EXPONENTIAL ORLICZ SPACES AND INDEPENDENT RANDOM VARIABLES
 BY
 M. SH. BRAVERMAN (Khabarovsk)

Abstract

In this paper some inequalities for sums of independent random variables belonging to exponential Orlicz spaces are obtained.

0. Introduction. Let (Ω, \mathscr{A}, P) be a non-atomic probability space and $p>1$. The exponential Orlicz space $L_{(p)}(\Omega)$ consists of all random variables X defined on (Ω, \mathscr{A}, P) such that $\mathrm{E} \exp \left|\lambda^{-1} X\right|^{p}<\infty$ for some $\lambda>0$. The norm is defined by the formula (see [4])

$$
\|X\|_{(p)}=\inf \left\{\lambda>0: E \exp \left|\lambda^{-1} X\right|^{p} \leqslant 2\right\} .
$$

Probability problems connected with the exponential Orlicz spaces were considered by many authors (see, e.g., [1], [2], [7]).

The following result is well known. For the proof see, e.g., [6].
Proposition 1. The following conditions are equivalent:
(1) $\mathrm{E} \exp (t X) \leqslant \exp \left(B_{1}|t|^{p^{\prime}}\right)\left(|t| \geqslant A_{1}\right)$ for some $A_{1}, B_{1}>0$, where $p^{\prime}=$ $p /(p-1)$;
(2) $\mathrm{E} \exp \left(A_{2}|X|^{p}\right) \leqslant B_{2}$ for certain $A_{2}, B_{2}>0$;
(3) $P[|X| \geqslant x] \leqslant A_{3} \exp \left(B_{3} x^{p}\right)$ for some $A_{3}, B_{3}>0$ and all $x>0$.

Moreover, in each implication $(i) \Rightarrow(j)$ the constants A_{j}, B_{j} depend only on A_{i}, B_{i}.

1. Results.

Theorem 1. There exists a constant $A=A(p)$ such that for each set of independent random variables $\left\{X_{k}\right\}_{k=1}^{n} \subset L_{(p)}(\Omega), \mathrm{E} X_{k}=0$,

$$
\begin{gather*}
\left\|\sum_{k=1}^{n} X_{k}\right\|_{(p)} \leqslant A\left(\sum_{k=1}^{n}\left\|X_{k}\right\| \|_{(p)}^{\prime}\right)^{1 / p^{\prime}} \quad(p \geqslant 2), \tag{1}\\
\left\|\sum_{k=1}^{n} X_{k}\right\|_{(p)} \leqslant A\left[\left(\sum_{k=1}^{n}\left\|X_{k}\right\|^{p^{\prime}}\right)^{1 / p^{\prime}}+\left(\sum_{k=1}^{n} \mathrm{E} X_{k}^{2}\right)^{1 / 2}\right] \quad(1<p<2) . \tag{2}
\end{gather*}
$$

This result is an analogue of the well-known inequalities of von Bahr and Esseen [2] and Rosenthal [8].

We denote by H_{p} the expressions of the right-hand side of (1) and (2). Using Proposition 1 we conclude that the inequalities (1) and (2) are equivalent
for the estimate

$$
\begin{equation*}
P\left[\left|\sum_{k=1}^{n} X_{k}\right| / H_{p} \geqslant x\right] \leqslant B \exp \left(-C x^{p}\right) \tag{3}
\end{equation*}
$$

where $B, C>0$ depend only on p.
Let $\left\{Y_{k}\right\}_{k=1}^{\infty}$ be a sequence of independent identically distributed symmetric random variables such that

$$
\begin{equation*}
P\left[\left|Y_{k}\right| \geqslant x\right]=\exp \left(-x^{p}\right) \tag{4}
\end{equation*}
$$

