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ORDERLINWS m D  COMPENSATION 
FOR MUk'PsIPAWAmTER P O W  PRrDCESSW 

Bbstraa &vaal results about orderliness and multiple pdnts for two-parmeter 
paint processw are discncussd. Campensatom arc construct~d md ta relatian betwma the 
wngnuity of thF comp~aator and the jump points af the proem is  given 

0, h&d~cgow. Pi point process in the plane is a rmdom distribution of 
points in a subspace of tbe plam, geazerdy the psitive quadrmt 8:. m e r e s  
the: point processes on the real line haw gas*ticlrEar proper~es deriwd from the 
natural Ifnear order of the reat numbers, the case af plane or generally Rn-point 
praauses seems more &Ecult due to the lack of total order bet*- Elre jump 
pcEints of the proeess. Here we treat only the two-parameter case (the plane), 
but almost every result can simply extended to the n-parameter mse, 
fullowing the natural pzlftial-order in git". 

%he @nerd case in which the pameter set is a @-algebra of subsets of 
some space wats first studied extensively by b p a n  [63 and by Mecke [9j, 
Ssmae develapments me due to Bdyayev [I], Leadbetter [?], Millie [% $1. 
Japrs [4jr Mallenberg [5] and 1\Teveu [la. 

This paper contains both somc new reaults as weU as: several d i s p m d  
impartant resulB which are recalled but witboat proofs, Xn the first section we 
develep the bask tools for the study of two-parameter point processes such as 
the notions d simple paint. lproceasles, jlrsrnp Iims arad optional increagkg paths. 
Also the nation of bimeasu~ assosiatd with a grmas  is deFmed wWhiGPl gives 
s uniffed praeaatatisn af osme geaerd results. The second section i s  devatad 2s 
the concept nf orderliness with its rmifications, which extends some works of 
Ddey [Z], Tke mtisltl ofstatiopiapity is  iartrodumd, and in this sectim we treat 
$enem1 reglzlts such as Koralyuk"8 theoaexn and DsbrusWs lmma following 
the apprszh of badbetter [A. 

In the last seetian, we intradulee the predictabk: cr-aleha, the different 
kinds 0% martiagdf:~, and the ccrenperrsator of a point process, Xt tr; groved that 
if the di8erenee betwen a point pmass and its compesatar is a strong 
mwtingale and il the sopsapnsatar i s  contjnuous, then with probability one, 
any aven rrptiond snlcreasi%g path wntains at most one jump pint.  



In order not to complicate matters, the ne~on of multivariate or marked 
process is not introduced in this gaper, but it seems that the same kechniques as 
the dwsi~al case carJ be applied, 

1, kdatadcsm s d  pp:@@nrinsrde%. me usual natation and the main baEs are 
introdused as {in ClO] as follows: The processes are indexd by paints of 8: in 
which the; partial order induced by the Cartesian coordinates is  defined: bt 
z=(~,r)md~'-(~~,P);thenzdz'ifsddmdtdt~andz~z~ifs.rs'asrd 
r < a" We write s A z3if J G s' and t 3 t'. A probability space (a, 9, P] is given 
equipped with an increasing ~gbt-continuous filtration (Pz, i. E R: 3 of sub- 
s-algebras of F. FOP z = (s ,  t ) ,  put Fi = St,,,) and s: = f17"1,,,, and s$ 
=: Fi v 9:. Remark that, in contrast to [10], the conditional independence 
proprty: for avev z ,  S: and 9: are conditionally independent gven Fz, will 
not be asswed throughout the paper. 

D ~ E ~ ~ Q N .  Let L be a subset d R?. L is eded  a decreasiag line iff . 
(J$ Yz,   EL* either s A z' or z' A z;  
(ii] Vz~mz12, and z$L,  3z"Et: z < z' or z" < z. 

Denote by S fhe set of a3a the dec~asifae; fines. h r  each z - (3, t), put 

2 - zuz. - 

Clearly3 3, g E S (but not 3. Noti= that, in the definition of g, the two last tcmw 
are -r: part of the axis, and they do not appear in [103. Indeed, these &m 
iatecvene only if the process hats jumps an t h ~  axes. 

