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Abstract. In this paper we wn~ider the problena. af the asppta~tieal khaviour of 
a power of the Neyman-Peasson test with lmel G E ~  as t 3 w under diEerent 
khavioux of q. This proMam is investigated far &fireat typw esd an asympt;oticaI 
disting~sh~bitlty af f a l i e s  of hypotheses and, in pmuticular, For mmplaely asymp- 
totically distingujshslble raanifi~s and contlgua1 familiei. In the case of campietely 
asymptotically distinguishable farnilies the rate dconvergenm 2 0  zero far the probabili- 
ty  d the 2nd type errars /3(S:*"" fis investigated, In the case d cantigual Families the 
hhaviour of /3(&:-") is also studied when &n distribution of the logarithm of the 
likelihood ratio converge8 weakly to the distribution which is not namd in general. At 
lint these prob lw are sonsidered in a general sheme  of statistical experiments, and 
then in Ztte schemes pnerated by smimartiagales. 

11, lmtraducgo~, Let (P, 533" (P5, PI), t & 0, be a fmily of statistical 
expefirnents generat& by the observatitions C (see [5])  a d  Eel H' and k% 
simple hypotheses aaorcling to which a distribution af the observation $ is 
defined by the measurer; P and %"j, sespctively. Let 6, be a measurabile 
mapping from (Xp" !Bf) into (33, la, @(LOs I])) &ere 9 [ A )  i~ a Barel cr-field of 
subsets from vvhi~h is  called a test fiw resting the kypot.he,~trs H k n d  Ri"I" 
under the observatl~n 9"we assume that 8,fac;) is a probability to reject M" 
under the csnclitian 6' = x) and A' is the collextian sf dl tesls 6,. %at ~ ( 6 ~ 3  and 
fifst) denote the. probabilities of the Ist and 2nd type Brrors, respectively, for the 
t ~ n ;  6 , ~ d "  nnamdy 

~ y s , ) = B ~ d ~ ,  fi(6r)=gt(l-6t)* 

where Ehnd J?i?bare expectations with respect ta P Z B ~  fbPf res~et ively~ aa(S,) is 
afttro wUed a bvel of the test a,, and I. - fi(6,) is called a pnwm of the test ddi Let 
A: denote a family ef all tests atgd, with a(S& < a. 

kt. gr = 2 - ' ( ~ %  Pt) be a probability measure on Bt, and let 8, =. HPyd&' 
nad gt = dp/d~"be finite versions of Radon-Nkad* de~vatives. Wr: 
introduce the likelihood ratis a, =. &/ar gutting for deEnitions 0 / b  0 (it is 
unw~ntisll because Qt(a, = 0, & = 0) = 0). WE: put 



It is easy to tlok that 

Obviously, if iZe += 0 os fit = 0, then P' i i"', Therr:fore, in this paper we shall 
assume that Et > 0 and /& > Q fox all t ,  that is why the case of the erthogalnal 
meilsures P' and is out of the question, 

Far any at E [O, 13 we iatrodum the Heyman-Peasson test S,J'eat with 
levex a,: 

6; %Et = e , )+ .~ , f  ($8 " c,S, 
where E(A) is the iadicatoir of the set. A,  and E ~ E  10, m] and 4 E [O, I] axe 
garmeters of the test 6:" de5ned by the canditian a(6Ztat) - a, (we set E, = 1 
when cc, = Or, Sinm, obviausly, S(S;~=*C) = Ir, for a, = 0 and fl(S:.uc] = O far 
r r , ~  [Ef, I f ,  everywhere in the sequel we shaU assnme that cl, E ~ O ,  @J, 

We shdl consider the pro'alem oftbe rzsymptntbi behaviour af a pwer d 
the test 8:~"~ ar; t -a ca depending on the trehaviaur of the level a,. An 
asymptotical khaviour d the test 6:s" depends on the bhwiaur of the set 

wKch is defined by a type of an aspptot id  distinguishability of the fab~lies 
of the hypotheses (H3 land (fit), A eamglete voup of types d an asymptatical 
distinpishabilikyr of fd1ies of hypotheses is introduce$ in El93 and charac- 
terizat-icuns of intrdnaeing tyws are given in and [211. Here we wnsider 
this prablern for difEerelat types BE an asy.qtotica1 dishnguishability of E a ~ l i m  
of hypotbmes at fin% in a general =heme of staatisti~al expehents, and then we 
adduce examples d a solution of this problem far semimartingdes and for 
man: part;icda;r models, 

For shark in the sequeI r%.e &dl use aatatiun 

seaing lniD = - m, Then the t a t  S;'." take@ the fom 

For the familie8 ( (X t ) tZ iQ ,  (H1)g3 , . - ' ( ~ e  a66 the notatian (a, (HP), , . . 
Moreaver, evgrywhere in the wquel tha indica~an "$4 03'' 3s owritted 

low 21 f[fB])* The familks crf byfsathe~e% (Hi) and (a4 are said ea 
be ctlmpkgly asymptotically distingu&/mbb (pJhich i s  wrBittea as (HSA @)]' 
the: exists s; fmniy (63 of tats 6 , ~  dbad a serguencr: [hlnEN E U G ~  that t, -, m as 
h 4 m and 

lim QL(&~,) = O. Lipl p(&t,) = 0. 
A-*m m-'m 



In the m e  6slF a complete asymptotical distinguishability af the fmilies of 
hypothmes (H3 ancd (fig), we say that the families of hypotheses are! of type e of 
mymptotkaI distinguishability. If the fmilies of hypotheses (Hb) and @) are not 
campletely rrsymptotially distinguishable, t b n  we write (Ni)&aE), 

A Hellinger integral of order e fils the measures Fk a1yd P is denoted by 
H f ( ~ f  and defined as 

H,(E) = R(E; 67", P3 = E''Q83: -', 
where EL is an expectation with mspct to Q*, Mureover, we inwodue the 
distance ia wsriatisn V(Pr ,  between SL5 and and the Hetlinger distance 
H(P, f@) &ween JP' amd aas 

v(P,  = 2- &pt9 Px) = ( ~ b l $ : ~ ~  -3~/21Z)fJZ. 

The follodrag theorem givm us a characterization of complete asymp- 
toticd distinguishabili~ of the families of hypotheses. 

~ R E M  2.1 (C21"J). The falfowing coj2diti0tz~ @re eqetitmlenc: 

. - - 
(3)  airnP(A, < N) - 1 j'br all N z -m; 
(4) @ixlf(a(6J -k @(6$ 6, E d'j - Q; 
(5) - lira H,(e) = 0 fir all c E (0, I); - 
(6) i b i m ~ ( ~ ,  p'") = 1; - 
(7) lim R(P, P"") = 2ii2, 

Now we consider a hhavjour of a power of the test in the case of 
a complete asymptotial distingujshability of the f ad f i ~s  af hypotheses, At first 
we introduce the FoUowing conditions: 

Adi. F-l im~,"~= - 1 ,  where ~ , 4 m ;  
Rf" IlilmP~CR, 3 -ax,) = O far izll a < 1; 
A 1". EraP"An -c -axf] = O for all a > 1; 
=I .  - l i r n q ) ~ ;  ~ 2 .  Iim~t, .< 1; 
1 d -  d2. l&~;'d~,-I;  
81. ~ x ; 1 ~ n ~ ( 6 ~ + " ' ) - 1 2 ;  a2. fim~;lln@(B:*"t)>-l. 