for all $x>0$. We write, as usual, for $a=\left\{a_{k}\right\}_{k=1}^{n}$

$$
\|a\|_{r}=\left(\sum_{k=1}^{n}\left|a_{k}\right|^{r}\right)^{1 / r}
$$

Let $r(p)=p^{\prime}$ if $p \geqslant 2$ and $r(p)=2$ if $1<p<2$.
Theorem 2. There exist positive constants $C_{1}(p)$ and $C_{2}(p)$ such that for each real vector $a=\left\{a_{k}\right\}_{k=1}^{n}$

$$
\begin{equation*}
C_{1}(p)\|a\|_{r(p)} \leqslant\left\|\sum_{k=1}^{n} a_{k} Y_{k}\right\|_{(p)} \leqslant C_{2}(p)\|a\|_{r(p)} . \tag{5}
\end{equation*}
$$

This result shows that the power p^{\prime} in (1) is the best. The question about the best power in (2) is opened.
2. Some inequalities for characteristic functions. According to Proposition 1 , if $X \in L_{(p)}(\Omega)$, then the corresponding characteristic function $f(t)$ is extended to the whole function. Put

$$
\begin{equation*}
Q_{m}(X, z)=\sum_{j=1}^{m} \frac{i^{j} \mathrm{E} X^{j}}{j!} z^{j} \quad(m=1,2, \ldots) \tag{6}
\end{equation*}
$$

Lemma 1. Let $X \in L_{(p)}(\Omega),\|X\|_{(p)}=1, m=\left[p^{\prime}\right]$ and let $f(z)$ be the corresponding characteristic function. Then

$$
f(z)=1+Q_{m}(X, z)+R(z)|z|^{\max \left\{2, p^{\prime}\right\}}
$$

and $\sup \{|R(z)|:|z| \leqslant \alpha\} \leqslant \beta(p, \alpha)<\infty$ for all $\alpha>0$, where $\beta(p, \alpha)$ depends only on p and α.

Proof. By Taylor's formula and the well-known equality $\mathrm{E} X^{k}=i^{k} f^{(k)}(0)$ we get

$$
f(z)=1+Q_{m}(X, z)+T(z)
$$

The remainder term is represented in the form $T(z)=f^{(m+1)}(u(z)) z^{m+1} /(m+1)$!, where $u(z)$ belongs to the segment joining 0 and z. Using the formula

$$
f^{(m+1)}(u)=\int_{-\infty}^{\infty} u^{m+1} e^{i u x} d F(x)
$$

where $F(x)=P[X<x]$, and by Proposition 1 we get the estimate

$$
\left|f^{(m+1)}(u)\right| \leqslant \gamma(p, \alpha)<\infty
$$

where $|u| \leqslant \alpha$ and $\gamma(p, \alpha)$ depends only on p and α. Putting

$$
R(z)=T(z)|z|^{-\max \left\{2, p^{\prime}\right\}}
$$

we obtain the required representation. Thus the lemma is proved.
Let $0<r_{1}<\ldots<r_{n}<\infty$. Then

$$
\sum_{k=1}^{n} t^{r_{k}} \leqslant C\left(t^{r_{1}}+t^{r_{n}}\right)
$$

for all $t>0$, where C depends only on r_{1}, \ldots, r_{n}. This implies the inequality

$$
\begin{equation*}
\sum_{k=1}^{n} \mathrm{E}|X|^{r_{k}} \leqslant C\left(\mathrm{E}|X|^{r_{1}}+\mathrm{E}|X|^{r_{n}}\right) \tag{7}
\end{equation*}
$$

Lemma 2. Let $X \in L_{(p)}(\Omega), \mathrm{E} X=0,1<p<2$. Then for all complex z

$$
|f(z)| \leqslant \exp \left[C(p)\left(|z|^{2} \mathrm{E} X^{2}+|z|^{p^{\prime}}\|X\|_{(p)}^{\prime}\right)\right]
$$

If $p \geqslant 2$, then

$$
|f(z)| \leqslant \exp \left[C(p) \min \left\{\left(|z|\|X\|_{(p)}\right)^{2},\left(|z|\|X\|_{(p)}\right)^{p^{\prime}}\right\}\right] .
$$