E~L,CES,  W ~ W ~ ~ ~ L < ~ ~ ~ ~ Z E L , ~ Z ' E ~ ' H : S U G ~ ~ ~ ~ Z  ~ z " .  'fhiss%lstaion 
defina a partid order in S.  L < 6/ wiH mem 6. G L" and Ln f: -. liS, Mso 
a g L MU mean q < L. Moreover, 

L A  K=~up(k"'eS: L'" GI. and L" G L ' ) ~  

Let A be a subset of R t  , the Debut of A, d e n a d  by Dar be the greatmt 
demetrt ~f S such &at z < DA z t$ A .  @OH marslp1.;e, DC1 = 2.1 

A random dwreas& line L: 9 4 S is; Galled a stoppirzg line If, for eveq 
z E R t  , (a: 1 4 &(a)) F ZFp* A stomiw paitzt Z k a rmdom point sue11 that is 
a s b p ~ n g  lke, 6, i s  called a stepped stoppiw lim if, Tm evey w c 8, the set d the 
minimal points (with respat to the pdial order g) d Lrco) is denmefable and 
is: finite in every huaded domain, A random hcreagkg path $" is casSed an 
aptional hcreming path jl; for aery stopping line L, D,,,. i s  a stopping point, 

A prosess A = (A,,  z ~ R 2 , )  is cdled tnllcreasivtg if its iclcxrncnt on 
every rwtrngt: ( z ,  217 is non-nqdive: A(z, z'] = AA,F-AIs,t,-At,fis,r+R, 2 63, 



The diuerencr: of two increasing precesses is called a process af bounded 
rra~iatirn, We: am always suppose that m increasing process 39 sight-con- 
tkuans, a d  has limits in the ather quadrants. Let X = {Xz, Z E R ~  f be 
a right-continuous process (Iim X,, = SC, for z .cr 2" z' z'-1 with, limits in the 
other quadwats, and denate its jump at z = (3, t )  by the foliowing: 

There fare 
AX, = d x ~ , - d ~ X , , - ,  = dZ~,-~"t,-,,. 

Moreover, if X is  increasing, then the set of its discontinuous points is 
constituted! by a countable number of semilines parallel to tfie axes, and if X is 
also stdspted, then this set is a couratabln: union of stepped stoppbg Enes. 

~ ~ I T I O P J .  A r igh t -~~n t inu~us  prams M = {M,, z ~ 2 % )  is called a plane 
p i ~ t  process if: 

(i) M ~atnkhes on the axes and takes its values in rJ u (w), 
(5) M is increasing, 

(iii) M is adapted (*th respet to a Gven filtration (F,, z E R:)) .  
h [lia] we r ~ c d  also that3 for every ZE R$, AM,,  AIM,, d21M, E (0, 1). 

Here, a procesg satisfying this property will be called strictly simple, and if 
we require only AM, E (0, I ) ,  the process will be called sinlple. It js clear that if5 
for every Z E R ~ ,  dlM,, B % b M , ~ ( O ;  I),  then M is istrict1-y simple, 

Clearly, for dl s, WE: have M ,  = z , 6  s ,  dMsl (see [IOJ). Therefore2 M a be 
cbaractebd as azn adapM discrete measure wKch ig a h e a r  coHlbinatiun of 
Dira meas- 2, ~ t - 6 , ~  at the jump pointti (z,) , e.g., the set of t-be (differat) 
points s ~ c h  that + 0 and is bite for every bounded set k1aagjng to 
(M < m). 

To every point process M we can associate amother point process MX 
which is simple, defining it by Liie,. 

Notice that M* is not newssarily stlliurly simple; but ;as a cunsecguenee of 
the following proposition vbte mn associate to M another pint grscess M**, 
whi~h k ~1Si~fly simple, by deleting for every n the jump point x, bdungng to 
vmtiml or bopia;oratal limes generated by (z,, m < 1 2 ) .  

