*)and (H') are said to
be completely asymptotically indistinguishable (written as (H') = (H") if for all
ae[0, 1] and for all families {,) of tests J,e 4’

tima(d) = a=lim f(6) = 1—a.

The following theorem gives a characterization of the complete asymp-
totical indistinguishability.

TueoreM 3.5 ([19], [21]). The following conditions are equivalent:
(1) (HY) = (FY;

(2) im P'(jz,— 1| > &) =0 for all £>0;

(3) lim Pi(jz,—1]| > &) =0 for all ¢ >0

(@) lim H(e; £, P) =1 for all ec(0, 1);

(5) im H(P*, P") = 0;

(6) lim V(P', Pt) = 0;

(7) liminf {a(d)+ B(J,): d,ed'} =1.

We introduce the following condition:

A5, PlimA, =0.

The following theorem is a comsequence of Theorem 3.5.
THEOREM 3.6. If the condition AS is true, then for all we[0, 1]

(3.6) lime, = a<lim (6, *) = 1—a.

Remark 3.5. If the condition A3 is true, then the condition A4 is also
satisfied, but only if the distribution law L has the point {0} as a support. From
Theorem 3.2 it follows that the distribution law L has also the same point as
a support. Consequently, the relation (3.6) is an extension of the relation (3.3) to
laws with distribution functions having jumps in their supports.

Let us consider one more case where again we have the asymptotical
distinguishability of type a. Namely, we consider the case where A, admits the
asymptotical expansion as £ -» co given by the following condition:

A6. A, = ujy,—2" *ujx}u,, where u, is a nonrandom vector from R*, #, is
a random k-dimension vector, and x, is a (k x k)-matrix, respectively, such that

lim lim Pl > N) =0, Z(x|P)™ L(x|P).

N-=vo g=ro
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Here x is a symmetric positive definite (k x k)-matrix on some probability space
(2, #, P)such that P{A'»] > 0} = 1 for all Ae R, 1 # 0, and the prime means
a transposition of a matrix.

Using the characterizations from Theorems 2.1 and 3.1, we obtain easily
the following theorem:

THeOREM 3.7. If the condition A6 is satisfied, then

3.7) (H) A (F) e lim Ju| = oo,
(3.8) (HY)<a ([ <> limfu < oo,
(3.9) HY = (A <limu| = 0.

Consequently, if the condition A6 is satisfied, then in the case lim|u] = o
a behaviour of the test §;"* can be investigated on the basis of Theorems 2.2
and 2.4 on the strength of (3.7), and in the case lim |u,| = 0 we have the relation
(3.6) because of (3.9). In the case lim |4 < oo we consider the following more
restricted condition:

A&, The condition A6 is satisfied and
L (1, #)| P) > L((xn, 2)| P),

where # is a random k-dimensional vector independent of » which has the
normal distribution 470, J). Here J is a unit matrix of order k, and 0 is a null
k-dimensional vector.

In the case where the condition A6’ is satisfied, to investigate a behaviour
of the test §,"* we can use Theorems 3.2 and 3.4 and the following theorem:

TuroreM 3.8. If the condition A6’ is satisfied and limu, = ue R, then the
condition A4 in which the law L is a mixture of the normal distributions
N (=272 %?u, u' %> u) with respect to a distribution of the matrix x is valid.

4. Reduction of testing hypotheses problems. The conditions A1-A46 put
restrictions on a behaviour of & and f, as t — 0. To omit these restrictions we
shall consider two reductions of the problem of testing the hypotheses H' and
H* by a contraction of the sample space X'

1. Let X4 ={3 >0}, B,=B"nX}, and P, and P, be probability
measures on B}, defined by the equalities P, = P/, and P} = P'. We consider
the family of statistical experiments (X%, 8%, (Ph, P4)), t = 0, and let & be
observations generating this family. Let H) and H% be simple hypotheses
according to which a distribution of the observation £, is defined by the
measures P4 and P, respectively. Suppose that the measurable mapping from
(X5, By) into ([0, 1], #([0, 1])) is a test for testing the hypotheses Hf, and

5 under the observation &, and 4"° is a family of all such tests. Let ay(5,) and
Bo(9,) denote the probabilities of the Ist and 2nd type errors, respectively, for
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the test 8, 4%, namely
ixﬂ(&-’!) = E"D&Z’ ﬂﬂww) = ET‘J(]- ”35):

where B4, and B} are expectations with respect to Ph and P, respectively.

Let 3* = dP}/dQ} and 3° = dP%/dQ", be finite versions of Radon-Nikodym
derivatives, where Qf is a contraction of the measure Q' on the o-field Bj,.
Obviously, on the set {j, > 0} we have

W=u/E, ¥=5 (Q-as)

We introduce the likelihood ratio z° = 37/3” by setting 0/0 = 0. Obviously, we
have z{ = d,z, (Q%-as) on the set {3, >0}. As above we introduce the
Neyman-—Pearson test §,3* with the level 2 e[0, 1] for testing the hypotheses
HY and H. It is easy to show that

Bolis™) = B(E ).

