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Ah$trac~. Necesssy and sufficient conditions li7r quiwlcnce or singularity aE 
certain product, measures are given and applid to Ihe problem of disijnguis%h.ing 
a mquence of raadom veetolrs from aftfne transfornations of Itself. In particular, 
mquenms af independent staMe randorn variables arc considered and the singularity of 
sequences with di.fferent indexes of stability i s  proved. By ming these rcsults the 
dichotomy, "two pro~sscs are either equivaleuk or singular": is cstabl~sl~d for opt%& 

%asurn of stable processes such as independently scattered measurns and hamenbble  
processes, Also suEcient conditions br singularity and necessary conditions for absolute 
continuity arc given far dh ordm ptocesfies. 

This pzpr  investigates the equivale~zsc: and singulstrity of measures 
induwd by non-Gaussian stable processes. 

For two Gaussian processes the fallawing dichotomy prevails: they :yare 
either mutually absolutely cantitauous (equivdent) or else they are singular (see, 
ag., Ct5-j). For non-Gaussian stable processes same results are available? in [13], 
1309, p a ]  and C24-J. 

In 'nation 2 ium idea of LeCam [23] is deve~oped firficr tu provide a aseessary 
and %&dent codition for quivsal and Ear sil~gulwity d a r t a h  proclluct. 
measurm (faropositim 2.1). As an appiimrion, the results on the d i w r i ~ a ~ ~ r n  
between a sequenm of rstndom vatsrs and its prt.wba$ios by rigid m o ~ o n s  in E27] 
are extended lo more general cIast4s ufpedurba~orzs (Corollary 2.2)- Alsa neCR,Fsary 
md suficient conditiarils are given for the equivdencre azld for the siagdarity nf 

of independent st;tbIe ranclam aria 2-3 and 2.4); 
y of two lsequenees csf independ b b  variabIe?s wlrh 

H e r a t  imdiex~s of stability is proved (Propasition 2-5). 
In 3ec;t;ion 3 ast equivalence-sinpIari1.y dichotomy is shown for certain 

syrnnaet~c stable proceslaas (Proposition 3.2), includi~~g irtdepcndentlly scattered 
measures (Proposit-Ion 2-11 and hasmsnizable processes (Corollary 3.31, and 

* Thig resl?areh was supported by the Air f;or~e OEoe of kientjfic Rescmch Gantmct No, 
F49620 BSC 6144 
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rmecessary and sufficient conditions for the two alternatives are given, identical 
to those in the Gaussian case, The singulari-ty of an invertible symmetric stabb 
proass to its multiples i s  aIso pmved (Coroilary 3.41, 

In Section 4, a necessary condition for equivalence of two Gam~ian 
processes, namely the setwise equality d thdr reproducing kernel Hilbert 
spaces (RKHS"s), is extended to symmetric stable process= with the filnchrsn 
space OF the process introduced in [24] replacing the RKHS (Bropositiorr 4.2). 
Further, for p'.h order processes with 1 < p < 2, necessary conditions frss 
aholute continuity and suffident conditions for singularity are presented 
(Proposition 4.3) analogous to those in [I23 for second order processes. 

The following: setting is considered: Xi  = ( X i @ )  .= X i @ ,  03); t~ T ) ,  i = 1,  2, 
are stachasti~ processes ua a probability space (a, F, P)  with parameter set 
T and real or complex trsllues, i.e., vdues in F = R sr 6. When Xi@) 
E L,(S1, F, P) = 1;,(P) for a13 t E T and some p > 0, X4 is called a pth order 
process and its linear space Y ( X J  is the L,(P) casnpktion of the set of 5nite 
Zincar combinations of its random va-iables 

F' denotes "rhe set of all extenkd F-valued (i.e,, real or complex valued) 
functions on T, 5%' = 9f(Er) the o-field generated by the cylinder sets of .P', 
and pi (err pX,) the distribution of the process Xi,  i.e., the probability inducd 
m "6 by X i :  ,cli(C) = ~ ( ( w ;  Xi(. ,  ~ ) E C ) ) ,  GEV. We are interested in the 
kbesgue decompositiol~ af y, with respect to p,, and in particdab in 
conditions for y, and pZ to be singular (pl l p 2 ) *  for p2 to be absdutely 
continuous with respect t0 p1 (p2 -4 p i ) ,  and for p, and pZ to be mutually 
absolutely continuous or equivalent fp, jtz). 