PRCIW~~JN 1.1. M is a sbvktly st~zprfe paint precgss if and ordy i j  

P ( M ( L )  = O or 1 jbr ewry segment L, of a srraigkt line 
plz~~lfel lo njle of the axes) - l ,  

Prosf. Suppose M is strictly simple, and let L be a sewent pardel to, 
say, thf: firsti axis such that Rill4 > I .  T h ~ n  there are xt least two consemfive 
points z = is, e] and w' = ((s" t) 3o A which are jump paints: AM', - AM,. - 1 .  
Since M is strictly simple, we obtain AMM,, = - 1, and therefare 
Mcsi- ,g) = MrZnlb and MI=, - ,-, == Aft,,-,, which means that hf, ;= M ( 5 , r - ) ~  This 
contradicts the fact that B2 Mz = 1, 



Canvetrsely, stlpgose the eanditian of tbe proposition is saItis8ed md 
suppose that there exists a poirat z such that A %j?llP, 3 I .  Then at least one of the 
segments of 2 has an M-measure larger than one, which contradicts the @yen 
condition. a~ 

The jump points (a,) of the point prlrrcess M art: only partially ordered 
and cannot chazlacteriz the point process. Moreover, @nerdy, they are not 
stopphg points, Therefore, it is now customary to iatrodu~e the jump lbes d 
M by the fdowing: 

&fine 
L, (mu) = Debut(z: M,(m) 3 1 1) = A ,Zn, 

atld for M > I 

= A ,& for all integers A. such that I+,- 1 < Zk. 

In [lo], it is proved that- these lines fonn an inmeasing squeaa of 
stapping lines which characterh the poiat process M ,  

BAF)PO.S~ON $2. M IM 0 aSt7"i~'tlj~ simple point process swh that, for every 
s tapp i~g  point z, Id' Mz -I- A * M, - dMsI = 0 ar I ,  then far any op~opmal i n e r e a ~ ~ g  
pnzh r the o7ne-~wmet&:r poht  proce$s Mr abng this path is skso simpd~. 

CanaerseEy, if for any ~prianal iizcrefsshg path r the em-parmeter prneess 
is a simple point process and if M is increasing, then M is a ~trictly sfmple 

psirat process, 

The proof of this preposition is easy since the first point Icrf intersecbon 
between an sp~anal increasixag path and a stepping line ia a stopping point. 
This prroposisirion shows that the strictly simple poperty is vtxy natural when 
we extead the simple proprty from the an~-paramet~r a%. 

The shplest and hs t  h o r n  point pracms k the 'Poisson ~gi~ocess- It is 
defined in ahasf A1 the refer~ulres. Recal[l tkat the Poisson proms is saricrgg 
simple, it8 jump paints are not stopping points hut it ftas an infinity sf jump 
lines which are stapping bms and each one is constituted by an 
segments pasalld to the axes [XJ. 

A useful tool for the study of point prcrcesss is the conmgt of bbimasslrre, 
that is, a Function of two ~ a ~ a b l e s  such tkat it is: a mmure in each variable 
whetn the second va~abk is fixad, CemraJly, a birneasure cannot- tx extended 
to a measwe on the a-dgebra generated by the product space. 

Let M be a peht promus and denote by AM or slr'mplgr li the bimea~ure ow. 
the gprs~duct space x 8; , d x a) defined by 

( a n p a n  in defined another bigeasure which aka charasie~zes the 
point process.) 



The measure R(Q, -1 is  caltlled the Measlrre inreiplsity (or ~ o r n e d t ~ e ~  the 
priacipcfl mtrsttre) of the point P~CPGC?SS. If A(Q, -) is a Radon measure (finite on 
bounded Borel sets]? then we say that M is integrable. From now an, we 
suppose that this wmrditim is satisfied, 

Let us end this section with the following result due to Gllenhrrg. 
A simple proof can be found in [43. 

PnaPm~mo~ 1.3. Let M Me a point praecss and d c s?& 31igeibt-a 
cantrairning some basis fir R$ . T h  the distribtrtim of M" is aniq~erly ammined 
by afl P { M ( A )  = 0) .for bounded R E & .  

2, OdwIin- sFkdl s & ~ m d t y -  fn the classical theory of point proesses 
ordmliness i s  lwsdy speakmg the proprly that points are distinct or that 
prab~bilistidy they are not infinitesirnaUy dose-. V ~ a u s  definitions haye been 
gropsed sad extmively stu&ed by Daley [2] in the red mse. Mstim that the 
ward FCXc~rderline~~M i~ us& &cause this condition Imgli~ies that alrnt~st surely there 
exists an lessentidy uniwe osdeing of the j ~ m p  pclints sf the process. 

