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ORDERLINESS AND COMPENSATION
FOR MULTIPARAMETER POINT PROCESSES

BY
ELY MERZBACH (Ramat-Gan)

Abstract. Several results about orderliness and multiple points for two-parameter
point processes are discussed. Compensators are constructed and a relation between the
continuity of the compensator and the jump points of the process is given

0. Introduction. A point process in the plane is a random distribution of
points in a subspace of the plane, generally the positive quadrant R%.. Whereas
the point processes on the real line have particular properties derived from the
natural linear order of the real numbers, the case of plane or generally R™-point
processes seems more difficult due to the lack of total order between the jump
points of the process. Here we treat only the two-parameter case (the plane),
but almost every result can be simply extended to the n-parameter case,
following the natural partial-order in R".

The general case in which the parameter set is a o-algebra of subsets of
some space was first studied extensively by Kingman [6] and by Mecke {9].
Some developments are due to Belyayev [1], Leadbetter [7], Milne [11],
Jagers [4], Kallenberg [5] and Neveu [12].

This paper contains both some new results as well as several dispersed
important results which are recalled but without proofs. In the first section we
develop the basic tools for the study of two-parameter point processes such as
the notions of simple point processes, jump lines and optional increasing paths.
Also the notion of bimeasure associated with a process is defined which gives
a unified presentation of some general results. The second section is devoted to
the concept of orderliness with its ramifications, which extends some works of
Daley [2]. The notion of stationarity is introduced, and in this section we treat
general results such as Korolyuk’s theorem and Dobrushin’s lemma following
the approach of Leadbetter [7].

In the last section, we introduce the predictable g-algebra, the different
kinds of martingales, and the compensator of a point process. It is proved that
if the difference between a point process and its compensator is a strong
martingale and if the compensator is continuous, then with probability one,
any given optional increasing path contains at most one jump point.
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In order not to complicate matters, the notion of multivariate or marked
process is not introduced in this paper, but it seems that the same techniques as
the classical case can be applied.

1. Notation and preliminaries. The usual notation and the main tools are
introduced as in [10] as follows: The processes are indexed by points of R% in
which the partial order induced by the Cartesian coordinates is defined: let
z=(s,f)and 2’ = (5, t);thenz< 7 ifs<sandt<t,and z < 2 if s < 5 and
t<t. Wewrite z A z'if s < 5" and t > t'. A probability space (2, &, P)is given
equipped with an increasing right-continuous filtration {#,, ze R3} of sub-
c-algebras of #. For z=(s, 1), put F! =F( oy and F2=F,, and F}
= F1! v #2 Remark that, in contrast to {10], the conditional independence
property: for every z, #! and &2 are conditionally independent given % ,, will
not be assumed throughout the paper.

DermviTion. Let L be a subset of R, L is called a decreasing line iff

(i) Vz, ZeL= either z A 2 or 2’ A z;

(ii) YzeR% and z¢L, 32el: z<7 or Z < z.

Denote by S the set of all the decreasing lines. For each z = (s, #), put
F={(s, ) t <O, 1) s<s},
z={str <o, ) s <spu{0, ) t<}U{(s, 0): s <5},
Z=Zuz.

Clearly, Z, ze S (but not z). Notice that, in the definition of z, the two last terms
" are a part of the axis, and they do not appear in [10]. Indeed, these terms
intervene only if the process has jumps on the axes.

L L'eS, wewrite L I/ ifVzelL, 32 €L such that z < 7. This relation
defines a partial order in §. L< L' will mean L L' and LA L' = @. Also
z < L will mean z < L. Moreover,

LAL =sup{l’eS: L"<L and L" < L7},
LvL=inf{l"eS: L<L" and L' < L"}.

Let A be a subset of R%, the Debut of 4, denoted by D, will be the greatest
clement of S such that z < D, ,=z¢ 4. (For example, Dy, = Z.)