In this section we consider the case where X ,  = (Xi,; n t B!), i = 1 $2, are 
sequences d bdependent rmdom variabl~s or2 equivalently, pl and p, rare 
product measul.es om F". The: equivalence-singularity dielrotomy of praduct 
measures wnsi characterized in El81 in terms of the Hellinger distallee of the 
mar&af measures, which may be difficult to cornpu te, e,g, for stable razeasums. 
The rase of translates s f  product nwZtSures with identical masginds was solved 
in K2S] under finite Fisher information. The sdficienit, condition for cqrzival~~ce 
in C25] was extended En [23] ta a more geaexd scenario under Lt=CamYs "F' 
condit-jon. Proposit-ion 2.1 d a r i v ~  a nearly complete extension of a result of 
Shepp in [25] m~der a eezlditien closely relard to  bC%mls, As an application 
the equival@;n~-shgu1arity dichotomy is wrablished fur a sequence d i.i.d. 
random vectors and an snEne transformatiorx of itself in Corollary 2.2 
(extending the results in [271 about rigid metisrtls), and Far sequences af i.i,d. 
stable random variables in Corollaries 2.3 and 2.4. 
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Before strating the main results we need to introduce some eoacepts for 
w h i ~ h  we refer to [281. 

2,l. Plpelhinsr4wg The normditlized HeEIitlger distance d of two probability 
measures P and Q on a measurable space (52, is defined by 

dZ(P, Q) - 3 5 f(dP/dvjU2- ( ~ Q / ~ v ) ~ ~ ~ E Q Q v ,  
Q 

where v is any c-finite measure dominating P -k Q, ie., P -t- Q 4 \I (e-g., 
v = P+Q);  and &Z does not depend on v .  

Kakntani's theorem [18J states that if (p,; REW) and (A,, MEW) are 
sequertlces of probability measures with y,, - A ,  and ;tt = X g I h  and 
I - )(:= I ,  are their graduet measures, then 

83 53 

(2.1) p-rZ+xdZ(pn3A, )<cr0  and f i j ; A . + = . ~ d 2 ( ~ , , A , ) = m .  
a=  L rr- 1 

We carrslder tbe folIowing setting: (a, 9, v) is a 0-finite measure space, and 
(P,, B E  43) a f ad ly  of probability measures on (42, F) with P,  4 v and O an 
open subset of Rk, Then F :  O +L,(O, F, v) = L,(v) defined by E(O) 
= %&dPe/dv]u2 is said t5 be diferentiable at O if there exists a map 
DF(@):- DF(-, 0): D 4 @ such that 

il~Fl@)ilZ,cn,s.~;~~~ = f JJDFlm, ~ l l l Z ~ f d ~ )  < 
Jrr 

i,e,, DF(B)EE,(Q, 9, u; Rk), and 

As usual, F i s  said to be di_fereraeiable [on 8) if it i s  digerentirrble at each El E O. 
'The Fistaer inFormatiavl matrix Is dsfind by 

(whcrc BF(8)' is the transpose of the column vector klF(ts)). f t  is non-negative 
definite as aV(8 ja  =; J , ( ~ ' l ~ ~ ( d ) ) ~ d v ,  and if;  positive definite if and only if the 
conlponents of DF(0) are linearly independent functions in L,(v). 

23, MP~B result. As in [23] our purpose i s  ta consider pmduct measures 
9U oj 

(2.2) p =  )Cpnct,, A =  w h e r e ~ ~ = P , a l l d 1 , = P ~ , ~ , ,  
n= 1 n = l  

@ E 63 i s  fixed md 0 + fa, E 8, a = 1,2, . , , Under LeCsm7s condition 

Prapositim 2 in [23] s11r'~ws that ilhni)2 .EC m iml,lies y -- A. Hcre we 
obtain an equivdance-singu1aiity dichotomy slang with necessary and suf- 
ficient conditlms far the two dterr~akiues, %rhea $(03 is positive definite at 
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fl and the following separation type condition (which is usually assumed in 
asympmtie statistical theory Ct63) is satisfied : 

(2.3) "for all smficienily small 6 =. 0, id d2(P@,,,  P,) O"". 
I I ~ ~ I  >a 

P~orcksr~~o~ 2.1. Let p aand X he as ius- (221, F he Qiflerentiahle at O avld $(@) 
be posititte dejnite. 

