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MINIMIZING L,-DISTANCE
BETWEEN DISTRIBUTION FUNCTIONS

BY

EUGENE F. SCHUSTER (EvL Paso, Texas)

Abstract. The problem addressed is that of finding the closest distribution function
G in a class of distributions % to a given theoretical or empirical distribution function
F in the L,-norm. Applications considered are those of estimating the center of
symmetry & in the one-sample problem and in estimating the shift § in the two-sample
problem by minimizing the L,-distance between suitably chosen empirical distribution
functions. In both cases, the minimizing & is shown to be Galton's estimator. The closest
symmetric distribution function to the empirical in L;-norm is identified as the average
of the empirical distribution function and the empirical distribution {function of the data
reflected about Galton’s estimator. The minimizing techniques employed can be used to
give new proofs of the corresponding results for the L,-norm where the minimizing dis
the Hodges-Lehmann estimator.

1. Introduction and summary. In this paper we consider the problem of
identifying the closest distribution function G in L,-norm p to a given
distribution function (cdf) F when G ranges over a class of distribution
functions ¢. In Lemma 2.1 of Section 2, we interpret g(F, G) as an expectation
E|X —Y|, where X and Y are jointly distributed random variables having
marginal cdf’s F and G, respectively, and joint distribution identical to that of
(F~Y(U), G"*(U)), where U is uniform over the interval (0, 1). We use this
representation in Section 2 to show that Galton’s estimator (defined in
Theorems 2.2 and 2.4) minimizes the L,-distance between suitably chosen
empirical distribution functions in estimating the center of symmetry in the
one-sample problem and in estimating the shift in the two-sample problem. It
then follows from [6] that the closest symmetric distribution to the empirical
cdf is the average of the empirical cdf and the empirical cdf of the data reflected
about Galton’s estimator. In Section 3, we briefly show that the minimizing
techniques employed in this paper can be used in the corresponding cases for
the L,-norm and for Hellinger distance.

In related work, Schuster [6] has explicitly identified the closest symmetric
distribution to the empiric supnorm and L,-norm. Bickel and Hodges [2]
present history, properties, and asymptotic theory of Galton’s estimator and test.

2. Galton’s estimator minimizes L,. Let F be a given (right continuous)
theoretical or empirical cumulative distribution function and let F~! be the
corresponding quantile function defined on (0, 1) by F~}u) = inf{x: F(x) > u}.
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Let ¢ be a class of distribution functions with finite means and, for Ge ¥, let
o(F, G) = | |F(x)—G(x)dx

be the L,-distance between F and G. Then:

LemmMa 2.1. o(F, G) = E|X —Y]| for some pair of jointly distributed random
variables X and Y having marginal cdf’s F and G, respectively, and joint distribution
identical with that of (F~*(U), G™*(U)) when U is uniform over the interval (0, 1).

Proof. As noted, for example, in [1]
o 1
o(F, G)= [ |[F(x)—G(x)ldx = [{F *(u)— G~ *(u)|du,
- (4]
since both integrals represent the area beiween the graph of F and G. If U is
uniform over the interval (0, 1), then the lemma follows from the well-known
result that X = F~'(U) and Y = G~ !(U) have distribution functions F and G,
respectively. =
Next we will show that for some classes of distributions ¥ we can use
Lemma 2.1 to identify the cdf Ge% which minimizes g(F, G) over Ge %, We
first consider the problem of estimating the center of symmetry by minimizing
the L,-norm.

- Let X,,..., X, be independent identically distributed (iid) r.v.’s with
cdf F. Suppose the distribution F is symmetric with center 0. In this case,
20—X,,...,20-X, are also iid with cdf F. Let us consider estimating 8 by 0,
where 6 minimizes the L,-distance between the empirical cdfs F, and F,(-; a)
basedon X, ..., X, and 2a—X,, ..., 2a— X, respectively. Our next theorem
indicates that the minimizing 0 is Galton’s estimator.

Here and in Section 3, let Xy, ..., Xy, be the order statistics correspond-
ing to X,,..., X,. Then:

THEOREM 2.2. Galtow’s estimator 0 = median {(X g+ X441~ P2 1€ign}
miinimizes

h(a) = g(F,, F (s @)= [ |F(x)—F,(x; a)ldx over all a.

Proof Using Lemma 2.1, we see that g(F,, F,(; a)) = E|X —Y| with
X and Y jointly distributed as (F; '(U), F; '(U; a)) when F;', F'(-; a) are
the quantile functions corresponding to F, and F (', a), respectively, and U is
uniform over (0, 1). Now for i—1)n<U<i/m, i=1,2,...,n, we see that
(Fa'(U), FyY(U; @) = (X, 20— X 41 -3y). Thus (X, Y) is jointly discrete with
distribution the same as that of an empirical cdf over the n pairs
(X 2a—Xn41-9)- 1t then follows that

; . 1 , , 28

Q(Fm Fn(i; a)} = ELX“— Y; = ;; z iX(i}"(Za"Xﬂ?r*}“l"in = z !?;fj””ﬁi,
=3

i=1 oy
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where Y = {X+ X +1-0}/2. Since the median minimizes the sum of the
absolute deviations of the data from any constant a, the proof is complete. =

In our next theorem, we note that the closest symmetric cdf to the
empirical cdf in L;-norm is the average of the empirical cdf and the empirical
cdf of the data reflected about Galton’s estimator @

TuroreM 2.3. o(F,, G) is minimized over all symmetric distributions G by
G,(-; 0), where
Gn(x; é} = {F"{X)'F 1~Fu((2gmx)“)}/2

for all x, and 0 is Galtow's estimator.