Here PLEm mwns a canvergeacre in mGurp; Pt7 namely, the condition A l  
means that l imP1(I~;fd ,+~~ 3 s )  = O  for aU 6 2-6. 

Obviously, ( A  1" ~4V'")ct.A 1, Moreover, from Tbeorem 2.1 it follows that 
under the oondition Ai'  the families of fiypothege:%s are comprletely asymp- 
toti~aiUy disliagebishable, 

The following t h e o ~ m  gives us a relation beztvvmn an asympto~cal 
bel-savionr of m,, d, and @(S:+c) under the mndiitions .dlr and AI*'. 

T H ~ E M  2.2 ([20j, [22]) The follawirsg iwplicatiapas hold rate: 



From Theorem 2.2 it is clear that under: the conditions Afbnd Al'Yor 
obtaining the relations 131. and p;? it is required the mad4t3ons al and a2 to be 
satisfied which forbid for the level a, to approach 0 or 1, r~xpectivdy, as t -+ m 
However, if the likelihood ratio s, sa~sfies stricter conditions, the repations fll 
and 82 rest valid for the Iwel a, wh i~h  can approach O ar 1, but slow. For exact 
famulatioins we introduce: the Ibllowing eon&tions: 

oll'. l h  X; 1n at = 0; 0121. Iirn X; qln[l --a3 = 0; -- 
A2'. liar lim E-~x;~I~N~(F;)  g - I ;  

810 t-+w 

where X, is a funstion from the conditiom AIE and Al". 
QPliviously, A2' + A 1' and A2" ;.=. A 1". Moreover3 it Is easy to note that 

under the condition A2" there exists t ,  .r m such that P -g for dl t > to; 
hence gt - I  hr all t t,.  

The following theorem gives lower and upper boutlds for p(4:"") for all 
a E (0, I)  a d  t >, 0. These bounds permit us ta get the relations 81 and 82 
under the conditions al'-and ~ 2 ' .  They are a generalization of well-known 
Gafft--Pla~hky's bounds [I 11. 

T m ~ e u  23 ([2O], pf?3). For call ~r; E (0, 1) a ~ d  t 2 0 

If ifr < 1, then i t  i s  easy to show that Hr[8) = GCJ for dl E < 0, Hence mder 
the eosldition (jl, ..= 1 the b o d  (2-1) has the ttiviail farm: B(8'3 3 O far dl 
E E (OF 1). AESO wt note that Pf6:~") = O for all or E [o?,, 11. Notice that the bound. 
(2.23 is not tight, Homver, from (2-1) WE have limijF, = l under the condi- 
tioar AZ". Tn addition, as was noted above, under the condition A2" there exists 
a number t ,  < m such that E, = 3, for all t =. t,, 

TEMMM 2.4 ([XI]> [22]). Titse fbllnwin~ iapid:car;iom bold trtre: 

Theorems 2.2 and 2.4 generalize the follawislg well-known Stein's hmma 
aJI> €m. 

LEMM 2.1. b t  td = (cl, esr  .. . , &), t = 1, 2, . , . , W J ~ ~ P B  9, are i,i.$. randotyz 
umbbles urrdecl tIg hypotheses Ht  and fihwith diskrihkiuzions iadependent of t and 
Q < -Eilnz, -- a i w .  Ther~~ for ajt' ac ;~ ( ( r ,  1) 

lice., the corsditions /31 anrI 82 hou with $ = at. 



Stein3 lemma was genera1i~e.d to Neyman-Pearsun tests with level or, 
depending on t and satisfying the condition Iimcl, = a ~ ( 0 ,  1) [see 1263). Then 
Stein" l e m n  was gcnesalixd to Neyman-Pearsoin tests which satisfy the 
conditions crl' and ar29lsee [I I]>. In the work3 [l lJ and E261 the observations 
are such as in  Stein" lemma. We nore that Theorem 2.4 is a generdlli~dtation of 
#ram-PJachky" smsextts [El] to genera1 starktical experiments. 

Theorems 2.2 and 2,4 establish the geaeralizatians of Steirs"s lemma and 
RraRt.-P1achky"s results in the case of compjetely asymptoticsilly disGngtlish- 
able hypotheses; when the latv of large numbers for A, holds. Now we comider 
the case af completely asymgtatially distinguishable hypotheses when the law 
of lmgc numbers for A, is not valid, With this end in view we klrsducl: the 
f~llowing condition: 

A3. 9($,'~, I P" 3 5 where $, -+ oo and L is ET probability law with the 
continuous distribution f~~nction - "L (x) which is strict1 y increasing on ( I ,  n, 
~ = = s u p ( r : L ( x ) = 0 $ ,  I=inf(x: L ( x ) = I ) f O  (here s u p @ = - m ,  
id@ - w, 9(- j Pz) )is a dist~bution law with r a p c t  to P and the symbol 1 
means a weak mnvergence af laws). 

From Theorem 2.1 it follows that the Fdmilies of hypotheses are: asyrnp- 
totically distinguishable of type e under the condition A2, 

WOEEM 2 5 .  Ass .ur~ that the codition A3 FtoEds true. 9'datm for all a E (0, I) 

~ v h m  E p  is a p-guantile for the law L. In addi~ior~~ the follawi~ag implicatians are 
valid: 

where - $; Qr and y, - $; ' 21,. From the proof uf Theorcnr 4.1 in [209 it 
blfows that 



for aEt CR E [O, I], The implications (2.3) for all E(O, 15 were proved in Theo- 
rem 4.I of C2Qj (see alsa the proof af Theorem 4 in 1221). From the implications 
(2.10), abwirausly, we obtain 

The inverse implieatiom can be deduced easily from the equalities $281 
md (2.9) and the conditictn A3. Ta prove the right implication in (2.4) it is 
sufident ttr use the es~mate 

where E 3 0. The right impjlica~an in (2.5) fs l low~ from the inequselity 
fl(6:*"" > eexp(ntJ. The proof of the impEicatioins (2.6) and (2.7) i s  similar to that 
of the corresponding implications given in (23) for EE(O, I]. Thus tllc proof is 
complete. 

Remark  2.1. Theorem 2.5 makes formutations as well ars the proofs of 
Theorem 4 in [22] and Theorem 4.1 in 1201 mare precise. If 1 = - cc, then 
[2,4)-CZ.T) imply that the imptications (2.3) are valid for all m ~ f Q ,  13. Hence, En 
this ease Theorem 4 of [22] and Theorem 4.1 sf [20] are correct in t h ~ k  
farm uIa tions. 

DE~NETION 3.1 ([l9]). The family d hypotheses (A3 is said to be coratiguai 
with respect ta the family of hypsthmes fHS) (which is w ~ t t e n  as [p)4 {H6)) if 
for 6 ~ 1 1  fa~niay (63 of tests 6 , ~ d '  

Otherwi~e, i.e,. when there exists a family (4,) of tests S , ~ d Q s u ~ h  that 

the f m i l y  of hypsrheses (a3 i s  said to be nnneontigunl with ~ s p e c t  to the 
family of hypotheses (El" (which is written as @') + If (&)-a (CbJ') sad 
(H" 1 (4W'), rhea rhd families af hypotheses INd) and (Rr) are: said to be mutwaIEy 
corabiguaE (written as {MV )dtr (A*)). 