(i) If 0 < l[h,i[ -+ O as n -, a, then 
sr, CU 

P - 2- 11k,112 < YSO and pLA=-  C IJhRl/2 = OD. 

(ii) If condition (2.3) is satisJEed, then ths conclusions of (i) hold for l.~a~sy 
sequence (h,; n EN). 

The saeiency for equivalenm foIlows from [23, Proposition 23, slam 
L,-digesentiability is clearly stronger than condition. "1'"' but we inclurde 
a simple complete pracrf hare. 

P roof. (i) ;Sine@. F is differentiable at 6, as 0 < 11 llzjl -+ 0 we have 

Thus for any s > O there exists 6 - > O sucfi tihat if Q < [Ihll .: 6 3  rhm 

But l[DF(@], h )  /(i,,,, = f, {(DF;id), h)12dv = h'$(@)h implis that, for all k + 0, 

where k(8) axid X(B) are the smdllest and the largest eigenvalues of .F(t3), Since 
9(8) is positive definits, k(0) > Q and we can choose O < e "E: k(O) SQ that, for aliI 
0 < ItblD < 6,  

a s~ L/O) < I I~C~ IB -~  IIF(O-B-~)-FIO)I[~~~~) -= UCO),  
where L(8) = k ( @ ) - - ~  and U(@ == K(8)~i-8 .  Thus since it follows that d2(P,, P w )  
= !IF(@ - F(s")el %,is, we have fur n large 

and the result Fallows from (2.1). 
(ii) If (2.3) is satisfied and Ca,, -I-* Q,  e k ~ ~  there exist 6 s 0 and a subgeqnence 

(nJj  EN) with I(hnJ/( 3 S. It f o l l ~ w ~  that 

and from (2.1) we obtain y l A. This cornbin~d with (ij gives the result. a 



It should be mentiand that the d8ereatiabiBt of F(6) is genenjtlly 
difficult to verify, but i s  implied by the classiml Gsamks-WaId and HAjek 
re$uSarity condtiotls, which play an important role ia sta.bistica1 estima~on 
theory and are in principle easy to check (seq e.g., [2&, Sectio3a 771). Howewr, 
L,YCPifferetltiability is weaker than any of these classical conditions, and the 
definition of Rsher information presented here extends the dsassial one, 
namely 3 (0) = - E {a2 ln(dPO/d~)/ilBZ) under the usual condi~ons on dPB/dv. 

22 Examples. 
Afifae e-i.aa#ormaticlns in Wk. Suppose (X,; n E N )  is a sequence of i.l.d. 

random vectors in Rk, (A,j; n E N )  a sequence of (k x k)-matias, and ( 1 5 ~ ;  n E N )  
a sequersce of vectors in Rk. In order to eomgare the sequel= of random 
vectors (X*; 12 E N )  with ;(A,X,, + b,; ~3 EN] we can take as a parameter s p a c ~  
8 any open subset of the set 

(0 = ( A ,  b); A = faij): ( k  x 4-matrix, b = (b,) E Rk) 

= (9; 0 = (a,,, ..., atk,  . . q r  akkt bIr ."., bk)) z p a + b  pa x Igk 

containing the point (I, 01, with norm 
f k 

With P the common distfibution of the i.i.d random vectors X ,  and B = (A, b), 
we define 

and note that P - Pa,o,. From Proposition 2-1 we have the following 

CORQLLARV 2.2. Let the f~robability measwcs P, defl~eed as ilz (2-4) he ~ a e h  
tlmt, far un open set O c R" x iRk with (6 0O)e 8,  the fnmity {P,;  OE 63) is 
dominated by  some @$~zire mellt~urg Y O R  Itk, F(Q) is di,flerentbabl~ at (1, 8) and 
,18(1, 0) is positi~e definite. fjj' An -+ 1 a ~ d  b, -+ O ras ut-, a, thetl 

and atherwise (XJ I (A,#X, -t 6,). Fun he~~fiare,  i;f' coraditirm (2.3) is satisfied, rhe 
crrbiot*e cnnciusions hoIcJ jfbr all seqwnces [A,, b,) in @. 