There exists an analogous relation between the parameters of the tests §,¢* and
8;7*. Applying now stated-above results to the test §,¢* and then using this
relation, we obtain the corresponding assertions about an asymptotical
behaviour of B(5;"*) depending on a behaviour of the level @, under some
behaviour of & and f,. We shall illuminate this by some examples.

We introduce the following conditions:

Alg. lim & 'PHA,+Ind > —ay)=0 for all a< 1;

Alg. lima ' P~ < A,+Ind, < —ay) =0 for all a> 1;

aly. lima/d > 0;

a2y imefa, < 1;

dl,. limy, Y(d,+Ing) < —1;

d2,. limy, '(d,+Ing) = —1.

It is easy to note that these conditions are the conditions Al’, A1”, al, «2,
dl and d2, respectively, applied to the problem of testing the hypotheses
HY and A} in a scheme of the statistical experiments (X%, B, (Ph, Ph), t > 0.

The following theorem is an analogy of Theorem 2.2,

Tueorem 4.1 ([207). The following implications hold true:
Alp, alg=dly=f1, AL}, 02, = f2=>d2,.

To formulate the next theorem we introduce the following conditions:
A2p. lim lime Yy M Ing TEZIE, > 0) < —1;
el 1o
A25. lim lim e~y 'Inag T EZIG > 002 —1;
10 1=
alp. limy 'Ine/d = 0;
02, limy, 'In(l —e,/d) = 0.
Tueorem 4.2 ([207). The following implications hold true:

A2y, aly=>dly= 1, A2, a2 = p2=>d2,.
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This theorem is an analogy of Theorem 2.4 and its proof is founded on the
following generalization of Krafft-Plachky inequalities.

Tueorem 4.3 ([20]). For all 2e(0, &) and t > 0,
B = (@, — o) V(B2 TG, > )V, e 1,
BB < (L—e)(gfo) "B ~* I, > )72, O<e<.

Remark 4.1. If lim&, > 0 and E’Eéﬁ, < 1, then it is easy to note that the
conditions Alp, Alp, «ly, a2,, dl,, d2, and «l; are equivalent to the
conditions A1, A1”, al, «2, d1, d2 and «l’, respectively, and the conditions
A2, A25 and a2y take the form:

A2, im lime 'y InE2IE > 0) < —1;

el0 t~wxm

A25. lim lim e~y ' InE'ZI(5, > 0) = —1;

et t—=w

a2y. limy, 'ln(g—o,) = 0.

Remark 4.2. If limx, ' Ing, = 0, then the conditions d1,, d2, and a1}, are
equivalent to the conditions d1, d2 and al’, respectively, and the conditions
A2y, A25 and a2 take the form indicated in Remark 4.1.

Now we consider a modification of the condition A3, namely we introduce
the condition:

A3,. lima@ "PY(—0 < y; 'Ind,z, < x) = Ly(x) for all xeR', where
,— o0 and Ly(x) is a continuous distribution function which is strictly
monotone increasing on (ly, ly), Iy =sup{x: Ly(x) =0}, I, = inf{x: Ly(x)
=1} <0.

Remark 4.3. If lim& = 1, then the condition A3, is equivalent to the
condition A3 with L(x) = Ly(x), =1, I =l,.

Remark 4.4. If limd, = @€(0, 1), then under the condition A3, we have
4.1) lim Py, ' A, < x) = L(x) = | =@ +dLy(x) for all xeR!.
Thus the condition A3 is satisfied in which the distribution L is degeneiate, and

therefore L(x) = 1—& for x < ly, L(I)= L(I;) = 1, and the function L(x) is
continuous and strictly monotone increasing on (l,, l,).

Remark 4.5. If the condition A3, is satisfied and limg, =0, then
lim Py, ' 4, < x}=1 for all xeR*, ie, we have (4.1) with & =0.

The following analogue of Theorem 2.5 is true.
THEOREM 4.4. Let the condition A3, be satisfied. Then for all ae(0, 1)

lim o, /@, = a<>limy,” Y{d,+Ing) =15,
<limy; Hn ") = 1§,

where I} is a p-quantile for the distribution function Ly(x). In addition, the

3 — PAMS 122
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following implications hold:
limo,/3, = 0<>lim ¢y ' (d, +In &) 2 I, = limy, * In B(5;"%) = I,
lima/d, = 1< limy; '(d,+Ind) < I, < limy;  in f6;) < I,
limy; *(d,+In @) = Iy = limy; L in B(6;*) = I,
limy, '(d,+1nd) = [, <limy,  Inp6;"") = I,.