If (H" )cs% fa"), then we say that the fmilies of hypotheses (%?I" &atad (R'] 
are of type a af asymptorical distinguishabiEitj~= 

The fallowing thwrem gives cbara~teri~i~Gi~n8 uf the contiguity (Bjl") 
4 @it). 

THWREW 3,1 (1 191, [2131r;. The faiiawitlg. cnndftio~s art. eqart'ualent: 
0)  Clr"ln"- =lII-1I'); 
(2) lim P(z ,  --- w) = O and lirnNdm suptgo jJ(zI > N)z,dP = 0; 



- 
(3) Ijirnhr,, lirn,,, P(Z, > N )  ==r 0; 

(4) bmsT g1-* N(E; p, pr) = 1 s 
The equivalence (1)*(4$ can be pr~ved  by usirng at first the equivalence 

(43 -(Pt) ai (PI (see [6j and [I 3 3 ,  and then the quivalence [P) -a (P') 
* (R') c3 (Ht) (see [19J and [21]), Here (17") 4 ( P )  means a contiguity of the 
family of measures (PI") with respect to the- next one (P) (sm [3] and C191). 

Mutual contiguity of families of measures was iaitrodumd by kCam in 
[12II and then it was studied in detail wken $the Lsgarirllm of the Iikelihood 
ratio A, is asymptodcally nomal (see [20] for references). Here we consider the 
case where the distributjlan of the logaxithm of the likelihood ratio A, icoraverps 
weakly ta a distdbution which is not nor& one in general, Let us ktroducr: 
.the Fanawing condition : 

A4. S ( A ,  1 P) 5 ", where 1, is same probability law on R' =. ( - orr , m) 
with the distribution function A@), x E R', 

We say that the candifdbn A9' is satisfied if the candition A 4  holds true 
with the continuous function Llx), strictly monotone increasing on ( I ,  n, where 
J = supfx: L(x) = 0) and r---infJx: L(x) = I ) .  

~ E O R E M  32, If' the condition A 4  is satisfied, then 

where .fd is rhe probability lrzw orr 8" [-- ao, 003 with the distributiof~ frxnction 

IN addition, tiritfioart loss of gmemlity, f;(weu) G 1 and 

The proof of T h e o ~ m  3.2 is d a r  ta tlae prod of Theorem 6.1 in [2O], so 
we omit it. 

Re rn aFr k 3.11. Let the condition A4 be satisfied with the law L which is the 
mixture of nerrnd laws Nf-cr2J2, g2) with mspwt 10 the parameter cr with 
some probability law K on (41, a), Then it is easy to show that I - - m, I-== rn 
and the distribution function L(x) is  mntinusus and strictly monotone 
iaacresbg on RY. Hence the condition A 4  is satisfi~d and In this case the law 
% i s  the mixturn of nannd ISLW~S: ./t"(a2/2, a2) with respect t s  the parmeter 
a with the prohaibillty law K, and hence E(m) = 1, 

Using Theorern 3.2 we obtain easiily the f a l l o ~ n g  tltearemr 



holds true. I n  pgrticzrkar, if the condition A4 B satisfied, then 

(Qr)d ~ , c N " - E ( ~ )  = 1, (A"+ (133 -E(cQ) < z 
Re rn a r k 3-2, Theorem 3.3 implies that if the condition A4 is satisfied, then 

the foliowing dihotomy is true: either an asymptoticaI distjnguishability is of 
type a or it is of type b. Namely, 

a-E[ . s )= I ,  b+E(acl) < I .  

Notice that the asympfotkal distinguishability sf type b means that (IMi)r-.a (R? 
but [aX)+ (a) (see [19]). 

The following lemma, interesting in itself, will be used in the sequel. 
LEMMA 3.1. Let (2" %$, St), t 2 0, BC a family of proBaiFliEit~y spaces a~rd 

be a tlzeastrrabb mappi88 fmm the r~zuamrrabltl. space (2" 21g"Eipato the mensura-abie 
space (a1, B1) such that 

I St$ f S, 

where S is a probability law on Rhitlz the continuous distribution finction Stx), 
a d  S( - -  m)  = 0, S(a )  g 1. Tjtm .fop any family (yJ of the numbers J;E RL 
satisfying in the case S(m) -C 1 lke &it-ional condition 6 y, < m we karre 

Irr addition, let the Jirraction $14 be strictly monotone itsc~easitzg s7n (3, 3, where 
x = sup (x: S(x) = 0) alad R = inf(s: S o  = SIco)]. Then fir any ?amilks (y,) - 
and (8,) c1j the numbers y , ~  R1 utzd el E r0, 11 for which the fnllowi~g limit e~ists: 

fbr all f l  E (1 ,- Slm), 1 )  the limit r?f y, exists and lim y, - s1 - p ,  .for. f l =  1 the -- 
iraequality lira y, % hhoFds, aptd for /Q = 1 -$(on) the inaqzsality lim y, a 2 koEd3, 
where s, is a pquantide t$' the law S,  

a 3,1 can be concltrded by reasens of k m m a  4.2.1 in [27] and of 
Lemma 6.2 in [20J, SO we emit it, 

Remark  3.3, I f  S = q,V(ra, u2), where aER1, @ E ( U ,  m), then kwma 3.1 
implies a wel-kt~omm result (gee Lemma 4.2.1 in 17'141 and Lemma 6,1 in [2OiJ). 
If S = Ir.,V(a, c2), where h E (0, I), than Lemma 3.1 implies also a, well-known 
result (see Lemma 6.2 in C20-j). 

M e r z ~ ~  3.4. she eordltian A4' is sstr'sjed,  the^ ,for. all aE[O, 13 

w h e r ~  E ,  is a p-qmantib of the Eaw t, and Z(x) is a disaihution ficnctim af the 
law E defined by (3.2)- 



Sintpk hypwtlreses testing 225 

Proof. Tbe condition A4 and Theorem 3.2 imply the weak convergence 
/3.3), where J!, i s  a probability law on R u t h  the distribution function (3.2) and 
e ( m )  Q 1. From (3,2) it i s  clear that 

sup{x; E I ( x ) = O ) = ! ,  iaf(x: E(x)=E(m))=r 
and tlre funeeion E(x) is continuaus and s t ~ c t l y  monotone increasing on (t, .q. 

Suppose that cx, 4 a. If 0 -c a os 1, then by L e m a  3.1 we obtain lim d ,  - I,-,; hence %d, .r co. Then again by Lemma 3.1. we obtain P/A, = d,) 4 0 .  
Further, .taking into consideration {3.1), (3.2), the inequality g d ,  .r oo and the 
unifom convergence P(A, < y )  ta ly) s n  ( - m , M) far all N .r m , we obtain 

TE ex = 0, tihen by Lemma. 3.6 we have the inequality lim d ,  3 Hence, for 
all NE(- a, ir) there is t' = t(M) such that d, M far all= t< Therefore, for 
all. t > t" 

p(S:*gr) 3 &A# SC dt)  2 P(A$ < N)'  

Since N is arbitrary, from th is inequality we have: (3.4) for x - 0. 
If M -. I ,  then by L e m a  3.1 we obtain Gd, G a. Then far all ME(!, co) 

there is t'" tE"(N) such that d, < N for all E > t"'. Hence, for aJ1 t f" 

Obviausly, G d ,  < m; hence by Lemma 3.1 we have P(A, = d,) - 0. There- 
fore from (3.5) md (3.1) we obtain (3,4) for a = I because N is arbitrary. 