Proof. Putting B - ( I ,  Oh ax~d (A,, iir,) =; O-t-h, we have Ct, = ( A , - - I ,  b,) 
a d  

[ [F&j/$r"xk,nk 5=1 1 ] A n - I [ I & f k * k ) ~ ] I b , [ ] ; k n  

The eon~lusion then fallows from Prspositian 2.1, ha 

Remarks. (a) since the space aoE (k x k)-raatrices is 5 ~ t e  binrensicsa81, any 
nem can. h used in pnlzlrce ef 1 1 .  llatkxlr. 
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(Fa) When A, = J for all pt, Corollary 2 2  wtends the result on trmslates in 
[25] horn randm variables (k = 1) ta random wctors (k - 2). 

(e) Corollary 2.2 contains Theorems 1 and 2 in [2711 which comrsidm the 
case where A, is a, rotation, i,e,, A,x+b, is a rigid moltion of x E Rk. 

(d) When the X,'s art: Gaussian random variables (k  - 1) with mean zero 
and vafianca om, Corollary 2.2 can be checked directly by computing 
Nellinger distm~es. However, the computation of Hell-inger distance is not 
simple in higher dimensisrls (k  3 2) even for Gaussian smdom vectors. 

Stabfe sequenca, Herr= we denote by fIQ,B,o,bl the univ;triate stabIe density 
whose characteristic function J:m e x p ( i ~ x ) l ; , , ~ , , , ~ , ( x ] d x  is 

w h e r e O . c ~ a G 2 , I f i ~ G a ~ ( 2 - a ) , a s O a n d  --a c=h.rm(see[9]).11.f=0 
and b = 0, we have the symmtric a-stable case (SsxS). 

We estaMisb the equivalense-singula~ty dichotomy for certain sequences 
of independent stable variables, Since results &bout E,-differentiability and the 
validity d condieon (2.3) at ol = I are not known, we consider only limiting 
values tr 7E. 1. 

CORRLLRWV 2-3. k t  (Xln,   EN) be a sequence of i.i.d. stable varicebbs w i ~ h  
QemLslty Aaa,Pe,ao,b,, a d  let (Xz,; n ~ l V )  be a sequence of ilrldependelzt stable 
wriables where the dertsity of ~ a c h  X,, is J;xmsBnra,trbn) with (an, P,,, a,, R,) 
-+(a0$ f lo7 bo) and M~ f. 1. Then 

and othcrwige ( X I @ )  l (XZn). 

Pseaf 'Let 8 be any open subset of the set 

c o n t A ~ n g  the paint 17, = (a, A a,, a,, b,), It is known that the knsaities 
(& 0 E 8) satisfy the usual Crwkr-Wald r~gularity conditions (LO], p, 952); 
hence s&l/"is &,(leb)-difeerentiable at e & ~ h  Be @ (sce, c,g,, C28, Section 771). 
Mvaoseover, the Fi%;ishtlr informatbn matrix $;$Cir,) is positive definite [9, p. 9544 
nerefore, the assumptions of Fzoposifion 2.1 ti] froM at 08,, Sinw for 
hn = = { ~ ~ - - a ~ ,  flEl-rjlOy art-aO, b,-b,) we have 

lil~e result follows. t+t 
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When all, parameters except shift b are kepr fixed, the separation condition 
(23) f~llaws f r m  the inequality in K16, Example 3, p. 573, znd when f i  = 0 and 
ae(0, 25 is fixed, it has been proved in [6193. Hence we have the fdowing 

COR~LLAB'V 2.4, Let (X,; E E N )  be a sequence of i.i,d s~andard SaS 
uariabies with densit_ls AOlse,r,o, and ~ ~ ( 1 0 ,  23, artd let fa,, b,) and (ah, b;;) be twio 
sequences sf pai~s of real numbers with a, + 0. Then 

and othmvi~e (%X,+b,) I.(ahX,+bt). 

Pro of. Tbe first equivalence follow since the map (x,) -, ((xn - b:,fi$ is in- 
vertible tand the second follavus b r n  Carollary 2.2 since (a8Jaf,)X, + ( b ,  - b:)/aa 
has density h , ~ , , / d h . ( b ~ - b ~ ~ .  @ 

We next explore the t d  behawiour of a stable distlibution to show that 
two infinite squenees of independmt synunetric stable variaMes with two 
djffe;rent hdexes of stability are singular. 

PR~WITZON 2.5. Let X ,  - (X,; 11 EN), i =. 1,2, be tw sqwences of 
(non-&generate] ind~pendemt symmetric stable unriabls with iadex of stability cxf 
in (O* 21 attd scale paramters (ai,]. If m, .P. E,, then y, l y, . 