To prove Theorem 4.4 it is sufficient to apply Theorem 2.5 to the test 8’5",
and then to use a relation between the tests §,'s* and 8,

We consider one more example of the application of the above-mentioned
reduction of the testing hypotheses problem. Namely, we introduce the
following condition:

Ady. lim & ' P{—o0 < A,+Ind < x) = Ly(x) for all xeR' which are
continuity points for the distribution function Ly(x).

We say that the condition A4y is satisfied if the condition A4, with the
continuous distribution function Ly (x) which is strictly monotone increasing on
(Ly, I,) is satisfied, where [, = sup {x: Ly(x) =0} and I, = inf{x: Ly(x)= 1}.

Remark 4.6. If limd, = 1, then, obviously, the conditions 44, and A4
are equivalent to the conditions A4 and A4/, respectively; hence in this case all
the assertions obtained above under given conditions are valid.

We shall consider in detail the case lim#, = de(0, 1) under which the
condition A4, takes the form

Ady. lim P'(— o0 < A, < x) = dLy(x+1In &) for all xe R* such that x+In&
is 1 continuity point for the function Lg(x).

By analogy to the condition A4,, in this case the condition A4; is
changing.

The following analogue of Theorem 3.2 is valid.

THeoreM 4.5. If the condition A4, is satisfied and lim &, = @e(0, 1), then

lim P(A, < y) = Loy(y+1na)
for all ye R* such that y+1In & is a continuity point of the function Lo(x), where
L) = [ e*dLy(x). In addition, generally speaking, Lo(c0) <1 and

lim ILim P(A4, = N) = 1—L(o0).
Netoo g+
A proof of Theorem 4.5 is similar to that of Theorem 3.2, so we omit it.
Remark 4.7. If the condition A4, is satisfied and lim &, = @e(0, 1], then
it is easy to show that

(H)<s (AYd=1, (HY)<s(H)<=Ly(w)=1.
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Hence we have the equivalence
(HY<>({AYed =1, L (0) = 1.

THEOREM 4.6. If the condition A4y is satisfied and lim &, = &€ (0, 1), then
Jor all aef0, &]

lime, = a<>lim B8, %) = Ly(19 - 0p)s

where L(x) is a distribution function from Theorem 4.5 and IS is a p-quantile for
the distribution function L,(x).
The proof of Theorem 4.6 is similar to that of Theorem 3.4, so we omit it.
In a general case, without additional conditions on a behaviour of & we
have the following

TueoreM 4.7. If the condition A4} is satisfied, then for all ae[0, 1]
lim o/, = o< lim B(8;"*) = Ly (13-,
where Ly(x) and IS are defined as in Theorem 4.6.

2. Let now (X%, B, (P}, PY)), ¢ > 0, be a family of statistical experiments
generated by the observations & and let H and H% be simple hypotheses
according to which a distribution of the observation &) is given by the
measures P} and P, respectively. At the same time we assume that X3
={3,>0,3 >0}, B, =B nX,, P, = P/3, P\ = P'/B,. Let the measurable
mapping from (X%, BY) into ([0, 1], #([0, 1])) be a test for testing the
hypotheses HY and HY under the observation &, and let 4*! be the collection
of all these tests. Let «,(d,) and §,(5,) denote the probabilities of the 1st and
2nd type errors, respectively, for the test §,e4%', namely

0!1(5, = E%. ‘5w ﬁ](at) = Et‘.l (1“5:)1

where B} and E} are expectations with respect to P4 and P, respectively.

Let 3! = dP%/dQ', and 5! = dP/dQ}, be finite versions of Radon-Nikodym
derivatives, where QY is a contraction of the measure Q' on the o-field BY.
Obviously, on the set {3, >0, §, > 0} we have

3 =30 & =3/B (Q-as).
We introduce the likelihood ratio z} = §}/3! by setting 0/0 = 0. It is clear that
z; = 4,z,/P, (Q-as) on the set {3, >0, § >0}. As above for testing the

hypotheses HY{ and HY under the observation & we introduce the Ney-
man-Pearson test J;;* at the level #€[0, 1]. It is easy to show that

B1(6:11%) = B B(O ).

We shall illustrate the application of this reduction by some examples. Let
us introduce at first the following conditions:
Ay lim @ PY(A,+InG,/B, > —ay) =0 for all a< 1;




232 Yu. N. Lin’kov

ALY, lima ' P~ < A +Ind/f, < —ay)=0 for all a>1;

diy. limy Y(d,+Ing/B) < —1;

d2,. limy '(d,+n&/B) > —1.

As above in the case of the first reduction, it is easy to note that these
conditions are the same conditions as Al’, A1", d1 and 42 applied to the
problem of testing the hypotheses Hj and Y in the scheme of the statistical
experiments (X%, B, (P}, P1)), 1= 0.

The following theorem is an analogue of Theorem 2.2.

THEOREM 4.8 ([20]). The following implications hold true:

Aly, al,=dl, = f1,
Alf, a2, = 2 =d2,.