A random decreasing line L: @ — S is called a stopping line if, for every
zeR%, {o: z < L(w)} e #,. A stopping point Z is a random point such that Z is
a stopping line. L is called a stepped stopping line if, for every we @, the set of the
minimal points (with respect to the partial order <) of L(w) is denumerable and
is finite in every bounded domain. A random increasing path I’ is called an
optional increasing path if, for every stopping line L, Dy is a stopping point,

A process A= {A, zeR%} is called increasing if its increment on
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The difference of two increasing processes is called a process of bounded
variation. We can always suppose that an increasing process is right-con-
tinuous, and has limits in the other quadrants. Let X = {X_, zeR%} be
a right-continuous process (lim X, = X, for z < 7, 2 — z) with limits in the
other quadrants, and denote its jump at z = (s, t) by the following:

AX, =X, ~ XX+ X,-y AX, =X, ~Xy-0 FX =X —~Xi.

Therefore , ,

dXx = dlxz""'AlX(sJ—-) = Aézxz;«AZX(s—lnu
Moreover, if X is increasing, then the set of its discontinuous points is
constituted by a countable number of semilines parallel to the axes, and if X is
also adapted, then this set is a countable union of stepped stopping lines.

DEFINITION. A right-continuous process M = {M,, ze R3} is called a plane
point process if:
(i) M vanishes on the axes and takes its values in Nu {c0},
(i) M is increasing,
(iii) M is adapted (with respect to a given filtration {#,, zeR3%}).

In [10] we required also that, for every ze R%, AM_, A'M,, A*M, {0, 1}.
Here, a process satisfying this property will be called strictly simple, and if
we require only AM {0, 1}, the process will be called simple. It is clear that if,
for every zeR%, A'M,, 4°M,e{0; 1}, then M is strictly simple.

Clearly, for all z, we have M, = ) ..<, 4AM,. (see [10]). Therefore, M can be
characterized as an adapted discrete measure which is a linear combination of
Dirac measures ) ,«,8, at the jump points {z,}, e.g, the set of the (different)
points such that AM, # 0 and is finite for every bounded set belonging to
{M < w}.

To every point process M we can associate another point process M*
which is simple, defining it by },J, .

Notice that M* is not necessarily strictly simple; but as a consequence of
the following proposition we can associate to M another point process M**,
which is strictly simple, by deleting for every n the jump point z, belonging to
vertical or horizontal lines generated by {z,, m < n}.

ProposiTion 1.1. M is a strictly simple point process if and only if
P{M(L)y=0 or 1 for every segment L of a straight line
parallel to one of the axes} =1.

Proof. Suppose M is strictly simple, and let L be a segment parallel to,
say, the first axis such that M(L) > 1. Then there are at least two consecutive
points z = (s, t) and 2z’ = (§', 1} on L which are jump points: AM, = AM,, = 1.
Since M is strictly simple, we obtain 4'M, = 42M,. =1, and therefore
M-y = Mg, and M- -y = M,-,, which means that M_ = M,-,. This
contradicts the fact that 42M, = 1.
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Conversely, suppose the condition of the proposition is satisfied and
suppose that there exists a point z such that 4* M, > 1. Then at least one of the
segments of z has an M-measure larger than one, which contradicts the given
condition. m

The jump points {z,} of the point process M are only partially ordered
and cannot characterize the point process. Moreover, generally, they are not
stopping points. Therefore, it is now customary to introduce the jump lines of
M by the following:

Define

L,(w) = Debut{z: M, (@)= 1} = A,Z,,

and for n>1
L,(w) = Debut{z: AM_(w)>1, L, <z}
= A,z for all integers k such that L, ; <Z,.

In [10], it is proved that these lines form an increasing sequence of
stopping lines which characterize the point process M.

ProrostTion 1.2. If M is a strictly simple point process such that, for every
stopping point z, |A* M, +A*M,— AM_| = 0 or 1, then for any optional increasing
path T' the one-parameter point process M" along this path is also simple.

Conversely, if for any optional increasing path I' the one-parameter process
MT is a simple point process and if M is increasing, then M is a strictly simple
point process.

The proof of this proposition is easy since the first point of intersection
between an optional increasing path and a stopping line is a stopping point.
This proposition shows that the strictly simple property is very natural when
we extend the simple property from the one-parameter case.