In rfie: twa-pwmeter case, ssrne defi:finitiorrs have differe~r ;useful gcnerdka- 
tions and athers have no mewing Fsr example, the following two definitions are 
dearly indewnolent of the property of a point prscws to be sbpk .  

DEFENITEON. k point process M is called m-orderly if 

P{M(L)  - 0 or 1) = 1 fur every m-nuU set E in R:, 

where m is a measurq generalfy the Lebasgue measure in R:, 
Mare garticullarly, a point procms M is said to Ere with~ut  m-atoms if 

P(M(L]I - 0) = 1 fur every m-null set L in R t .  

However, an interesting str~agthenfng of the strickly simple property is the 
following : 

I l ~ r n ~ ~ a r a ~ ,  A point promss M is called smehasticnlly iarderlq~ if  

P{M(IP)=O or I ] - $  for every optioxld incrwing path T. 

Note tabat the Poisson grocefis in the plane a d ,  more generally, the Cox 
p a s s  is ""vvlthaur m-&tams"  he^ m is the Lebsgue measure]. Err the mxt 
=&ion, it will be proved that it: is dso stocbasticaUy orderly. 

Orher definitions are taken fram [2]. Assume thitt the rectandes in Lhlt: 
following deGtions am with s3dm gadlel to the axes. 

ON, A poinb psocms M is calbd ordin~ry if for every bounded 
rectangle D 

inf ~ P ( M ( B , E  2 2 )  = 0, 
i 

where the i~nEm~rlm goes over all the finlre part*itiatts {D,f af D into muruilily 
disjoint ~ubr~ctanderr. 



M is called ((ungormly) Khintcllsirae orderly if for each a E R$ and E r h) [for 
each s so) there exists b SE &(T, E )  (= S(8)) S U C ~  that P ( M ( ~ )  3 2) 
< E P {M(ST) 2 i) for a recta~gle D such &at z e D and m(D) < 6 (P(M{D,]  
3 2)  < E - P ( M ( D , )  3 1) for aXX rlecpangles D, with first paint z such thn  
.1(D,) .. 6). 

DBRMTION, M i s  called (unfosmly, rn-) axlaiytically orderly if, for each 
ZER$, 

lim m(D)-"{MID) 2 )  = 0, where z~ D 
m(D)+0 

(resp. 
Em sup rn(DJ'-'P(M(D,) 3 2) =: 0, 

v~(D,I-+o z e ~ ?  

for each m-null set L 

PRUPOISI~~N 2.1. Let M be an m+nlaly'yticaEEy ~rdet.Ey pains process as%d let 
m be a nrvra-atomic Radon mea,yure OR R:. Tlte~l M is simple$ a d  if rn b 
absoluzely capztinuous wigh respect to the Eebesgue masure, the8 M B strictly 
simple. 

Proof. k t  a campact set Ir; in and E > 8 be @ve:n. Since wr is Radon* jir 
i s  finite orr campact sets abnd regular. Therefore, for each p i n t  2 there is an 
open neighborhood L, of z such that 

A finite number aE  the^ neighborhoods, say n, caver K and point hkclonp 
ru a. b i t e  number of swh neigbborkoods, Maw we obtain in the usilal way 
a garti~aaiag of K into di40int B u d  sets A , ,  , . . , A ,  with 

P(fhere exists a point 2 such that M('z]i 2 2) 

Since. this holds for any E 0, tkais probability va~shes  and we obtain the 
simple praparly for points in K ,  and therefom in the whole spm by the 
g-cornpactness propegrsl;r, 

Suppose now that pn is absalutdy continuous with respect ;to the h b a s p e  
measure. FollaGrrg the same asgt;Pmea't, for any vertical line L there is ran open 
adghbol.laood I;, af & such that 



and, therefore, as before 

Pithere exists at. vertical Iine E s u ~ h  that M ( L )  a 2) 6 e ,  

The same holds for horizontal fines and, foElowing Proposition 1.1, the proof is 
complete, 

0 t h ~ ~  rsegults are dose to those given by Ddey in [2] .  