P t o o f. Assum a, < a, < 2. For each y E (O,2j let Z,, denote an SyS rev, 
with scale parameter I. Thus 

Sin= cYF(IZ,I >. cy) -+ 6, as c -, m, where C, is a positive constlurt (tie@, e.g., 
[rl]), given any s > 0, there exist M,, such that, fm ;6 M ,,,, 

From taow an fix s such that 0 < 6 < ~n(C;r,,, C,,). 
Case: 1. hsvme 

Define Y :  FN --, FWI by Y(x) = (Yl',(x) = ==,aa,; uk E Pd), Tt foUows that "V is 3n 
iid. sequence af staradard Sa, S s,v.k sunder p, , and under y, an hdepndent 
quene@t aE Sa, S f.v.*s with scale. parirmebr nLPI/a,,, =r B,. 

As before let rE, dex~ote, the total variation distan~c between probability 
measures, For s 3 M(d C sup, bd, where; M = mm(ikl",, , Ma,), we have 
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and thus 
l imiafd,(~, ,Fnn~ p2,Pqt) & (C8,-c)/cn2 > 0- 
n+ m 

Since d,  g 2d, where d denotes the HeUirrer distanm (see, e.g., [28]$, we: have 

and therefore, by Glukni"s  Theorem, p, fF"- i p, 'V- I, which Implies 
161 PPZ*  

Case 2, Assume o, ++ 0. Thus there exist S r O and n sequence (a,; k E N) 
such thd a;, 3 S, i.e., a&l d 6 - I .  Define Qi: FN -+ F" by 

Then tB is an i.i,d. squena of standad Sa, S r,v,'s under y,, and under fly, an 
independent squence of Sa, S s.v.*s with scale parameter ol,,Ja,,, - D;% For 
c > ~ ( l + d - ' ) i  we have 

Since rx, 6 or,, we have 8(c)  > 01 if and sJllw if cSrai % d- "C,, +~)fiC,, -8). 

Thus, fixing 
LI > M(t +rF'%+(c,, +E)I'(C,, - ~ ) ~ / ( ~ ~ - ~ l ) ) ~  

we obt& 
srnsst~>d,(p,,@;', gz,@;') , 6'(4 c) 0, 

n-r a, 

and the sgndusisn fallows as in case 1. 
If a, = 2, the msult a n  be shown with dmr modifieadons in the prod, r 

For srschsstic processes the equi.salenc&+iaguIarity &~hotorray has been. 
groved fur pmduct masms [i 81, for Gaussian procesws (f ]LO] and [l4]), md 
for wrtain ergodic measures [20], ]in [24Jta, it was shown that this diehatomy 
pretpails for translatm of certain SaS: pracesses, Such a dichotomy for pmrd  
SmS measwes hsts k e n  conjectured in 171 but the preblem ren~ahs open. Tn 
this secticrn we show that an equivdence-singula~tg dkchotamy holds far 
certain SmS promsws, ~ g . ,  independently scattered SES measures and har- 
ma&&ble SaS pr~cmm,  and we give nemsary and s ~ c i e n t  condi~orrs for 
the two alternative8 %or dl [x. ~ ( 0 ~  23, 

Kwdl that a random variable X is SrwS with scale p a r a e t a  ]/X 11, E (61# mcl;l) if 



md a stochastic process X = (X(t); t~ T) is; SclS 8 aU Eilrear combinations 
= , a,X(t& are SaS variables. When ~x = 2, vve have zero mean Gaussian 

variarbles and processes, rmpective'ly. When 0 < ct < 2, the tlllils ef the $is- 
tributions are heavier md only moments of order p ~ ( 0 ,  or) are finite. 

W Erst prove a dichotomy for independently scattered SaS masures. Let 
I loe rn arbitrary set and 9 a 6-ring af subsets of I with the plrsperty that there 
exists an increasing sequmce (Im; n EPII) in $ with (),in - f .  A seal stochastic 
promas Z =2 fZ(B]&); B E  4) is called an indepedently scattered Sols mem~lre if, 
far every sequence (8,;  EN) of disjoint sets in 9, the random va~ables 
fZ(B,); n E N] are independent, and whenever U, B*E$ we obtain ~ ( t _ f ,  B,) 
= Z(B& as., and for every B E 9 the radom vuiabie ZfB) is SRS, i,e., 

~fexp(iuZ(B]))=;e.xp{-m(B)tls~), where m(Bl-]fZ(B)l~~. 