The simplest and best known point process is the Poisson process. It is
defined in almost all the references. Recall that the Poisson process is strictly
simple, its jump points are not stopping points but it has an infinity of jump
lines which are stopping lines and each one is constituted by an infinity of
segments parallel to the axes [8]. ,

A useful tool for the study of point processes is the concept of bimeasure,
that is, a function of two variables such that it is a measure in each variable
when the second variable is fixed. Generally, a bimeasure cannot be extended
to a measure on the o-algebra generated by the product space.

Let M be a point process and denote by 1,, or simply A the bimeasure on
the product space (2 x R%, # x 4) defined by

MF, B) = [ M(B)dP.
F

(Kingman in [6] defined another bimeasure which also characterizes the
point process.)
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The measure A(R, ) is called the measure intensity (or sometimes the
principal measure) of the point process. If (@2, -) is a Radon measure (finite on
bounded Borel sets), then we say that M is integrable. From now on, we
suppose that this condition is satisfied.

Let us end this section with the following result due to Kallenberg.
A simple proof can be found in [4].

ProrosiTiON 1.3. Let M be a point process and o < # an algebra
containing some basis for R% . Then the distribution of M* is uniquely determined
by all P{M(A)= 0} for bounded Aesi.

2, Orderliness and stationarity. In the classical theory of point processes
orderliness is loosely speaking the property that points are distinct or that
probabilistically they are not infinitesimally close. Various definitions have been
proposed and extensively studied by Daley [2] in the real case, Notice that the
word “orderliness” is used because this condition implies that almost surely there
exists an essentially unique ordering of the jump points of the process.

In the two-parameter case, some definitions have different useful generaliza-
tions and others have no meaning. For example, the following two definitions are
clearly independent of the property of a point process to be simple.

DeFmITION. A point process M is called m-orderly if
P{M({L)=0or 1} =1 for every m-null set L in RZ,

where m is a measure, generally the Lebesgue measure in R%.

More particularly, a point process M is said to be without m-atoms if

P{M(L)=0}=1 for every m-null set L in R%.

However, an interesting strengthening of the strictly simple property is the
following:

DEFINITION. A point process M is called stochastically orderly if

P{M(I')=0 or 1} =1 for every optional increasing path I.

Note that the Poisson process in the plane and, more generally, the Cox
process is “without m-atoms” (where m is the Lebesgue measure). In the next
section, it will be proved that it is also stochastically orderly.

Other definitions are taken from [2]. Assume that the rectangles in the
following definitions are with sides parallel to the axes.

DerNITION. A point process M is called ordinary if for every bounded
rectangle D

inf ZP{M(DJ =2} =0,

where the infimum goes over all the finite parmmns {D;} of D into mutually
disjoint subrectangles.
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M is called (uniformly) Khintchine orderly if for each ze R3 and & > 0 (for
each &>0) there exists d=0(z,8) (=d(g) such that P{M(D)= 2}
<g-P{M(D) = 1} for a rectangle D such that ze D and m(D) < ¢ (P{M(D,)
=2} <g P{M(D,) = 1} for all rectangles D_ with first point z such that
m(D,) < 8).

DeriNiTION. M is called (uniformly, m-) analytically orderly if, for each
zeR%,

lim m(D)"'P{M(D)>2}=0, where zeD

mi{D}—+0

(resp.
lim sup m(D,)"*P{M(D,) > 2} =0,
D)= zeRy

for each m-null set L
lim m(L) *P{M(L,) =22} =0, where {L };-, decreases to L).

"+ m

PrOPOSITION 2.1, Let M be an m-analytically orderly point process and let
m be a non-atomic Radon measure on R%. Then M is simple, and if m is
absolutely continuous with respect to the Lebesque measure, then M is strictly
simple.

Proof. Let a compact set K in R% and & > 0 be given. Since m is Radon, it
is finite on compact sets and regular. Therefore, for each point z there is an
open neighborhood L, of z such that

P{M(L,) = 2} < em(Ly).