Now we rxssume that p(6: + z(l, -A. Then I - P(6jtiR) -* /3, where 
/3 = I-G(~,-JEcI-- &m), 13. For ~ ? E ( O ,  1) we have  BE(^ -Elm), I), and 
henee by Lemma 3.1 

-e w 

4 +11-#  = k(r,-a) - i t - @ >  

where & is a p-quantile uf the law E. Taking into consicleratian the wnditiaa 
A4 and using Lemma 3.1, from this relation we obtain 

E# -+ l-L(ll-.J = tx* 

If a = 0, then, j3 = 1 -e{oo), and hence iby Lemma 3.6 we have Ern4 3 It, 
Then for all Me[-m, T j  t'here i s  to -- t,(N) such that d ,  P$ for at to ,  
Henex: for all d 3 t ,  

r ~ ,  Bg (A, > N )  -l- P 7 4  == dJ . 
Using the condition A4 and Lemma 3.1, from this inequality we sbt;iEa a, -c cl 

for a - O because'N is arbitrary. In an analogous way we prove that a, -% for 
m I. Thus the implication 9: in (3.3) is proved. Now the proof s f  Theorem 3.4 
is mmplelt. 

R t m a r k 3.4. If the eandifim A4 we have E = Ar(a, a2), where a E R' and 
O E @ ,  m), than Themre-rn 3.4 i m p S  a wea-hown mdt (see [203, Thcorm 62).  
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Moreover, Ilteorern 3,4 yields rbar ixr the case a < -sr"2 the assertion of 
nearern 6.3 ia [20] is true: for a11 a E [ O ,  13 (note that in EzfJ] this statement 
was proved only for a ~ ( 0 ~  I]), 

Now we wnsider tbe complete asymptotical iadistcinguishabiGiy of fami- 
lies d hypotheses (i.e., the asymptobical distinguishability of type a,) which is 
a subbpc of type a. 

Ds~lllar~lo~ 3.2 (E19J). The: fadlies of hypotheses (f-llyaad (a" are saki to 
"o e~~gpletely cbsyn~ptutical~y findis"sty%tbhabk (witten as (N" E [gq)) if fbr all 
a E [O, I] and for all families (5,) of tests 6, E d" 

The following theorem gives a characterization, sf the complete asymp 
ra t id  indistinguishabilityY 

THEOREM 3,s ([I 9JI r223). The following esndit;ians are eqerierwlenr : 
(I) (wg) E5 (B*); 
(2) iirnP"ija,-l] r e f  = O f o r  ~ i i  E >  0; 
(3) ~irnP[~-ll > E) = Cl for all' E. Q; 
(4) lim H[e;  P ,  Pz) = 1 for ail EE(U? 1); 
C.5) lim NIPt, ,q = 0; 
(5) Iim V(P ,  .PI = 0; 
(4)  Em imf ( ~ ( 6 3  + fl(is$ 6 , ~  A" = 1 .  

We introduce the: fdowing condirrian: 

As. Pam A, = 0. 

T ~ ~ R E M  3.6. 1f the coplditinn A5 is true, then _fap all E E [a, 14 

IP emark 3.5. If the condition A5 i s  tme, then the condidon A4 is  also 
satisfied, but only if the di~tribu"rion Iaw L has the point 10) as a suppoPt. From 
T h e o m  3.2 it foilows that the distGbution law hns also the warn poht as 
sr supporl. Consequently, the relation. (3.6) is an extension of the relation (3.3) to 
laws with distzibutiosr functions having jumps in their support;s= 

Let us consider one more case where again we have the asymptotieal 
distinguishability of type a. Namely, we cansirIer the case where A, admits the 
asymptotid expansion as t -+ ocs given by the foUowing condition: 

A6. A, = u : x ~ , - ~ - ~ u : x , ~ w , ,  where a, is ;a nonrandom vmtar from Rk, qb k 
at random k-dimension VCG~QE; and x, is a (k x k)-matAx, respe?ctive3r, such that 



Here pt is a symmetric positive definite (k  x &-matrix on some probability apace 
(a, ,F, P) such that P {A' xcl = 1 fafar all I E Rk, A. + QO, asad the prhe  means 
a transposition iCFf a matrix, 

Using tbe characterlzatiens from Theorems 2.1 and 3.1, we obtdn easily 
the fouowing thelorem; 

THEOREM 3.7, l l  the condition A6 is sati@ed, then 

ConsequentZy, if the condition A6 is satisfied, then in the case &jut[ = cxl 

a bebaviour of the test can be investigated an the basis of Theorems 2.2 
and 2.4 on the strength of(3.3, and in the case lirn \u,l = O we have the refation 
(3.6) h a u s e  of (3.9). In the case G l u , l  ..= GO we consider the following more 
reestricted condition: 

46: The condition A6 is satiskd and 

where q is a random k-dimensional vtxtor independent of x which has the 
narmd dktdbuthn X ( 0 ,  J). Mere J is a mit mslerix of order k, and 0 is a null 
k-dimensional vectsr. 

In the case where the ~onditim A6' is satisfied, to kvestigate st b h a ~ i o u r  
of the test R : v n e  we can use neorems 3.2 anad 3.4 and the followhg theomm: 

REM 3,s. If the cunldib;ion A&' is saliged atad lim, u, = u E Rk, thelz the 
co~dmdition A4 in which tkc. low L is a waixtsare of the narnrnk di~tribt8trtio~is 
w4F( -2 -1ukxau,  tr'x%j wit18 respect to a distribution sf tk m@jX x is valid. 

4 Beducfi~n of tesiiimg bypath- prt~blems, The corr&tions Al-A6 put 
restfictions sn  a behaviaur of rfi, and & as t 4 m. To amit these restric~ons we 
shdl consider two reductions of the problem d tasting the hypothases Hf and 
R" by a contraction af the sample space X', 

1. Let Xi = {$; 0)) 23; = %* R Xb, and Po and ;15b be probability 
measuEs on 355 defined by the equalities 8 = P/EL and -- 9" We consider 
the family of statklrieal, exp~ments  (Xb, TEb, [Pb, pa]), r 2 0, and let jb be 
observations generating this f a ~ I y .  Let Hi and fi& be simple hypothees 
amording to which :h distribution of the obsemation tg is defmed by the 
measures P: and Fa, mspg>tive5y, Suppose that the measurable mapping Erom 
[Kg, %h) d o  (10, I]? B([O, 13)) is rr. te8E far testing the hypetkawes Hb md 
Rb under the observation r6, atld ditfD is a faj-nily ofd1 such tests, h t  a,(&,) and 
pa(d,> denote the probabilities of the 1st and 2nd t y p  errors, rmpecdveIy, for 



where: Eb and Bb are expect;z.tjons with respect to P i  xnd E".f9 respectively. 
kt 3: = dPb/dQf, and $ = dgi"O/d@o be finite versions of Radon-Nikodjrm 

derivatives, wher~: Qb is a contraction of the measure &ban the a-field 8;. 
Obviously, on the set 13; r 0) we have 

We introduce the likelihood ratio sp =t $/a: by setting O/O = 0, Obvioudy, we 
have zp = Zt:,2, (Qr-am~.) on the set f$, > 0). As above we introduce Lbe 
Neyman-Pearson test 62' with the level r x ~  CO, 11 far testing the hypo&e.se;s 
Hb and @",. It 3s easy to  show that 

There: exists an analagous relation between the parameters of the tests r5;1'Ia a d  
S:.", Applying now stated-above results to the test i5;lb;" and then using this 
relation, we obtain the corresponding assertiom about an asyrnptaticd 
beh&viour of P(S:-"g) depending oa a behavisur af the level cl, under some 
bahawiour of 3, mQ pt, We shall illuminate this by same examples. 