To formulate the next theorem we introduce the following conditions:
A2y, lim lim ey YIn(a BB LI, > 0) € —1;

elD e
A2{. lim lim e~y In(& BTE'ZIG > 0) = — 1.
g1l t—=w

TueoreM 4.9 ([20]). The following implications hold true:
A2y, alg=>dl, = 1,
A2, w2y = P2 =d2,.

Remark 4.8. If lim& > 0, lim&, < 1, limf, > 0 and lim §, < 1, then it is
easy to note that the conditions /1, A17, d1, and d2, are equivalent to the
conditions A1’, A1”, d1 and d2, respectively, and the conditions 42] and A2}
take the form of the conditions A2y and A2; indicated in Remark 4.1. If
limy 'Ind, = limy 'Inf, = 0, then the conditions A2} and A27 take also the
form of the conditions A2y and A2y, respectively, indicated in Remark 4.1.

‘Finally, we consider a modification of the condition A3, namely, we
introduce the condition:

A3, lim & P (—oo < ;' In(@ B; *z,) < x) = Ly(x) for all xe R', where
Y,—~ oo and L,(x) is a continuous function which is strictly monotone
increasing on the interval (l,, /;), and

I, =sup{xeR': L,(x)=0}, I, =inf{xeR": L,(x)=1}<0.
Remark 4.9. If limd, = 1 and limy;" ! In f§, = 0, then the condition A3 is
equivalent to the condition A3 with L(x)=L,(x), I=1,, and I'=1,.
Remark 4.10. If lim &, = 2¢(0, 1) and lim §, = fe(0, 1), then under the
condition A3, we have
lim Py, * A, < x) = 1 —&+ &L, (x)

for all xeR!. If lim &, = &e(0, 1) and limy; ' In §, = x,€(— o0, 0], then under
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the condition A3, we have
Im Py, A, < x) = L(x) = 1 —d+aL,(x—x,) for all xeR'.
The following analogue of Theorem 2.5 is true:
THEOREM 4.10. If the condition A3, is satisfied, then for all ae(0, 1)
lim o/&, = o <= lim ¥, (d, +1n(@/F) = I} .
s limy; (B YB) = -
where I} is a p-quantile of the distribution function L,(x). In addition, the
Jfollowing implications are true:
limoa,/d, = 0<=limy,; '(d,+In(@/B)) = I,
=limy;  In(B@"*)/B) = 1,,
lim /g, = 1< limy, ! In(d, +In(&/B)) < I,

)
<=lim g7 In(B(S,*YB) < Ly,
iy (4,105 ) =T, = iy 1867 ) = T

%

limy, ! (dﬁ* In E;) = |, < limy,; ' In(B(,"*)B) = I,.

To prove Theorem 4.10 it is sufficient to apply Theorem 2.5 to the test
1%, and then to use the relation between the tests 8,7y and &; .

5. The likelihood ratio for semimartingales. Let (Q, #) be a measurable
space, where £ is a set of functions x = (x,) which are right-continuous and
admit left-hand limits, and & is the o-field generated by cylindrical subsets
from 0, ‘

F=\/F, F,=[)olx: 0<s<t+e}
120 e>0
Let (P,, 0 ©) be a family of probability measures on (2, &), where ® = R¥ is
a parametric set and k > 1. We assume that the family (P,, f € ©) is dominated
by some probability measure @ defined on (Q, ). In addition, we assume that
the o-fields &% and #,, 1 > 0, are Q-complete. Then we have the stochastic
basis (2, #, F = (%), Q) which satisfies the usual conditions [6].

We assume that the coordinate random process & = (£),>¢ on the
stochastic basis (Q, #, F, Q) is a semimartingale with respect to the measure
P, for all 6e© and it has the canonical representation (P -a.s.)

& = &o+at(0) +m,(0)+xI (x| < 1) (u—v (@) +xI(x] > 1)+ 4,
where a(0) = («,(8)) is a predictable process with a locally bounded variation,
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m(0) = (m,(0)) is a local continuous martingale with the quadratic characteristic
{m(0)y = ({m(0)),), and p is a jump measure of the process { with the
compensator v(f). Here

4
Sfen = [ | fi.nlds, dx)

0 Ra
is the stochastic integral of the function f = (/. ) with respect to the random
measure n. The triplet («(0), (m(6)), v(0)) is called a triplet of predictable
characteristics of the semimartingale ¢ with respect to F and P,. We assume
that v({t}, R,; 6) = 0 (P,-a.s.) for all ¢ = 0. Here and in the sequel we use the
notation from [6], [8], [16], [17], and [24].