A finite number of these neighborhoods, say n; cover K and each point belongs
to a finite number of such neighborhoods. Now we obtain in the usual way
a partitioning of K into disjoint Borel sets 4,,..., 4, with

P{M(A) = 2} < em(4,).
Therefore

P{there exists a point z such that M(z) = 2}
! n n
< Y P{M(4) =22} <& ), m{4)=em(K).
i=1 i=1
Since this holds for any & > 0, this probability vanishes and we obtain the
simple property for points in K, and therefore in the whole space by the
o-compacingess property.
Suppose now that m is absolutely continuous with respect to the Lebesgue
measure. Following the same argument, for any vertical line L there is an open
neighborhood L, of L such that

P{M(Ly) > 2} < em(Ly);
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and, therefore, as before
P{there exists a vertical line L such that M(L) 22} <¢
The same holds for horizontal lines and, following Proposition 1.1, the proofis-
complete, =
Other results are close to those given by Daley in [2].
THEOREM 2.2. Let M be a (uniformly, m-) analytically orderly point process.
Then it is ordinary, and therefore M is simple.

The proof of the first part follows that of Daley (Assertion 2 in [2]) since

% is locally compact, and the second part is similar to that of Leadbetter [7].

Relations with the Khintchine orderly property involve the following
possibly infinite valued measure:

u(B) = sup{Y. P{M(B) > 0}, B,e, B, disjoint, | B,= B}.

This measure is called the parametric measure of M. It is o-finite if the point
process M is finite (a.s.) on every bounded Borel set,

THEOREM 2.3. Let M be a finite and uniformly Khintchine orderly point
process. Then it is Khintchine orderly, and therefore it is ordinary.

Here, too, the proof is essentially the same as given by Leadbetter [7].

The following resuit is a generalization of Korolyuk’s theorem and was
proved by Belyayev. A simpler proof of the following two theorems was given
by Leadbetter in [7] using dissecting systems.

THEOREM 2.4. Let M be a point process and suppose that the measure A, in
R% is o-finite. Then

u(B) = E[M*(B)] = A,(Q, B) for every Borel set B in R%.

In particular, if M is simple, then Hy Apy and Ay coincide on 4.

Another result, which can be viewed as a converse of Theorem 2.2, is the
following generalized version of Dobrushin’s lemma.

THEOREM 2.5. Let M be a simple point process finite on bounded Borel sets.
Suppose that there exists a sequence of non-negative real numbers {a,} and
a function ¢(t) — 0 as t — O such that, for each n and for every rectangle D, with
rational endpoints and the same measure depending on n,

a, < P{M(D,) >0}~ *P{M(D,) > 1} < ¢(a,).
Then the point process M is uniformly Khmrchme orderly and uniformly
analytically orderly.

DEeFINITION. A point process M is called stationary in law if for every
sequence of bounded Borel sets B,,..., B, in R% the probability law of
(M(B,+2), ..., M(B,+z)) does not depend on z (zeR%).

7 — PAMS 122
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Note that if M is stationary in law, then the conditions of Theorem 2.5
clearly hold. If M is stationary in law, then the measures A(Q, -) and u(-) are
invariant under translation. Therefore, they are multiples of the Lebesgue
measure m(-) on the plane. That is, A(2, B) = Am{(B), and u(B) = um(B) for
every Borel set B, where A and u are called the intensity and the parameter of
the stationary point process, respectively. It is clear that u < 4, and Korolyuk’s
theorem states that in general they are equal. More generally, if the measures
A(Q, -) or u(-) are absolutely continuous with respect to the Lebesgue measure,
then their Radon-Nikodym derivatives are called ﬁhe intensity and the
parameter of the process, respectively.

We obtain the following Khintchine’s existence theorem.

THEOREM 2.6. Suppose M is a simple point process which is stationary in law.
Then M is both uniformly Khintchine orderly and uniformly analytically orderly,
and

lim m(D,)"*P{M(D,) > 0} = A =4,

B+
where {D,}, are rectangles such that {m(D,)}, is a sequence strictly decreasing to
zero. Moreover, if M is also an almost surely m-orderly process, then it is
m-analytically orderly.