Then m is a measure on 3 which extends uniquely to a a - h t e  measure on 
cr{E6), and II caUed the emtrol meamre of Z. The existenw of an independenfly 
scattered SrrtS measure with a given control measure iis a consequence of 
KolmogoroVs ~ensjsten~y theasern. IF I is an irntewaj of the real line and the 
coma1 measure: m i s  Lebmgue measare, then X bas stationary independent 
in~rements, 

E (cxp(isr [ ~ ( t )  - ~ ( t ' ) ] ) )  = exp ( - f f  - t'f lur) ,  

and is called an SaS motion on I .  
The following noktion will be used in Proposition 3.1. Recall that if 

a a-fieiie measure spslce (I, e(fl, m) is such that E($) cl~ritains all singe point 
sets (e.g., I is a Polish space, a[* its I&t4& ~ t s ,  and 4 the d-fing of Boml sets 
with M t e  m-meas~re)~ then m can be deeempod into m = m, -t- ne,, where ma 
is purely a t a ~ c  md m, is dlBuse (non-atomic) [2fJ, and tht: set of atoms k at 
most countable, say A = (a,]. Thug if Z = (Z(B]; B E ~ B )  i g  an isdepndently 
mttemd SES masure with crsfftwl measure m, it a n  be deeampasd into 
Z = Z,+Z,, where Zn and Z, am indep~ndent SrxS indepeodeixtly scattered 
measures defined for dl 23 a S by Z,  (B) = Z(A n El) md 2,(8) = Z(A" n f3), 
and have controi measures m, and q, ~spectively. T h  atode component: has 
s series expmsiczn Z,(B) = 9 lS,(aJZ((a,)) wbch can bs: nssmaEzed by using 
the i.i.d. standard ScrS variables Em Z({a.j)m- Lia({a,)) with E (wp(iuZn)] 
-- exp(-Iwly as follows: 

ZCzI"@= C ls(%lm'"°(~,S)~a. 
s 

PRO~ITIOPJ 3.1. f i r  i = 1, 2, k t  3, = (Zi(B); B .E $) be an independently 
sclattered mrsszrre ryi'th M~ E (3, 21 and truntroi memure mf which a's not paase!y 
d i s e ~ e t ~  with Q fiite wurnbar of atoms. Then y, - p ,  [f any only i f  the following 
carnditirrrss w e  sutisfled: 

(i) 
(ii) mid = m ~ ,  
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(iii) m, and m, have the same set of atom A = (a,) and 

P r a o f, First suppose that m, and m, are not equlvdeaqt, e.g*, m, # m, . 
Then there exists Beg($) such that 

Define I",: J"g -+ F by FB(x) = x(B). Xt foUows that p1 S; _L pZ F i  a d  thus 
p, l p 2 .  l%rorn now on we assume m, m,. 

Suppose a, i.s ~n,. Since ml and m, are tent purely atomic with a finite 
number of atoms, we can choose an infinite squenw (Bn; n E N) of disjoint. sets 
in $ such tbd q(BJ  0, d = 1 , 2 .  Define F: b?g -+ FN by P(x) = (T,(x) 
= x (BJ; aE N), Thus, for i = 1,2, under y,, !P iis a squence of iodepepzde-nt 
SqS T.V.'S with 11 Y,II:; -;= mi(B,). f t  follows from Propositian 2.5 that if m, + rx2, 
then p, IKP-I A pa lp-'? so that p I  I pZ. Fram m w  0x1 we amme rxl = O E ~  == Q, 

Since m, nz,, we have rrt,, - m,*. Suppse mid f mzdt SO that 

Assume p~z~({dm,$dm,, > 11)) 3 0. Then tbere exists S 1 such that 

Since m, is nan-atomic, we can find a sequenm (BB; ra EN) of disjaint subsets of 
(dmu/dmld > Sj such atit mrd(BJ > 0. h t  @: F9 4 P be the map d ~ h e d  by 

Under p,, @ i s  an iJ.d, sequence of standard SaS r.v,h, and under p,, @ is an 
independent sequence: of SaS r.v.h sit11 11 @,I1 4 = P C S ~ ~ ( B & / ~ S Z ~ ~ ( B , ~ ) .  It fallews 
from Corollary 2,4 thzt y, 9-1 and pZ4i-bare efther equivalent or t;itlgul;al; 
and they are ~nglslar if and only if 