We denote by Py and (' the restrictions of the measures P, and Q,
respectively, to the o-field %, It is obvious that Pj < Q' for all 6 ©®. We denote
by 3,(0) a finite version of the Radon-Nikodym derivative of the measure

¢ with respect to the measure Q' The process 3(0) = (3,(6)) is called a local
density process of the measure P, with respect to the measure (. In addition,
we introduce the likelihood ratio process z(y, ) = (z,(y, 8)) for the measures P,
and P,, where z,(y, 8) = 3,(y)/3,() (here, for definiteness, we set 0/0 = 0). If
P, < Pj for all >0, then the measure P, is said to be locally absaiuteiy
continuous with respact to the measure P, (m this case we write P, % P,) and
the process z(y, ) is called a lm:al density process of the measure P"u with
respect to the measure P,. If P, %P, and P, & P,, then we write P, ~ P,.

For the points y and 6 fmm © we introduce the following mmdmﬁns
under which the measure P, is locally absolutely continuous with respect to the
measure Py

L P?= P§;
iL v {t} Ry; 0) =0 (Py-as.) for all > 0;
IIL there is a nonnegative (P x % )-measurable function Ay, 8)
= (4,,x(y, 0)) such that dv(y)/dv(6) = A(y, 0) (P,as.);
IV. {m(y)) = (m(0)) = <m) (Py-as); ;
V. there is a predictable process y(y, 0) = (y,(y, 6)) such that for all
t 20 (Pyas)

2,(y) —2,(0)—xI (x| < D(A(y, O)—1)%v(8), = y(y, 0)o (m);;

VL C(y, 0) = *(v, 0)o {m) +(412(y, 6)— 1) v(6) € ¥ioc(F, P);
VII. the measure P, is ('zr,,}-umque where 7, = inf{t: C/(y, ) = n} (the
definition of (z }aumqueness is given in [197);
VIIL (A(y, O)—1—InA(y, 6))* v(6) € ¥1oc(F, Pg);
VIIT. In? Ay, 0)#v(8)e ¥ 1oc(F, Py).
Here fo{(m), = j':) f.d{m), is a Lebesgue-Sticltjes integral of the function
f = (f) with respect to the quadratic characteristic {m) and f o {m»= (f o {m},).

THEOREM 5.1. Assume that the conditions T-VII are fulfilled and the
conditions I-VII are also fulfilled after changing both y and G one-by-one. Then
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Pylfng. In addition, if the condition VIIL is satisfied, then the local density
z(y, 0) takes the form

(5.1) z(y, 0) = exp {A(y, 0)—B(y, )} (Pg-as.),
where

(52) Ay, 6) = y(y, 6): mO)+1In Ay, 0) (g —v(O)) € M1oc(F, Py),

(5.3) B(y, 0) =37*(y, o lm>+{Aly, O)—1—Ini(y, B)) = v(6) € ¥1oc(F, Py).

In particular, if the condition VIIT is satisfied instead of the condition VIII,
then the representation (5.1}5.3) with A(y, 0)e ML (F, Py) holds true.

Here f-m(6) = (f-m(6),), where f-m(8), = [}, f,dm,(0) is a stochastic integ-
ral of the function f with respect to the local martingale m(8).

Theorem 5.1 is proved in [17] and in the special case A(y, 8)e H5(F, P)
it is proved in [16].

The implication I—~VII=»P;%PQ has been proved in [8]. In particular
cases, the local density z(y, §) was obtained earlier for Markovian processes
[28], for diffusion type processes [23], for Markovian type processes [4], and
for counting processes [7].

In the next section we assume that the conditions of Theorem 5.1 are
satisfied for all y, e @ and for all ¢t > 0.

6. Asymptotical properties of a likelihood ratio for semimartingales. In this
section we establish asymptotical properties of the local density z,(y,, ) on the
basis of the representation (5.1)(5.3), where, in general, y, depends upon t and
0 does not depend upon t. These properties permit us to apply the results of
Sections 1-4. In this case we have the family of the statistical experiments
(@, #, (P4, P)), t =0, generated by the observations & = (£)g<s<; Of the
semimartingale £ on the interval [0, £], and the hypotheses H' and F* have
such an effect that the distribution of the observation & is given by the
measures Py and P}, respectively. According to the notation of Section 1 we
have P'=P), P'=P,, P'~P and A, = A(y, 0 =Inz(y, ). Now we
formulate theorems giving the restrictions on the triplet of predictable
characteristics of the semimartingale £ under which the conditions A1-A46 are
satisfied.

Write A' = A(y,, 6) and ¥ = y(y,, 6).

THEOREM 6.1 ([177). Assume that the following conditions hold true:
1. Pglim y, ! B,(y,, 0) = 1, where y,— o as t — owo;
2. Pylim {3 2 [ o {m,+I(lln 2] < 27 1) In? A" % v(0),]
+x H(In A > 27N ) # v(6),} = 0.
Then Pglimy; ' A,(y,, ) = —1.
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THEOREM 6.2 {[18]). Assume that there exist sets D, €%, for all e€(0, 1)
and for all t = 0 such that

lim ime™! 3 'In P,(D{) < —1,
el0 1~

lim lim ™1y, 'inf{hi(e): weD, .} > 1,
2l0 -

where y,— o0 as t— o, Df, = ND,, and

1) = XDy Gmy + [atk~ ) (@7~ 1)] +vO).
Then -
lim lime 'y 'InH,(e) < —1.
el0 t—+w

Note that the processes h'(e) are called the Hellinger processes of order
¢ and the processes h'(1/2) are simply called the Hellinger processes [6].