3. Compensation. In order to study further the dynamical properties of
a point process, we must introduce the notions of predictability, of martingales
and the notion of the compensator of a point process.

In the product space Q x R%, the predictable (resp. *-predictable) g-algebra
is defined to be the g-algebra generated by the sets F x(z, z'], where F e &_ (resp.
FeZ*),and (z, 7] is the rectangle {£: z < & < 2}; it is denoted by 2 (resp. 2*%).

Let us introduce the different kinds of martingales used below. Let
M ={M,, zeR%} be an adapted and integrable process. M is a weak
martingale if E[M(z, 2| #,] =0, M is a martingale if E[M_ | #,] = M, for
every z < Z', and M is a strong martingale if it is a martingale and E[M(z, 2]
| #%] = 0 for every z < 7’ in R%. To every increasing integrable and adapted
process A we can associate its dual predictable projection denoted by 4. If the
conditional independence property on the filtration holds, then the dual
predictable projection is characterized to be the unique predictable increasing
process such that 4—A4 is a weak martingale.

If M is a point process, then its dual predictable projection M always
exists and is called the compensator of M; that is, M — M is a weak martingale.
Generally, in order to prove the uniqueness of the compensator, the con-
ditional independence property is needed. However, for the simple point
process the compeusator can be calculated directly as follows:

PROPOSITION 3.1. Let M be a simple point process. Then, for every ze R%,

= hm Z E[M(Di‘")}l '%u’,m_] = hm z P{M (DE“}} > 0; ‘%i,ﬂ} ¥

n-ron i n-+a i
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where, for every n, {D{"}, is a rectangle partition of the rectangle [(0, 0), z1, di,n
is the first point of DV, and it is assumed that the mesh size of the n-th partition
tends to zero.

An important corollary to the fact that A is a measure on the product
space is the following result. Its proof was given by Ivanoff [3].

PROPOSITION 3.2. Let M be a simple point process and the filtration {#.}
satisfies the conditional independence property. Then there exists an increasing
and adapted process M such that M — M is a strong martingale. In other words:
Ay = Ay on P*

Recall that, in the Poisson case, M = M is deterministic, M — M is in fact
a martingale and a strong martingale, and this property characterizes the
Poisson process [10].

The continuity of the compensator M implies that the point process M has
no atoms. More generally, if M is absolutely continuous with respect to
a measure m, then M is “without m-atoms”.

In the strong martingale case, we have a stronger result:

THEOREM 3.3. Let M be a simple point process whose compensator M is
continuous and M — M is a strong martingale. Then M is stochastically orderly
(and therefore M is strictly simple).

Proof The main idea of the proof follows Ivanoff [3], except the fact
that M must not necessarily be deterministic. For k < oo arbitrary, define
a rectangular grid {D™};; of [0, k], which must tend to zero where n tends to
infinity. Let I be an optional increasing path, A be the event that I' contains
more than one point, and B, be the event that M(D{}) > 1 for some pair (i, j).
Therefore

Adcl) U MO >0n{MDnI)>0}uB,
T

and putting
A= \J DE

(k=15
{0y # (5.5

we obtain

P(A) <Y P{M(A A T) > 0| M(DJ N T) > 0} P{M(D{j' n I') > 0} + P(B,).
iij

Since M is simple, P(B,) 0 as n— 0. Now,“ note that
{M(D " 1) >0 eFg - for any (k, 1) =@, ), (k1) # (0, )),

M is continuous and M — M is a strong martingale. Thus, for any & > 0, if n is
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sufficiently large,
P{M(AP AT)> 0| M(D® A T) > 0} < E‘[M(d M~ T) | MD® AT) > 0]
= E[M(4{ I M(DE AT) > 0] <E[MID)|MDF AN >0]<e
Finally, for n sufﬁaientiy large, we obtain
P(A)<e Y P{M(DD{y nI)> 0} +P(B,),

»J

and therefore P(A4) =
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