Proof. Assume $\|X\|_{(p)}=1$. Then, by Proposition 1,

$$
\begin{equation*}
|f(z)| \leqslant \exp \left(B(p)|z|^{\prime}\right) \tag{8}
\end{equation*}
$$

for $|z| \geqslant A(p)$, where $A(p), B(p)>0$ are constants. Let $1<p<2$. Since $\mathrm{E} X=0$, by (6) and (7) we get

$$
\left|Q_{m}(X, z)\right| \leqslant \sum_{j=2}^{m} \mathrm{E}|z X|^{j} / j!+\mathrm{E}|z X|^{p^{\prime}} \leqslant C\left(\mathrm{E}|z X|^{2}+\mathrm{E}|z X|^{p^{\prime}}\right) .
$$

There exists a constant $D=D(p)$ such that $E|Y|^{p^{\prime}} \leqslant D\|Y\|_{(p)}^{p^{\prime}}$ for all $Y \in L_{(p)}(\Omega)$. Hence

$$
\left|Q_{m}(X, z)\right| \leqslant C_{1}(p)\left(|z|^{2} \mathrm{E} X^{2}+|z|^{p^{\prime}}\|X\|_{(p)}^{p_{p}^{\prime}}\right)
$$

Using the condition $\|X\|_{(p)}=1$, Lemma 1 and the inequality $1+x<\exp x$ we obtain

$$
|f(z)| \leqslant \exp \left[C_{2}(p)\left(|z|^{2} \mathrm{E} X^{2}+|z|^{p^{\prime}}\right)\right] \quad(|z| \leqslant A(p))
$$

From this and (8) the required estimate is deduced.
If $p \geqslant 2$, then $m=1$. Since $\mathrm{E} X=0$, we have $Q_{m}(X, z)=0$. From Lemma 1 we obtain

$$
|f(z)| \leqslant 1+\beta(p)|z|^{2} \leqslant \exp \left(\beta(p)(p)|z|^{2}\right)
$$

for $|z| \leqslant A(p)$. Since $p^{\prime} \leqslant 2$, from (8) we get

$$
|f(z)| \leqslant \exp \left[C(p) \min \left\{|z|^{2},|z|^{p^{\prime}}\right\}\right] .
$$

Now we remove the assumption $\|X\|_{(p)}=1$. Let $t=\|X\|_{(p)}, Y=t^{-1} X$ and let $g(z)$ be the characteristic function of Y. Then $g(z)=f(z / t)$. Using the estimates obtained for $g(z)$, we get the required estimate for $f(z)$. Thus the lemma is proved.
3. Proof of Theorem 1. Let $\left\{X_{k}\right\}_{k=1}^{n} \subset L_{(p)}(\Omega)$ be independent random variables, $\mathrm{E} X_{k}=0$ and $f_{k}(z)$ be the corresponding characteristic functions. We denote by $f(z)$ the characteristic function of the sum $\sum_{k=1}^{n} X_{k}$. Then

$$
\begin{equation*}
f(z)=\prod_{k=1}^{n} f_{k}(z) \tag{9}
\end{equation*}
$$

Let $1<p<2$ and let H_{p} be the expression of the right-hand side in (2). Then, by Lemma 2 ,

$$
|f(z)| \leqslant \exp \left[C(p)\left(\left|z H_{p}\right|^{2}+\left|z H_{p}\right|^{p^{\prime}}\right)\right]
$$

for all complex z. Since $p^{\prime}>2$, we have

$$
|f(z)| \leqslant \exp \left[2 C(p) \mid z H_{p} p^{\prime}\right]
$$

for $|z| \geqslant H_{p}^{-1}$. Using Proposition 1 we obtain (3), which implies (2).
Let $p \geqslant 2$ and $t_{k}=\left\|X_{k}\right\|_{(p)}$. We can assume, without loss of generality, that

$$
\begin{equation*}
\sum_{k=1}^{n} t_{k}^{p^{\prime}}=1 \tag{10}
\end{equation*}
$$