We introduce the feltowing eoxaditions: 
Alb.  I;mn;VJ.l(n,+~rz&~ 3 -ax,) - 0 for all a < I;  
Af;, limG;'PE(-00 < A,+lrr~Y~ < - t q J  = O far dl c& 1; 
mtl,. > 0; 
a2,, Lol,/~# < 1; 
dl,. GX;i(d,+tngv) G - - I ;  
d2,* @x;l{d,+ln ji,) 2 - 1 .  
TI is easy ta note that these canditiam me the: conditians A l p ,  Al", 23, a2, 

d l  and d12, resplectively, applied to t h ~  problem of t~sting the hypotheses 
PEL and &",n a scheme of the statjstical axperinrents ( X b ,  %b ((Pi, f",)), t 2.0, 

The fallowiw theorem is  an analogy sf "P'heorona 2.2. 

ni;, t t ~ ,  - dl, =s pr, nlg, ~ a ,  + p2 19 siz,. 

"To forlnvlate -- the next theorem we introduce the following crsnditiaus: 
R2"IS, lim lim E-~~;~I~$-~E"I[& > €I) zg -I; 

c i B  r-*m 

AT& lim --- --- lltrr .- G - ~ x ; ?  Xn z ; - * E ~ ~ I [ ~ ~  > 8) 3 - 1; 
s f 0  I-"rsr 

a1 b ,  lim x; "n zt/fit '= 0; 
a. lirn~;'ln(I -rnl/@#) = 0. 



Simple Rypothe~s rcrstitw 228 

This theorem k a a  aaalagy d T h e o m  2.4 and its proof is founded on the 
follow&g genersjllim~orr sf Rrafft-P1mtcbk y inequalities. 

X e m a r k  4.1. If ht7, O and G&, < 11: then k is easy to note that the 
conditions Arb. ~ 1 ~ ~ 1 , ~  ~ 2 , ,  dl,,  a, and crib are equivalent ta the 
cpsxlditians Al', A]' ' ,  al ,  or2, dl ,  d2 and %If ,  mapectively, and the: conditions 
ATG, A2: and a& take the form: -- 

A&. lim Ijm c-";lInELz;li(g, > 0) 4 - 1; 
e z o  t - =  

AX;. -- lim lim s-"x;~ 1nErGI(;T, > 0) 2 - 1; 
&pa r-m 

rz&, l im~;~In(~ , - t~ ;E  --- 0. 

Remark 42, Iflirnx;'ln& = 0, then theanditions d l , , d 2 ,  and ~ 1 ;  are 
equident to the conditions dl ,  d2 and ol1" respectively, and the conditions 
n2a,  A2"; and db take the form indicated in Remark 4.5. 

Now we consider a mclrdificatiou of the condition A3, namely we introduce 
the condition: 

A3,. limdi;'PE(-m <$;"lnfi,z,<x)=k,(x) fer all X E R ' ,  where 
3rr -t m and LO(x) i~ a G O ~ ~ ~ B U O U S  distribution function which is strictly - 
momtome hcreasing rn (lo, &) , I, = sup (x : L, (x) = 0) , I ,  - Inf (x : L, (x) 
= 1) G 0. 

W em a xk 4.3. Zf l h  Ei .= I ,  thcn the - condition - A3, is eq~valent to the 
condition A3 with L(x) - L,(x), != .1,, 1 - E , ,  

Re mask  4.4, If: h oT, = d 7 ~ ( O ,  11, then under the csndition A3, we have 

Thus the maditian A3 is satisfied in which the distfibuticrn L is degnerate, and 
tke=forc %(XI = I -8 far x 6 &,:,, $(T) = L(&) = i , and the function L(x) is 
cantinuous and ~ t i ~ t l y  manatone increasing as (lo* &I. 

Remark 45, Ii the madition A3, is satisfied and Ern Et =; 0, thea 
bm P ($; QR, < x) = 1 fur all x E R1, i.e., we have (4. l f with ti = 0. 

The following analogue of Theorem 2.5 is true. 

amar?nn 4.4. Let the ~ondition be saFa#s$ed. Thm fix! all cx E (0, 1) 

where a p-qurmtile for the distribution fuditnctisn t,(x). I n  addition, the 
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jroEEowi~l,g implications hold: 

Te prove Theorem 4.4 it is suBdent to apply T h e a ~ m  2.5 to the test S&ja, 
amd then to use a relatio~z between the tests 6;da and 6:". 

We consider one mare example of ebe application of the above-mentioned 
reduction of the tacing hypotheses problem. Nameljy we intraduce the 
fdowing condition: 

Ad,, lim 8; l PP( - eo < A, i- ln a, < x) I.)= L,(x) fat; all x E R1 which are 
continuity points for the distribution function L,(x]:). 

We say tbat the condition A#;, is sacisJied if the co~%&kion A4, with the 
conhuaus distdbution function A, (x) which is strictly monotone increasing on 
(Lo, &) is satisfxed, where io = sup {x: L,(x) -- 6) and &, - int'(x: ED($ .=. 1 ). 

Re rn ark 4.6. If lim G, .= I, then, obviously, the conditions A4, and A.F$ 
are equivalent to the conditions A4 and A4', respectively; henee in this case all 
the asserticms obtained above under given conditions are valid. 

We shall consider in detail the ewe Jim Eg = @E (0, 1) under which the 
condition A4,' takes the form 

A4,, limp(-oo .< A, < x) = 6Lo(jc-t-hE) for all x ~ R h s u c h  that x+la& 
is A mnlit~uity point far the function L,(x), 

By andogy to the condi~on A4,, in this case the condition A4b is 
changing. 

The followimg analogue sf %orem 3.2 i s  valid. 

THEOW 4.5. If the condithn A4, is asratisfied and hi& = & f ( O a  .f)l. the% 

for all y c Rr srxch that y + h E is a cn~binwity point af tks function L,(x), where 
&(Y) = St, cZdL,(x).  In addition, generally speaking, L,fm) G l and 

tim Iim P / A ~  2 M) = 1 -Eo{m). 
N j p l  t"aJ 

A prasf of Theorem 4.5 is similar to that of Theorwn 3.2, SO we omit it. 

Re mark 4,T. If the ~onditiora A$,, is satisfied and Lim = &E@, 11, then 
it is easy tn show that 
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Henix we have the equivalenm 

(~~ ) - .=64 (A~)og  - 1, E o ( a )  = 1. 

THEIC)~EIM 4.4. the cnvsditiora A46 is satisJied" and f m $  .= &E@, 1). then 
~ 0 1 ~  d l  b E LO: q 

lim q =: N *Jim *"" = Eo(l: -aria), 

where &(XI is a dktrihtion function Porn Theorem 4.5 and i: is ra g-quantile ,for 
the distribution functioa Lo (XI. 