~ I E U R E M  2.2. Let M be a (ungorm6y, m-) analyticaiiy orderly point process. 
Then it is ordifimy, and sherefire M is sivrsple. 

The proof of the first part follows that of Baley (Assertion 2 in t2J) since 
8% is locally compact, and the second part is similar to that af Leadbetter [73. 

Reldions with tbe mintchioe orderly property invalve the following 
passibly Enfinite valued measure: 

p(B) = s u p { C P ( M ( B 2 )  > 01, B,E~%, 13, disjoint, U B ,  =: 8) 
i i 

This masure is called the paranzetrk measure of M .  fr is rs-finite if the paint 
process M is finite (sl.s,) on every bounded Biorel set. 

T R E I D R ~  2.3. k t  M be cr fiaite and ~itzformEy Klain~ltchine orderly ppsinf 
process. Thm it is Khir~tchine orderly, and therefire it is ardinnry, 

Here, too, the proof is essentially "cbe same as given by Leadbetter C73. 
The fallowing result i s  a generalization of Ksrolyuk's theorem and was 

proved by BeIyayev. A simpler proof of the Following two theasems was @ven 
by Leadbetter in ["TJ wing dssecting systems. 

 mom^ 2.4. Let A4 Ere a poitat process arad suppuse thar the measure A, in 
WJ: is cr-Jinite. Then 

p(B) = E [M*(B)j - ;?Mw,,CB, B) for every BoreI set B in R:, 

IE particular, [f M is siprapre, r h e ~  y, A, avtd A,& coincide on 8. 

Another result, which can be viewed as a Gonwrse sf Theorem 2.2, is the 
lbllowing gerreralirfid ver:sdoa~ of Bobrushin% lemma. 

THCEORBM 2'5. b t  1M be a simple point groeEss Sjna'te on bc~urzdelb Bowl sets. 
Suppose that there exists a ~eqzl~rac@ .u$ rson-negatiue real numbers {a,) and 
n finstiopr rfift) -+ O as t -+ O suck that, jbr each ra arad fir eaeiy reetanyb D, with 
rauio~al e~rdpaints a ~ d  the $anre mcrnsure dependiq  on n, 

R e n  the point process M i.9 ti~rforr~Sy Khinl'cAi~c orderly and %aniporm.RIZy 
analytically 4trl"derlijr. 

Dw~s~sa~or~. A paht proems M is caled stat#oaavy in law if for every 
sequence of bounded Bsml sets B,, . . . , B, in R: the prsbabdity law of 
(M(B,+x),  , + , ,  M(B,+z]i)l dues not depend on z (ZERZ,) .  



Note that if M is stationary in taw, then the conditions of Theorem 2.5 
clearly hold. lf M k stationary in law, then the measures X(G, * j and p ( - )  are 
invariant under translation. Therefore, they are multiples of the kebesgue 
measure m(. 1 on the ptane. That is, B) - /?m(iS), and y (B) - w(i61) far 
every Bard set B, where A and p are called the intensity and the parGmerer of 
the stationary point process, respectively. 21 is clear that p =$ A, and Koraiyuk's 
theorem states that in general they are equal. More ger-ieralafIy, if the measura 
A(Q, - )  or p ( - )  are abselwrely continuous with respect to the Lebesgue meaure, 
then their Radon-Nikocl4.m defivatives are called the intensify and the 
pmarnew of the process, rmpectivdy, 

We obtain the following Khiatcbine's existwee theorem 

THEOREM 2.6. S~ppose  M is a siw~ple poinl process whkh is stationary ia law. 
Then M is both uniforv~ly Khintchiszc odle~ly and unforznly aaalytically orderlj~, 
a d  

lim m{D,)-"{M(D,) > 10) = A = p ,  
B-+ m 

where (D,), are reerancfEes meh that {m(D,)), is a scquencrr s t~ ic t fy  decrensirrg to 
zero, Moreover, if M is also nn catn~mt swr-ely m-orderly gmcess, then it is 
rn-la~~a$~~ticaIlj~ ~r'derly. 

3. Compelrasdloa. Iw order to study further &e dynamieal propertie5 of 
a point prowss, we must introduw the nations of predicmbility, of martingales 
and the nation of the compensator of a point PPQCBS. 