From (9) and Lemma 2 we obtain

$$
|f(z)| \leqslant \exp \left[C(p) \sum_{k=1}^{n} \min \left\{\left|t_{k} z\right|^{2},\left|t_{k} z\right|^{p^{\prime}}\right\}\right] .
$$

Since $t_{k} \leqslant 1$ and $p^{\prime} \leqslant 2$, we have $t_{k}^{2} \leqslant t_{k}^{p^{\prime}}$. Hence

$$
\min \left\{\left|t_{k} z\right|^{2},\left|t_{k} z\right|^{p^{\prime}}\right\} \leqslant t_{k}^{p^{\prime}} \min \left\{|z|^{2},|z|^{p^{\prime}}\right\}
$$

This inequality and (10) imply the estimate

$$
|f(z)| \leqslant \exp \left[C(p) \min \left\{|z|^{2},|z|^{p^{\prime}}\right\}\right]=\exp \left[C(p)|z|^{p^{\prime}}\right]
$$

for $|z| \geqslant 1$. Using Proposition 1 we get (1). Thus Theorem 1 is proved,
4. Two lemmas. The results of this section will be used in the proof of Theorem 2. It is not difficult to show the next proposition.

Lemma 3. Assume that a symmetric random variable X has the whole characteristic function $f(z)$ and there exist constants $p>1$ and $a, b>0$ such that $P[|X| \geqslant x] \geqslant b \exp \left(-a x^{p}\right)$ for all $x>0$. Then there exist constants $c, d>0$, depending only on a, b, p, such that for $|t| \geqslant d, t \in \mathbb{R}$

$$
|f(-i t)| \geqslant \exp \left(c|t|^{p^{\prime}}\right)
$$

Lemma 4. Let the conditions of Theorem 2 be fulfilled. Then for all $A, B>0$ there exists a constant $D=D(A, B, p)$ such that if

$$
\begin{equation*}
P\left[\left|\sum_{k=1}^{n} a_{k} Y_{k}\right| \geqslant x\right] \leqslant A \exp \left(-B x^{p}\right) \tag{11}
\end{equation*}
$$

for all $x>0$, then $\sum_{k=1}^{n}\left|a_{k}\right|^{r(p)} \leqslant D$.
Proof. Let $p>2$ and $f(z)$ be the characteristic function of Y_{1}. Since Y_{1} is symmetric, $\mathrm{E} Y_{1}=0$. Hence $f(z)=1-\left(\mathrm{E} Y_{1}^{2} / 2\right) z^{2}+O\left(|z|^{2}\right)$ when $z \rightarrow 0, z \in C$. Consequently, $f(-i t) \geqslant \exp \left(u t^{2}\right)$ for sufficiently small $t \in R$, where $u>0$ is a constant. Applying (4), we get easily the strong inequality $f(-i t)>1$ for all $t \in \boldsymbol{R}, t \neq 0$. Using Lemma 3 we conclude that there exists a constant $C(p)$ such that for all $t \in \boldsymbol{R}$

$$
f(-i t) \geqslant \exp \left[C(p) \min \left\{t^{2},|t|^{p^{\prime}}\right\}\right]
$$

Assume that (11) holds. The sum $\sum_{k=1}^{n} a_{k} Y_{k}$ has the characteristic function

$$
g(z)=\prod_{k=1}^{n} f\left(a_{k} z\right)
$$

From (11) and Proposition 1 we obtain $|g(z)| \leqslant \exp \left(B_{1}|z|^{p^{\prime}}\right)$ for $|z| \geqslant A_{1}$, where $A_{1}, B_{1}>0$ depend only on A, B, p. Using the last inequalities we obtain

$$
C(p) \sum_{k=1}^{n} \min \left\{\left(a_{k} t\right)^{2},\left|a_{k} t\right|^{p^{\prime}}\right\} \leqslant B_{1}|t|^{p^{\prime}} \quad \text { for } t \in \boldsymbol{R},|t| \geqslant A_{1}
$$