The proof of Theorem 4.6 is similar to that of Theorem 3.4  so we omit it. 
jCR a generd case, without additiond mnditioas on a behaviaus of Er we 

have the foHowing 
THE~MM 4.7. @ the codition A& is satisfjed, then f i r  all ~ E [ O ,  XI 

Iina a Jol, = m e lim Bf8:i"t) = L, (c -,I, 
w k e  Eo(x) and Ej are defizaed as iul Theorem 4.6. 

2, k t  now ( X i ,  8:, {P:, &I), t a 0, be a family of statistical experjlM?ents 
generated by the observations 5: and let El[: md R\ be simple hypotheses 
wcording to which a distributicrn af the! obsrvation 5: is given by the 
measures P: and pi, re~p~t iue ly ,  At the: s m e  time tve assume that X: 
= (3# > 0, f( 01, 23: = 8' n X i ,  Pi = Pr/b,, pg = PI/&, Let the masurabie 
mapping from (X", @\) inta (LO, 11, &@([0, 13)) be a test far tmting the 
hypotheses IZ: and R: under the obsemation <*, , and let A"' be the colleHian 
of all these tests. Let a,(&,) and 8, (6,) denote the probabilities of the 1st and 
2nd type errors, rmpecQveIy, EOP the test d t ~ d " . l  namely 

~ g ( ~ t S = E t l S 1 >  PII~1)=8"IC1-~JI 

where E\ and are expectations with reispct to fi and PI, respectively, 
h t  3: = dPl/d&+and 37 == d & / d ~ \  be finite versicl&rs of Radoli-Nikodj.nz 

derivatives, where QQ: is a. wntraction of the measure Q' on the ~~-Beld %;. 
Obviously, on the set {a, > 0, d; > 0) we have 

3: = 3JEr, $ = gJf( dlQP-a.s.). 

We; intrQdzace the mdihaod ratio L: - $[/a; by setting O/O = 0. It is elear that 
Z: "- #,zz/Pt (Q"-n.s.) on the set {3, > 0, > 0). As above for testing the 
hypothews H: and 8: under the observatjon rd; we intrcaduee the Ney- 
man-Pearson test at the lev-e1 as[O, 11. It is easy to show that 

f l ,  {b,l;,') = B(6,9*ELg~3. 

We s h d    lust rate the application of this redu~tion by gome examples. Let 
us intraduce at first the fauawing conditions: 

Al i ,  lim@;"fnt+1n:dt/13, > -ax3 = O far J1 t l <  1; 



RI;" ,  lim E;"'(-- ca < R,-~-lnlii,@~ .= --ax3 = 0 for all a 1; 
dl , .  &;"(d,+ln~*jfi) c - 1; 
dlli,. I&~;"(d,+ln@~/fl~j 3 -1. 
As above; in the case of the first reduction, it is easy to note that tbe~e 

conditions are the same conditions as Anli9 Alf'* dal and d2 applied to the 
problem of testing the hypotheses Hhandl "hi in the scheme of the stafisricsal 
experime~~ts (Xi, %\, (PE, E 3 0. 

The Eonowing theorem i s  an analogue of Theorem 2.2. 

foxmdate the next theorem we introduce tbe foUohng csndiefons: -- 
lim lirn ~ - ' ~ ; ' a f l ( c j i f - ~ ~ ~ ~ E ~ $ l ( &  0)) $ - I ;  
E L Z ~  s-m 

A2" lim - lirn~-~~;~ln(g-'IT;s"E%;J(& - >iD))2 - 1 .  
P ~ O  t-cU 

T N ~ K E M  4.9 {[ZO]). The fololrowiq inrp/icatinns hold true: 

Remark 4.8. 1flirngz :,> 0, && < I ,  l&& > 0 md limp, -c 1, then i t  i 
easy ta note that tkeGnditions A l i *  Al';, dl ,  and d2, are quivalent to the? 
condtioens A l', Al", dt and d2,  respectively, and the conditions A2; and AT,' 
take the form of the conditions A& and indicated in Remark 4.1, If 
lim " ~ n  lit = lirn X; "n JT, -. 0, then thc ~onditions A2; and A2i take &a the 
fonn of the conditions ~ $ 2 ~  and R2L rraspe~rively, indicated in Remark 4.3. 

Findly, wc w a d e r  a modification of the co~~dition A3, namely, wa 
intsudua the csnditinn: 

A31.1im~"(-rxl  $;llrafijt,p;lz,) c ac) = L,&) for dl x e R 1 ,  where 
$, -s ca and L,(x) is a continuous functicin which i s  staictiy monertoae 
increasing on the interval (1, , c), a d  

Remark 49. I f  lim &, = 1 and lim $a En JT; OCS, then the eondidon 103, is 
aqaivafent to the condition A3 with _I,(,$ = t, jx), 1 = i,, and I-= I,. 

Remark 4.10. TfZimrii, = ZE@, 3) and limP, = ~ E ( O ,  I), then under the 
condition R3, we have 

for all X E R ' .  IElimt3, = &E(Q, 1)  and lim$;llnflF = x,E(--cm, O], thm under 
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the sondi~oa d3, we have 

The foilIoviring analogue of Theorem 2-5 is true: 
THWREM 4.10. 1 "  the cofiditiata A3, is satisfied, then for at! a ~ ( 0 ,  I] 

wkewn? I; is a p-guanfiIe 01 the distribution fuacti~n k,(x), PN addition, the 
fall~wing implications are true: 

To prove Theorem 4-10 it is suficient to apply Theorem 2.5 ta the test 
8;finr, m d  then to use the relation between the tests 8Z;tu"nd 4:'"* 

5. The 1lkefihaad mtia for wmirnmaingaia Let [a, 9) be a measurable 
space, where W is a set d functions x = (x,) which are right-continuous and 
admit left-hand limits, and ,F is the o-field gemrerated by cylhdricd subsets 
fmm a, 

F = ~ F ~ ~  Ft= ~~,,:o,s,t+,,* 
rao P ~ * O  

Let (Po, 0 G @) be a family of probabiliQ measures on jdd, S), whew O c Rk is 
a pmsxmetric set and k 3 1 .  We assume that the family (P,, 0 E C3) is dominated 
by some probability measure Q defined an (0,P). In addifion, wc assume char 
the rrdelds SF and. @',, t 2 0, are Qeomplete. Then we h a ~ e  the stoehstic 
basis (a, 9, F = (FJ, Q )  whieh satttisfier; tb.2le usud conditions 161. 

We assme that the coordinate random proems ;= it&), , , an the 
stlsllchastiu: basis (Q, S, F ,  Q) i s  a stllmirnafiingd vvith respe~t to the measure 
Pfi fur all @E@ and it bas the canonical repxntatioa (P,-ass.) 

whem a(O) = (ar,(O)) io a predict:;ible pstocess with a 1locd-y bounded variation, 





P, '2 P,. In  addit io~ f the eondirion VllI is sati$ed, then the local density 
r b ,  @ takes the .form 

In particular, i f  the codition WS6' is saeis$ed instrrd of the corzdifion VIn, 
then the ~eprese~tartiopl (5.1HS.J) with A(y, B ) ~ u s % " i ~ ( F ,  PJ holds true. 

Here f * m(O) = (/ na(tf),), where / . m (@), = f, &dm, (0) is a aoeh~~~8ic  integ- 
ral of the fuvrction f with respect to the local nzartingale m(D). 

Theorern 5-3 is proved in [I73 and in the special case A@, 83 E &i,(F1 P@P,) 
it is proved in [14]. 