Hence I & S < P ~ ~ ~ ~ ( B ~ ) / M ~ ~ ( B ~ ~ ~  so that (3.1) holds. Thus pl@-l - L ~ L . ~ Q P - ' ~  
whi& impf es pFdl -h y 

mM(f&mad/dmld > I)$ ---- 0) we have mtd((dm ldfdJn,d r 1)) > O and tgls 

identicail mgumeat applies. Therefare ml N m, and m,, $ mzd implies p, 1 y,. 
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NOW assume mnd =. mzd. Since m, - m,, they have the same set of atoms 
A = (a,), Suppose p, 4 p1 and let E:  I;"" -, PN be defused by 

Thus p29-' 4 /11~23-', and E is an i,i,S, sequence of stmdard SorS r.v.'s under 
p,, and under p, an independent saquence of SmS rev.% with 11311; 
= m, ((a,))/na, ({q)). Hence, by Corollav 2 4  

(331 C (1 -D?n,lCa,SI/m, IIa,)13"=)Z < w * 

n 

Alm, if (3.2) doles not hold, .itgain Codlary 2.4 implies p,E-' L p,%-l sso that 
prJ-~Cs,- 

Note that (3.1) atad (3.2) are symmetfic in M, and m, and independent of 
ol as for q # jta, xn(l -aJ2 < a if and only if ~ , ( $ . - . u ~ ) '  < aa. Hence (3.2) can 
be replaced by tii;i). 

Conversely3 suppose that i(iHiii) bold. Sina m j d  = mzd, we have 

where Z, and Z ,  are rjldependent, isldiependeratly scattered SES measurs with 
L CODB~QI measures mi, aud md = mid = mizd, resptively, and - denota equality 

in law. Let @: FN-+ 6$9T be defined by 
m 

C@Cy)31BI = @CY, - C l,la,Jmt l(a,)I1'"~,, Y = (Y& E EN= 
n= f 

a, Thus (@ oE)(ZJ = Z,, so that p, = (p ,3 - ' )  @" i = 1,2. PJow, by Corolla- 
ry 2.4, conicmition (iij) i;apBes p, 8-% - pz8-'  ; hen: file - Therefore, since 
pi = pfa *pdT 1: = 1, 2, it fallows that .- y,. sa 

"Fhe results in Proposition 3.1 can be extended to wrtaia s 
(dependent) stable processes, Let Z be an indepndently smbterd SsxS maasBre; 
aiith control measure pn. For any fu~x~tion f EL,(], ~($1, Wa) ;= d4,(4 the 
stochastic integrd j',fdZ can be defined in the usual way and is an SmS 

d; fd23/ld = I I f l jMrn l .  The map f 4 S, f dZ from &(m) into Y { Z J  
is an i s o m e t ~  and 

The sta&astic htetcr?graf allows for the construction of SSm pproc~m with 
generafly dependmt, m l u a  by meam sf the trpctrrrl representation 

where {4(3, *); ec a") c LEI@. In fact, e v w  SES p r o m  X has such a s ~ a l  
~ p r n ~ e n b ~ a n  in Iw, in the seme thats far some f d y  {f(t, . ), t E TI in insome E,(m), 
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( s ~ ?  e.g., [223 and [15]). Same exmpl?s of ScrS processes el4 be considemd at 
the end of the section. 

Let X = (Xl t ) ;  t E T )  be an SaS pracas with ~pectral reprlesenta~on w in 
(3.4). f 0 fallows from tlze! continuity of the stoehasi~e integral map f -+ fdZ 
titrat the representing b ~ . t i a n s  (ftt, -1; ~ E T )  are linmrly dense in LmE;,bm), - sp(d'(t, -1; s~ T )  =: JCI,(llvl), 2 i f d  only if A?'@) = P(Z*J, E)roce:essm sabsfying this 
con&rion will be said to have an invertible spectrat representatkn or, more 
simply, to be inwlible. Gaussian prcrcesEes are invertible [13. For non- 
Gausian SctS prace~sm this is not generally true [S], Goaditions for investihltple 
representation are given in [33 and C5-j. Sols pramses with invel-sjbl 
representation in L,([O, 14) am considered in [30], 