THEOREM 6.3 ([18]). Assume that the following conditions hold true:
1. for some e, <0

(Yo —1—-In(A)°] = v(B) € ¥1oc(F, Py);

2. —Hi(e) < by, for all ee((—1) v &, 0), where h, , is a nonrandom constant
depending only on t and & and such that

lim lime™" y 'h, > —1 (1= o).
210 t—w

Then
lim lime 'y 'InH,(g) = —1.
ef0 e

In [10] the statements of Theorems 6.2 and 6.3 are also proved, but
restrictions are put on the expectation E exp(—h'(¢)). In addition, in [10]
instead of the equivalence Pj ~ P} only the absolute continuity of Pj < P, is
necessary and the quasicontinuity on the left for the semimartingale £ is not
assumed.

To formulate the next theorem we inroduce a semimartingale Y = (¥),
¥, = 0, on the stochastic basis (2, #, F, P;). We assume that Y is a stochas-
tically continuous process with independent increments and with the deter-
ministic triplet (B, (M), v), which means that ¥ has the canonical represen-
tation

Y, = B+ M, +xI(Ix| < 1)« (p—v),+xI(jx| > 1) = p,

where M = (M) is a Gaussian continuous martingale with the quadratic
characteristic (M) = ({M),), and B = (B,) is a continuous function, v({t}, Ro)
=0 for all t=>0 and v(R,, {~1}u{1})=0.
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THEOREM 6.4. Suppose that the following conditions hold true for all s =2 0:
L. Pylimyy 027 P o {mp+ (X' — L —In &) 5 v(0),; ‘
+I{ln A" > ) In A = v(0),, ] = — B,, where ,— o0 as t— o0;
2. forall >0
lim Tim Py {[(M“>q— (M > 8} =0,

g0 r=w

My =y [P o<my + I(IIn 1 < &) In? 2% v(6)];

3. for any continuous bounded functions f = (f)ser, equal to zero in some
neighbourhood of x =0,
Pglimy, ! f(In A)#v(0)y = [ * v,

Then the finite-dimensional distributions of the processes (Y * Ag(y,, O)szo
converge weakly to the finite-dimensional distributions of the process Y as
t— 0.

Theorem 64 follows from Theorem 54.1 in [24].

Obviously, the condition 43 to be satisfied it is sufficient to demand that
the conditions of Theorem 6.4 are valid and that the distribution function
P,{Y, < x} has the same properties as the distribution function L(x) in the
condition A3.

Suppose now that y, — 0 as t — oo. To formulate the next theorem we
introduce the following notation (here 4,= y,—8, se[0, 1]):

gy, )=V (3,0, 1.0 =V, 0, [f(y0)=Iy0)/iy,8,
g.=gO+s4, 0, L=1U0+s4,0), f=f0O+s4,0).

THEOREM 6.5 ([17]). Assume that y,— 0 and that the following conditions
hold true:
L y(y, 0), mA(y, 0)e C{@) as the functions of the variable y and

9(y, e Lo(m(0), F, Py),  f(y, 0)e%ic(v(0), F, Py),

1y, 0) f'(z, D)eFic(v(0), F, Py)

for all z, y from some neighbourhood of the point 0 (definitions of these classes
can be found in [20] and [227]);
2 for all e>0

Pa'lim (P:(g){gog:‘)o (m),«i»](lfp,(@ﬂgi < 8)1‘01:'3 * “(g)t_] (pt[ﬁ‘} =J,

where @,(0) is a positive definite symmetric matrix such that {¢,(0)] - 0ast — oo;
3. for all e>0

Pylim I{|g (@) ] > &)lo,(0)]o] * v(0), = 0;

4. Pylim [1g'120 oy, + 17 < 27 1P v(0), + 111 > 2711 9(6),]
=0, where ¢ = @J@)Uo gsds“"gﬂ)’ fr= @‘(9)”0 j;ds _fﬂ)’

where
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5. for all >0
Py-lim ¢,(0) g £ (L £ =1(0.0)g] < &)1, f5)dzds = v(0),¢,(6) = 0.

Then the following representation holds:

(6.1) A(y,, 6) = w(n' +4)—2"ui(J +p)u,,
where u, = @, *(0)4, and

62) 1 = 00 [go-mO)+1o * (u—v(O)] € H1lF, Py),
(6.3) LA Py > A0, J),  Pylim(lgi +|pi)) = 0.