The implication I-VII ;+ P, 2 PP, has been proved in 181. In particular 
cases, the bcal density x(y, 0)  was crbtajl~ed earlier for Markovian processes 
[2X], for diffusion type processes [2:23], fafor Markavirua type processm L41, and 
for corntirag processes [T I ,  

fn the next section we asume that the mnditions of Tfseorem 5 1  are 
satisfied for aII y, B E  8 and for all r 2 0, 

6, Asgmptotieal plrrrpaeflies; d a likeliba0i.d raba fos sernimm8ingalpfi. In this 
section we establish wymptotlcd properties: of the Eocal density z,fy,, 0) on the 
basis of the representation (5.1)-(5,3), where, ie general, y, depends upon b: and 
8 docs not depend upan t. The&@ properties pernit us to apply the! results sf 
Sections 1 4 .  Ia this cxse wc have the family of the statistid experiments 
($2, ,% (Pk* Pir)), t 2 0, generated by the abuervatitions 9" (&)l,6,G, of the 
=mimarringale on the Entewal [O, c], and the hypothaes Ht and n' havc 
such an %Rmt that the distributia~~ of the observatioa P is given by the 
rrmeBares Pb and PiI, respcfiveIy. Amording to the natation of Section 1 we 
have P' = Pi,  p= Pi,, P - and A, = A,(y,, O) - In2,0.,, 0). Now we 
fornulate ~eorems glvhg the restrictions on -the triplet of predictable 
cfiaracte~stics sf the semimaxtinde! { under which the wnditions Al-;/ti art 
tatisfied. 

Write Jalf -- Ah, 8) sbnd y k  yiIy,, 0).  



THEOREM 6.2 ([18]). Asswme that thme exist Sets D f , , 6 q  for all EECQN,  1) 
arrd jbr a16 t 2 O suck that 

where & -+ 83 as t 4  a, D;-, = Q\D*-, a d  

Note that the procaws iht(e) are caled the Neili'~s;nger processes of arder 
e md  the proasses /2"1/2). are simply called the ElelNrt.yer processes [6]. 

T H E ~ ~ W  6.3 ([I 89). Assadvxse that the following conditions h01d true: 
1. fp. some E@ < O 

2.. - k:(~) d 6, lor all c E (( - 1) v E,, O), where Kt, B a ~onrandol-n cGmtan t 
dependig only apt t and E and such that 

Zirn - -- Ern 8-'y;I&, ), - 1 {xt -+ 
eta r-nu 

"Fkn 
lirn lim E - ~  x;~I~H,{E) - 1 .  -- 
~ t o  r-+w 

In [10;1 the staBments of Theorems 6.2 a d  6.3 am also pmvcd, but 
restrictions are put on the expectation E,exp f - kt(8)).  In addition, iaa [1101/ 
ins&& of the eguival~a~e Pig N pl:, sdy the absolute mntiauity of % Pbc i~ 
nmessary and the quasiwntinuity an the left for the hemimastingale f is not 
assumed. 

Ta formulate the next theorem we inrodu~g ;a semhaailrpgalc Y = (YJ, 
Y, =. 0, on the sto~hastic basis CO, .F, F ,  Po). We assume that Y is a stochas- 
tiably csntinuous pramss with independant Incs8ments and with the deter- 
mirristic triplet (B, ( M ) ,  v ) ,  which means that Y has the lcafioni~al Irepaeseap- 
tation 

= B ~ H E , + M , + x ~ ( ~ x ~  G r ) e ( p - ~ h + ~ f a l ~ ; [  > 1)+~,, 

where M = [MJ i s  a Gaussian sontinuous tnartingale with the quadra~e 
chsracberistie ( M )  -. [ ( M ) , ) ,  and B = [B,) is ra ~ontjauous f~netion, v ( ( t ] ,  Rg) 
- 0  for a11 t 3 O  and VCR,, (-1) u(1})=0. 
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TME.ORIW&M 6.4. Swppose rkat the foll~wiag wnditirms hold aue for all s 3 0: 
1. P,-lim $; "2- "lry"l"o (m),, +[Ar-- t -1~12) vf8), 

-I- J(lla 1'1 w $,) ln I r  + v(O),] = - B,, where #, -+ co as t 4 oa ; 
2, fm all 6 r 0 

lirn lim P , ( I ( M ~ ~ E ~ , - ( M > ~ I  > S )  = 0 ,  
E-*B t**m 

where 
<1MIr'? = $; [lr"l" o (m) + I (/lo AFf G ~ $ 3  h2 A' * I(@]; 

3. jur any canti~uow bounded ,$~ncrions f = (fx)mRo eqwl to zero in some 
ne&kbmrbad 01 x f= 0, 

Po-lim 9; "(in R) a Y ( B ) ~  = f * vs. 

'Z"hrl?n rks Bni~e-disnensionai distribtitions of the processes (+; A,(y,, O)),, , 
converge weakly fa tk jzfinits-dimensiurzal distributions qf the pgrcess Y as 

Theorem 6.4 follows: from Theorem 5.4.1 in r241. 
grbvionsly, the: condition A3 to be satisfied it is suficient to demmd that 

the conditions af Theorem 6.4 are valid ;md that the distribution function 
P,(V, < r) has the same proprtiies as the distribution function L(x1 in the 
mndition A3. 

Suppose now that y, -+ (9 as t 4 no. To formulate the next theorem we 
iatraduee the following noheion [hm 8, = yt-B7 I]): 

faa all z ,  y Porn some nei@B016rh~d af the paint A) (d~finitions of hose dasses 
can be found in [20] and [227); 

2. for an e > 0 



5, for all e :, O 

Then the following represen tat; ion holds: 

(6- 3 1 A(ytl 0) = u:(qt-t-qr')-2-hu;(J+pc)ul, 
where u, = p; "0") A, and 

(6-2) $ = T,~@)[QO .mC@l+1, * ( P - ~ J E ' ( ~ ) ) ]  E ~ ~ $ O C ( ~ ,  P@l? 
(6.31 I.&) 5 N (0, 4, &-line tla3 + 3~2) - 0. 

Theomrn 6.5 was proved for diffrnsion type pmmsscs El43 and for csuntiag 
processes [153, In the case q ' ~  A&,(F, Po) Theorem 6.5 was proved in [lli]. 
The repsewnta~on (6.1)-/6.9) under the condition u, -. u f  Rk is known as the 
propsty of local asymgtoticd nomality (LAN) fbr the fadly of Ineasures 
(P#, & I E  @) as t -+ m at the point B E  O and i t  plap a dirndamental role in the! 
asymptoticd estimation theory /53. The property LAN was established for 
dzerent particular cases by many authors. 

Theorem 6.5 gives us the eonditiom for A6' in the particulizr case with the 
def-erministic matrix x = J .  The condition A6 is satlfied in the case x =; d if thr: 
conditions I, 2, 4 and 5 of Theorem 5.5 are satisfied and hstead s f  the 
condition 3 the following canditioa herds true: 

3'- for dl E 3 0 

lim lim Pa(l(ly,(0)lal 3 c)lrp,(iV)I,I a v(Q 3 n'j = 0, 
N-+m 5-m 

In "re case lu,! -+ a E (0 m) from Theorem 6.5 it fouows that the mndition A4 is 
satisfied with L = .IIEr(--aZJ%, a'), and k the east: lu,l --, 6 the condition A5 is 
true. 