Proof. The theorem follows directly from Theorem 2.2 above and
Theorem 3 of [6]. =

Remark 1. Let I, be the distribution function of the constant random
variable which always assumes the value a and let % be the class of all such
single point distributions. Then one can use Lemma 2.1 and the equality
I; ' = a to see that the usual median § minimizes h,(a) = {7 _ |F,(x)— I (x)|dx
over all a, and hence I} is the closest cdf to F, in the class %.

Next we consider the problem of estimating the shift 0 in the two-sample
problem. In this direction, let F, and G, be the empirical cdf’s based on two
independent samples, say X,,..., X, iid as F and Y, ..., ¥, iid as G, where
G(x) = F(x—0) for all x. Let X3, ..., Xgy and Yy, ..., Y be the corresponding
order statistics. Now, G(x+0) = F(x), and so both F,(x) and G,,(x+ ) estimate
F{x). Thus one can estimate & by that value of & which minimizes the L,-distance
between the empirical cdf's F, and G,,(*+a). Our next theorem indicates that the
minimizing value of a, say #, is Galton’s estimator of shift when n=m

THEOREM 2.4. Galton’s estimator § = med {Yy—Xy: 1 < i < n} minimizes

h(a) = g(F,, G,(+a)) = j' [F(x)—G,(x+a)ldx over dall a.

Proof. Let us use the notation G,(-; a) for the cdf defined by G,(x; a)
= G,(x+a) and let G, '(:;a) be the quantile function corresponding to
G,(*; a). Then, using Lemma 2.1, we see that

oF G5 @) = | IF,9=G, -+ alds = BIX 7],

where (X, Y) is distributed as (F; '(U), G, Y(U; a)) when U is uniformly distrib-
uted over (U 1). Thus, X and Y are jointly discrete with joint distribution given by
the empirical cdf over the n pairs of order statistics (X4 ¥y—0a). But then
ElX—Y|=~ Z 1Ko (Ym“‘ﬂﬂm“ Z Yy—Xp—al
iRIL i=

is minimized at median{Yy;—Xy: 1 <i<n} and the proof is complete.
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Suppose then that n # m. Let us define X, ..., Xium and Yiy,..., Yo, as
the order :statistics of the nm random variables consisting of m replications of
each of Xy, ..., X,y and » replications of each of ¥, ..., ¥y, respectively.
Then:

COROLLARY 2.5. The Galmn rype estimator § = med { Y}, — _x, W L < i< nm}
minimizes

h,,(a‘) = }a |F (x)—G,{x+a)ldx over all a.

Proof. Using the notation as in the proof of Theorem 2.4, we take U to be
uniform over (0, 1). Then for (i—1)mm < U € i/am, i=1, 2, ..., nm, we see
that (F; *(U), G, "(U; a)) = (X}, Y —a). Proceeding as in the proof of Theo-
rem 2.4, the validity of the corollary easily follows. m

3. Minimizing L,-norm and Hellinger distance. In this section we will
sketch the proofs of the theorems of Section 2 for the L,-norm. In this case it is
known (see [3]-[5]) that the Hodge-Lehmann estimator minimizes the
L,-distance between empirical cdf’s and replaces Galton’s estimator in re-
stating Theorems 2.2-2.4 for the L,-norm. Simple proofs of these theorems
follow from the following analog of Lemma 2.1 for the L,-norm.

Let X,, X, be iid as X where X has cdf F and let Y,, ¥, be independent of
X,, X, and iid as Y where Y has cdf G. Suppose X and Y have finite means.
Take

oF, )= | (F)~Gx)dx
Then: e

TueoreM 3.1. o(F, G) = E|X |—{E|X, - X,|+E|Y; — Y,|}/2. Further-
more, o(F, G)=E|X,+X, —2al { —X,| when Y ~ (is distributed as)
2a—X (G reflects F about the point (aa 1/2)) and o(F, G)=E|X,—X,—d|
—E|X,—X,| when Y ~ X—a (G shifts F by an amount a).

Proof. For simplicity we will write j f(x)dx as Jf f in the following.
Noting that H = (F?+G?)/2 and K = FG are both cdfs with H> K and
K ' > H™', we can proceed as in the proof of Lemma 2.1 to seec that

}G(F—-G)Z I (F“Gz—sFG) 5 T FE+GZ—FG|
=2 ? |H—-K] =2}iH“‘wK”‘l =2i(K“1-H“") = 2{B(Z)-E(W)},
— 0 0

where Z has cdf K and W has cdf H. Since K = FG, it follows that K is the cdf of
Z =max{X, Y,}. Noting that max{a, b} = {a+b-+la—b|}/2, we see that
2E(Z) = B(X )+ E(Y)+E|X,—Y,|. Similarly, since W has cdf H = (F?+ G?)2,
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Boos [3] attributes the first proof of Corollary 3.2 to Kniisel [5] and uses
Corollary 3.2 in testing the nonparametric null hypothesis of symmetry about
an unknown center . Fine [4] had previously proved the two-sample version
of the corollary.
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