Theorem 6.5 was proved for diffusion type processes [ 14] and for counting
processes [15]. In the case n'e #2(F, Py) Theorem 6.5 was proved in [16].
The representation (6.1)-(6.3) under the condition u, = ue R* is known as the
property of local asymptotical normality (LAN) for the family of measures
(P§, 0 ®) as t — oo at the point §€ © and it plays a fundamental role in the
asymptotical estimation theory [5]. The property LAN was established for
different particular cases by many authors.

Theorem 6.5 gives us the conditions for A6’ in the particular case with the
deterministic matrix » = J. The condition A6 is satisfied in the case »x = J if the
conditions 1, 2, 4 and 5 of Theorem 6.5 are satisfied and instead of the
condition 3 the following condition holds true:

3. for all e>0

,,];im lim Py {I(lp,()lo| > &)l (B)1o] * v(B), > N} = 0.
P oo =
In the case lu,| — o (0, o) from Theorem 6.5 it follows that the condition A4 is
satisfied with L = #'(—a?/2, ¢?), and in the case |u| — 0 the condition A5 is
true. i

Here we note the work [29] where the condition A4 with the infinitely
divisible law L in the case of quasileftcontinuous semimartingales is established.

The conditions of Theorems 6.1-6.5 have a sufficiently complicated form.
In the following section we shall consider the examples of testing the conditions
Al-A6 for some particular models of statistical experiments.

7. Examples. \

ExamPLE 1. Let & = (&, &, ..., &), t =1, 2, ..., where ¢; are indepen-
dent random variables with density I(x > bf)Alexp(—Ai(x—bY)) under the
hypotheses H' and with density I(x > b} exp(—Zi(x—B})) under the hypo-
theses H'. It is easy to show that .

3 H
(1) Pl=c)=Y ) [T (1—exp(—Z,,(},—5)))
I=1 1€i<iz<... <<t j=1

<I@,<by T 16> b,
kéfir,-oit}
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(7.2) jI (z, > N)z, dP' = r,m(N),
where
(7.3) rye= f] exp( 4B —bYI (B} < b)),
i=1
(7.4) 7(N) = P{Y, (WA—1n, >N+ Y In(y%
i=1 i=1

£ [RIG > b+ BB < bylbi—B)),
i=1

and #4,, %, ..., 1, are ii.d. random variables with density I(x = O)exp(—x).

By (7.1), we have P'(z, = 00) = 0 iff B > b} for all i =1, 2, ..., t. In this
case the type of asymptotical distinguishability is determined by the behaviour
of n,(N). In particular,

limn,(N) =1 for all N < oo<>(H)A (9,
lim lim z,(N) = 0« (f%) < (HY),

N-+w 1o

limn(N)=1 for all N <0, limn,(N)=0 for all N > 0<=(H) = (H").

If lim P'(z, = o0) = 0 and [t = i for all t, i, then from (7.2)«7.4) it follows
that
supc, = oo or supd, < co = (AY)=<1 (HY),

supe, < 00, supd, = oo = (H)< (HY),
3t): t,~> o, ¢, >0, d, o =(H)AH),

where
4

]

¢ =), Api-B)IG; <b), d,= Y AB—-bYIEB: > bj).
i=1 i=1

. If Bt <b: for all t,i, then Pz, = 0) # 0 for all ¢t and, in general,

lim P'(z, = co) # 0. However, according to (7.1)~(7.4), in this case the probabili-

ty P'(z, > N) takes the following sufficiently simple form:

t

P'(z, > N) = [ (1 —exp(—c})

i=1

4 ¥ H
+exp(— Y )P{Y (i—=Dn,>InN+ ¥ (Inl+ch},
i=1

i=1 i=3

where ¢ = (b —5), I = /L.
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Finally, let 5 = b and I = I' # 1 for all ¢, i and the limit lim I' = | exists. If
in the case | = 1 the additional condition t~/2 = o(|I'— 1)) is satisfied, then we
have the complete asymptotical distinguishability (H) A (A" for all I€[0, w].
Moreover, in this case the condition Al is satisfied and

ftlni‘ ifl=o
(1/1-1—In1/De  if le(0, 1)u(l, ),
a F(r—l)-‘*z ifl=1,

e/t if 1=0.

If I = 1 and t}2{F — 1] - ¢ &(0, o0), then the condition A4 is satisfied with
L= A (—0%/2, ¢%), and if t*%|F—1]| — 0, then the condition A5 is valid.