Here we note the work [29] whem the condition A4 with the imfrniteig 
divisible law L in the case of quas3e&coratiauo1ts semimaftbgales is stabkhed. 

The conditions of Theswms 16.14.5 have a sraficienfly conapliwteal farm. 
Irr the foIIowing seetian we shall consider the examp1es of testiflg the caolditicsng 
Al-A6 far some particular models of seaaistical e x p e ~ e n t u .  

7, Examplm 
E ~ U P L E  1. Let tS - (ti, - . . , <:), t = 1 ,  2, . . . , where if are indepen- 

dent randoma v d ~ a h l ~ 8  with denriity I (x 2 bf) Xf exp ( - Y(x - b:)) under tire 
hypothese& Ht and with density rf(x @ ) ~ ~ x p ( l - ~ ( x - @ )  under the hypo- 
thew 8: It is  ewy to show that 



and ql  qa . . . , qr arc i.i,d. random variables with density J(x 2 O)ex:xp(-x). 
By (7,1$, we have Pt(z, -. os) = 0 iff 6 Z bt for a11 i = 1 ,  2, ., . , t= In this 

ease the type of srsymptotiml distjnguishability is determind by the behaviour 
of n,(N). In particular, 

Bim n,(W = 1 for all N < 0, Iim z,(W) r= O for all N o-(B*) E (Wt)), 

If lim PIE, = m) = O and jfi = A: for aU, t, i ,  then from (7.2)-117.4) it fofolfows 
that 

supct :, =. coaz supd, 4 m .=.(&)a @-If), 

- If I;"i .= bj: far all t ,  t ,  then li5f(z, = a01 f O for all il and, in general, 
lirnFf(zt = as) $ 0 .  M ~ w e w ,  awarding to (7.1H7,ll), in this case the probabijli- 
ty ESf(z, > N) taka the following sufieiently simple form: 



finally, let &: = b: and I! = I f  + 1 for a11 E ,  i and the limit lim P = 1 exists, If 
in the case E = 1 the additional condition t - = =dlt- 1 () is satisfied, then we 
have the complete asymptotical distinguishability INL) A @') for all I E EO, m j  . 
Moreover, in, this ease the conditicm A1 is satisfied and 

If I =. 1 and tu""lF- 11 -+ a ~ ( 0 ,  a), then tfre condition A4 is salisfied with 
L - N(- a2/2, a2), and if tL"/lP-- 11 -+ 0, then the condition A5 is valid. 

BUMPLE 2, Let tS - (eJQspgr, where {a has the stacbas~cal diEeremtiaJ 
d t  = d + w under the hypothesis M' and it has the stochmticd 
digeren~al de;', = gtgds +(,dw, under the hypothesis a'. Mere we assume that 
Ft(t, - 0) == PyCa = 0) - p E (0, 11, and ($3 and (2) are determinktie fuspc- 
lions, (w,) is a standard Wiener process, and u: = C($-ht)'ds c m for all 
t < a. Then P 7 ! - ~ 9 f a r  all t < (;o and 

where qf and Sj, are indepndent of t,, cf = Po1 for 5,  f; O and c$ = O for 
P, = 0, and 9 ( q ,  [ P" )- X"(4 I = N(Q, I]. Hence we obtain easily 

If lira@* = a, then from r7.5) m d  (7,h) it follows that 

Now let p = 0. Then the following altemtive holds: 

If Ern a, = as, then it is easy to nogce that the conditions R1, AZ' and AT' am 
satisfied far X, = 2-%? ::and the fdewiag st;ltements are true; 

(;a) if cx, + 0, than 

(b) if m, =+ 1, then 

where z, is a gquantile of the law M(O, f 1, From these statements it fo~&owrrs 



that the sufficient conditions af', dl ,  a2'aand (J2 in the implications of Theo- 
rem 2,4 caaoot be weaken~d. Museover, if Tim a, = a, then it is easy to show 
tbsit 

all, 01;?.1e$l7 dZ~?*plt, ,K!CSIZ~ -., - o ( ~ J ~ ) ~  

EXAMPLE 3, Let 5' = (ca),,z,g, be aet abwrvatisn of the difi~ioff process 
which is a solution oF the st~chastic difirential equation 

where A(x) = 4(x) under the hypothesis WE and A(x) = dlx) under the 
hypothesis R". We suppose that coefficients of the equation (7.7) satisfy the 
conditions of the existence and u~riqrreness of a strong soEutian under the 
hypotheses H' and p, b(x) > 0 for all x E R%aad P' - P"' for a11 t K a. Then 
(P"a.s.) 

t I 

A, = $A(~8)dcvs -2 -"S2[~&d~ ,  
0 0 

where Lix;) = (a"(x) -a  (x))/b (x), Suppose that the process f S,) is recunent to %@PIC) 

691, We iMraducce the random prows 6 ,  = f(cJ, h e r e  

Then by ItB"s formula d l ,  .= u{[JdwS, gg = 0, where a(x) = g8fe(xS)b(c(x)), ctx) 
is an inverge function ta f [ x ) .  

For the process C we introdurn cycles starting at the point h: = 0 and 
continuing up to tha moment of the first return to zero after attainhing the paint 
x = 1 ,  Suppose that T, is tfie moment of finishkg the nth cyck, 2, = 0, We 
assume that P i t ,  2 x) = ~ ~ ~ ( 1  +njl)) as x -+ CQ, c 3 0, O .c cr < 1, and the 
integral A"fx)b-'(x)dx = h is finite* 'Then, by meorem 11 .I in 191, Chapter 4$ 
WR see that as 1 - i  m 

where r (x )  is  the gamma fianction and tlt',{x) is  the distribution hnczion of 
a stable law with exponent ar for wfaich the Laplace transformation is OE the 
form expf-s"). Hence it f~lX?aws that the condition A3 is satisfied with. 
$l = (cT(I - ~ ) ) - l  kta, L(X) = G,([--X)-~/~) for x .c= 0, J = -GQ and i= 8. 

Exslnnsl~~ 4. Let < - (53 be a suuating prows with the mommrs of jumps xx, t,, A = 1 ,  2, . .., where r, are ti.d. positive randam vaiables with the 
distribution, Eunctioa 



Then the compensator ~ ( 0 )  = ( ~ ~ ( 8 ) )  of the process takes the fbHn 

Let yt = y and snae suppaw that the distribution fmctions F@; Jr) and F(r; @ me 
mutually absolwt~ly continusus. "Then the conditions of Theorem 5.1 arc 
satisfied. We intsoduw the: random variables 

where ;2, = a($; ~ ) / D ( s ;  81, B(S; y)  --- f ( 5 ;  y)J(1 -F(s ;  y)), E ~ E ( I ? ) ,  I). 
We assume that the random v&ables z,, v, and i ,  satisfy the Cramer 

condition 

$ expbdr,) < oo , E,exp(l6'v,) < rn and E, exp(.G'Yr,) < cr~, 

Pas some posilcive constants 6, &hand i5". .Then using the theorems of Jaxge 
deviations for sums of indepndent random variables, we infer easily. that the 
coditions .of Theorem 6.2 are satisfied when x, - a-'bt and n, is an integer 

such that n,(n + a&) = t + o(f), and 

wher&~ a =  E,z,, b =  E,v,, c = EJ,, o2 = &rlr  k72 = B Y , $ Z = & ~ l .  Can- 
@ 4 sequently, the condition A2 is satisfied under these res trretiorns. 
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