In the pmdnct space SZ x R$,  the pradicdabte (rmp, *-predictable) a-algebra 
is defined to be the rr-dgebra generat4 by the sets F x (G ,I3, -where F E PZ [resp. 
FEE*), and (z, z'] is the r ~ t a n d e  ((: z < { < z'); it i s  denoted by 9 (resp. @*I. 

kat us itatrodlace the different kinds of rmartingabes used below. Let 
M = {M,, E E  R$]  be am adapted and integra'kile proass. M is a weak 
rrrarzingnle if E [ M ( z ,  z ]  1 T*] = 10, M is a ml.tingale if ECAd',. 1 dZ] =. M ,  fafor 
every z d z" a d  M is a strong ~wartirtgale if i t is a martingale and B[Itf(z, zp]  
193 = IF Sar every z < zr in R$ . 60 every ixzcrrea:izsing integrable and adapted 
prccces~ A we can associate its dual pedlctablc projection denoted by A. If the 
conditional independcl~ce propperty atr the filtration holds, then the dual 
pre&ctable projection is ~haracterized to he .the uniqlle predictable increasing 
process such that A -A  is a weak martingale. 

If M i~ a psh t  psccsa, thean its dual predictable projjedion always 
exists and i s  cadled the camgrmsntclr of M ;  that is, M-R iri a weak mrirtbgah. 
Generally, in order to prove the uniqueness of the cotnpensator, the ccsm- 
ditional independence property is needed. However, for the simgie p i n e  
process the complaszrtor cat1 be calcula~d directly as follows: 

PR~POS~IOFI 3.1, Let M be a simpk point- pocess. Then, for eaery s E R: , 
M, = lim E [kf (Dp') 1 Fdi,,,J - bm C P {M 2 O 1 Fdi,,) 

l i+m i 12-cc I: 



where, far every n, (DP))~ is a recta~yle par.titirm of t h  rectangle [(O, 01, z ]  , di,n 
is rk $rst point of DD${ a d  it is  assumed that the mesh size of the: 12-tA partition 
tends to zero. 

An important corollary to the f a ~ t  that 1 is a measure on the product 
space is the faflawing result. Ib prod was given by Xvanog [3J, 

P~oposr~rorcr 3.2. Let M be a simpb point process aad the plffatiolz (Fz) 
sntisf~s the conditional independefnce proamby, Tkva there exists an i~lcreasitrn 
and adapted process sarch rh.jrzat M-g is a stro~g martip~gale. In ather words: 
a, = x& on @". 

Recall that, in the Poisson case, = fi is detemiais~c, M-&? is i n  fact 
a martingale and n strong martingale, and this property chfiaractetizs the 
Poisson process [10]. 

The continuity of the compensator W implies that the point process M has 
na atoms, &fore generdy, if i@ is absolutdy cantinnoas with respect to 
a meastsm m, then M i s  '"ithorat m-atoms", 

In the strong martingale case, we have a stconger resuIt: 

T H E O ~ M  32 .  Let M be a s t fp l e  point prcleess wliose compensator I% is 
conrifiaaus and M - is a strong m~rtitzgak. The~z M is stoefirntically ordej~ly 
(arid tkrdure M is strictly simple). 

Praaf. The main idea of the proof follows Ivanoff [?I, except the fact 
that M must not necessarily be deter&nistic, For k < oo arbitrtuy, define 
a rechngulrzr grid (S)@');l of LO, kj" wvvhh must tend 30 zero wl~ere n t-nds to 
i&aity, Let I" be an optional increstsing path, A be the event that I" contains 
more: than one point, and B, be the event that M(Djy9 )> 3. for some pair ( i ,  j j ,  
nerefore 

and putting 
A$" iJ Dt;i7 

416,1)3 ti,.!! 
(k.l)a%(i.>l 

we obtain 

P(A)  sl I: C ( M ( d $ h  nr> > a I M ( D 8 h  nr) 0) P(M(D8" r) 0) + PCBm). 
j J 

Sin% M is simple, P(;B,) -+ O as pz -+ 8s- Now, note that 

i s  cotrtinarous and M-A$ i s  a strang martinga;ale. Thus, for aay 5 > 8, if pa i a  



Finally, far n suEeiently large, we obraima 

anla therefore P(A) = 0. a 
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