EXAMPLE 2. Let & = (£)o<s<s» Where £, has the stochastical differential
dé, = fl&ds+&,dw, under the hypothesis H' and it has the stochastical
differential d£, = j‘; &.ds + & dw, under the hypothesis F*. Here we assume that
P, =0)= P, =0)= pe(() 1), and () and (Y are deterministic func-
tions, (w,) is a standard Wiener process, and v} = f (ff—fH2ds < o for all
t < co. Then PP~ P for all t < oo and

(7.5) Inz, = ,E§ (v, —2" 1v}) (P-as),
{7‘6) In z, = 60 é?{vzﬁz +271 vtz) (ﬁt"a-s'}:

where 5, and #, are independent of &, ¢§ = &5 for &, # 0 and ¢§ =0 for
£, =0, and L(n,|P) = L(H,|P)= A(0, 1). Hence we obtain easily

lim v, = o0 <> () o (), (H) 4 (),
limp, < 0 <« H)<=(A9), limy, =0« H)s (Y.
If limp, = oo, then from (7.5) and (7.6) it follows that
lima, = 0<lim B(5,"*) = p.
Now let p = 0. Then the following alternative holds:
limp, = 0« (H)AF), limp, < o< (H)< ().

If limy, = oo, then n: is easy to notice that the conditions A1, 42" and A2" are
satisfied for y, =2"'v} and the following statements are true:
(a) if , —» 0, then

al’ e>dl <>l <z, _, = o(v),
(b) if a,— 1, then
02 «>d2 < flerzy -, = 0lt),

where z, is a p-quantile of the law .4#°(0, 1). From these statements it follows
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that the sufficient conditions «l’, d1, 2’ and 2 in the implications of Theo-
rem 2.4 cannot be weakened. Moreover, if lim v, = co, then it is easy to show
that

al’, 02'<>dl, d2 <> 1, 2>z, _,, = o(v).

ExamPLE 3. Let & = (£ )g<.<, be an observation of the diffusion process
which is a solution of the stochastic differential equation

@.7) d, = A(C)ds+b(C)dw,, & =0,

where A(x) = a(x) under the hypothesis H' and A(x) = d(x) under the
hypothesis H'. We suppose that coefficients of the equation (7.7) satisfy the
conditions of the existence and uniqueness of a strong solution under the
hypotheses H and F*, b(x) > 0 for all xeR* and P' ~ P for all t < . Then
(P*-as.)

A= [AE)dw,—270 [ 12(E)ds,
0 1]

where A(x) = (@(x)—a(x))/b(x). Suppose that the process (£,) is recurrent to zero
[9]. We introduce the random process {, = f(£,), where

f(x)=:§g(y)dy, 4(y) = exp{ 2ja<~ ~2(2)da).

Then by 1t&’s formula d{; = a({,)dw,, {, = 0, where o(x) = g{c(x))b(c(x)), c(x)
is an inverse function to f(x).

For the process { we introduce cycles starting at the point x =0 and
continuing up to the moment of the first return to zero after attaining the point
x= 1. Suppose that 7, is the moment of finishing the nth cycle, 7, = 0. We
assume that P{z; > x} = ex™*(1+o(1)) as x > o0, ¢> 0, 0 <x < 1, and the
integral [A%(x)b™*(x)dx = h is finite. Then, by Theorem 11.1 in [9], Chapter 4,
we see that as ¢ — oo

P{elr(1—a)(2he?)~* jAz(c(Cs))ds < x} = 1—G,(x~ ),

where I'(x) is the gamma function and G, (x) is the distribution function of
a stable law with exponent o for which the Laplace transformation is of the
form exp(—s%. Hence it follows that the condition A3 is satisfied with
W, = (1 — )" ht*, L(x) = G,{(—x)"*") for x <0, = —co and I=0.

. ExaMPLE 4. Let € = (£,) be a counting process with the moments of jumps
Yoy n=1,2,..., where , are iid. positive random variables with the
distribution functmn

F(t; ) = Pyir; < t} = }f(s; Bds, t>0.
0
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Then the compensator v(6) = (v(0)) of the process ¢ takes the form

v,(0) = %}f In(1—F(z; 0)) ' +In(1 - F(t—7,_; 6) 1.

Let y, = y and we suppose that the distribution functions F(t; y) and F(t; 0) are
mutually absolutely continuous. Then the conditions of Theorem 5.1 are
satisfied. We introduce the random variables

o= [(a—1—InA)o(s;0)ds, L= [(1 v A)°In® L,a(s; O)ds,
4] o

where 2, = a(s; y)/a(s; 0), a(s; y) = f(s; WAL—=F(s; y)), g,€(0, 1).
We assume that the random variables 7,, v, and [, satisfy the Cramer
condition

Eyexp(dty) < co, Egexp(d'vi)<oo and Eyexp(d”{,) < w0

for some positive constants §, &' and §". Then using the theorems of large
deviations for sums of independent random variables, we infer easily that the
conditions of Theorem 6.2 are satisfied when y, = a~ bt and n, is an integer

such that n,(a+a\/§) = t+o(t), and

D ={&-=n}n {g v 2 n,(b~—a’2/§)} N {i 6 n,(c+5ﬁ)},

where a = Eyt,, b = Eyv,, ¢ = Epl,, 6® = Dy1,, 6% = Dyv,, 6% = D,{,. Con-
sequently, the condition A2 is satisfied under these restrictions.
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