Since $p \geqslant 2$, we have $r(p)=p^{\prime}$. Hence

$$
\sum_{k=1}^{n}\left|a_{k}\right|^{r(p)}=\sum_{k=1}^{n}\left|a_{k}\right|^{p^{*}} \leqslant B_{1} / C(p) .
$$

If $1<p<2$, then $r(p)=2$. From (11) we get

$$
\left(\sum_{k=1}^{n} a_{k}^{2}\right) \mathrm{E} Y_{1}^{2}=\mathrm{E}\left(\sum_{k=1}^{n} a_{k} Y_{k}\right)^{2} \leqslant C(A, B, p)<\infty
$$

This implies the required estimate and proves Lemma 4.
5. Proof of Theorem 2: The right-hand side inequality in (5) follows from Theorem 1. Suppose that the left-hand side inequality is not true. Then there exist some sets of real numbers $\left\{a_{k}^{(j)}\right\}_{k=1}^{n(j)}(j=1,2, \ldots)$ such that

$$
\begin{equation*}
\sum_{k=1}^{n}\left|a_{k}^{(j)}\right|^{(p)}=1, \quad\left\|\sum_{k=1}^{n(j)} a_{k}^{(j)} Y_{k}\right\|_{(p)} \leqslant 2^{-j} \tag{12}
\end{equation*}
$$

Put $m(0)=0, m(j)=n(1)+\ldots+n(j)(j \geqslant 1)$ and

$$
S_{l}=\sum_{j=1}^{l} \sum_{k=1}^{n(j)} a_{k}^{(j)} Y_{m(j-1)+k} \quad(l=1,2, \ldots)
$$

According to (12) we have $\left\|S_{l}\right\|_{(p)} \leqslant 1$. Using Proposition 1 we conclude that

$$
P\left[\left|S_{l}\right| \geqslant x\right] \leqslant A \exp \left(-B x^{p^{\prime}}\right) \quad \text { for all } x>0,
$$

where $A, B>0$ depend only on p. By Lemma 4 we have

$$
\sum_{j=1}^{i} \sum_{k=1}^{n(j)} \mid a_{k}^{(j)} r^{(p)} \leqslant D(p)<\infty .
$$

But (12) implies that the sum in the left-hand side is equal to l. Hence the last estimate cannot be true for all l. This contradiction proves Theorem 2.

REFERENCES

[1] A. de Acosta, Exponential moments of vector valued random series and triangular series, Ann. Probability 8 (1980), pp. 381-389.
[2] B. von Bahr and K.-G. Esseen, Inequalities for the r'th absolute moment of a sum of random variables, $1<r<2$, Ann. Math. Statist. 36 (1965), pp. 229-303.
[3] V. V. Buldygin and J. V. Kozachenko, On subgaussian random variables (in Russian), Ukrainian Math. J. 32 (1980), pp. 723-730.
[4] M. A. Krasnoselski and J. B. Rutitski, Convex Functions and Orlicz Spaces (in Russian), Physmathgis, Moscow 1958.
[5] S. G. Krein, J. I. Petunin and E. M. Semyonov, Interpolation of Linear Operators (in Russian), Nauka, Moscow 1978.
[6] J. V. Linnik and I. V. Ostrovski, Decomposition of Random Variables and Vectors (in Russian), Nauka, Moscow 1972.
[7] M. B. Marcus and G. Pisier, Stochastic processes with sample path in exponential Orlicz spaces, Lecture Notes in Math. 1153 (1985), pp. 329-358.
[8] H. Rosenthal, On the subspaces of $L_{p}(p>2)$ spanned by sequences of independent random variables, Israel J. Math. 8 (1970), pp. 273-303.

Institute for Applied Mathematics
Far Eastern Branch of Russia Academy of Sciences
Fruuze 72, Khabarovsk, 680002
Russia