Let X i  = (Xi[t.); t E TI, i =. 2,2, be two iavertible Sa,S processes with 
spectral represeata~ons X,(t) .= J,J(t, u]Z,(du), where Z,  are iftdepndendy 
satrered Sa,S measures with control measures mi and f ( v ,  t ) ~ & , ( m , )  
n LD,fm,), C E  X Xi and X ,  wia be cafied simultaneously iaverribk if for each 
B E Y  there exist N,(B), a,,(_B), ..., a ,,11 [,,(Ea)l, c,,(B), ..., &H,(q(B) B I ~ C ~  that 

in E,,(m,f for both i .= 1,2.  For example X, and X, are simulQnt;;amly 
invertible If they are invertible, and dtkrer ct, = ol, and dm,/&, is hunded 
above or below, or their asaciated random measwes Z ,  mcl 2, are equivdent 
(cf, fioposition 3-11. Tlre simultaneous invertibility of X, and X, d a w s  for the 
study of the equivdenw and singuladty of pi, p, in term of that of Z, ,  2,. 
Indeed, X8(t)  = j ftt, u)Zt(duj is, rau&ly speaking X, = L(ZJ, where; L is 
a linear map from .S?(Zi) into 2(XJ. Simlallinnearrs invertib~ty is like h a ~ g  
Xi :i LL-'(XI), so the singularity of Z , ,  Z, should hpjg  the singlrldty d %, 
a d  X2, and vim-wsga for quivalence, The neat proposition makes thk 
precise, 

$BO~SITXON 3.2. Let X, = (X,(t); t E T )  be two simuJtaaeousJy invertible 
Sorts processes with q ~ ( O , 2 ]  a d  spectral representaitiozss Xi(63! 
= jrf(f;lt, u)Xl(du), where Zi ind~pendevstly scattered Sari$ measures with 
control measure8 m, which am net pwr&ly di~web.~ with a finite number of aloms. 
T k n  k, and pxz are either equioaJetnc or simgaiar, land 

f , ~ . ~  pXi - pxZ tf m d  only conditions (iHiii) of f iop~si t ion 3.1 are sati$ed$ and 
otherwise iu,, I p,, . 

Proof. Fss BEX we MR define 
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so that cfn(B, %,(I *, w))  -+ Zt(B,  w) in probability as n -+ ca, i - 1, 2, Let 
(@,,(B, )I; k E N) be rm, subsequenw conver@ng as. (yJ, i = 1,2, and put 

Hence g ( ~ ,  Xi(*, a)) = Zi(B,  m) a.s., e' = 1, 2. The st.schasti.c promss 
2 = (Z[B),  B E 9) defined on (FTt  %;s) i~ an independ~ntl y sca;tterrr;d Sa,S 
masure with eontroil maswe m, under pX1,  If we also denote by 2 the map 
x -+ Z(., x], then 

pxJ N pX2 * Pxt z-" &2g-' " k 2 )  

and 

.- Yx,2?+l, it fellows that On the sther hmd, if pz, - pza, i.e., pxI Z 
(iHiii) of Proposition 3.9 hold. Thus, we can mnstruct indepmdmnt processes 
gd md Xis ( F f ,  %(Fk), &I) swh. that 

with pzI, pxz,. Since pxr = yg, + pxia, We haye Px, - Px,. 
Now, if p,, and p,, are not equivdent, it folows that p,, I pz, (since 

otherwise pz, -.' pz,$ which implies pX,  - pX,, i.e.? 8 c~ntradictionh and this 
was shown to imply p,, 1 pX,- B 

1 t foUows from Proposition 3.2 that simultaneously invertible processes 
am singular whenever their indexes sf stability are digerenit. This is nat 
generally true far syrametrie stable processm with ddigerent ledexes of stability, 
Indead, Jet G = (GCt); t E T )  be a Gaussian process, and for i = 1,2 let A, be 
a standard positive [s,fl)-stabZe random variable where a, $ ez,, and consider 
the sub-Gauss;im Sa,S processes 

We have yl,,(hr) .= jRjr,, psG(B)pAl(dx). S i n s  the distribution pAi af A, has 
pasitive dendtg in R', we get p,, - pA,, so that, by the GnroIlary to Thea- 
wm 18,1 in CZq, px,  -- pxz. Sin" the lineas spa= af a sub-Gaussim process 
does not contain (non-dqenerate] independent sandam vafiabks (see [S]), 
sub-Gaussiran promsses are not invertible (nor simltaneaudy ievertiblt;.). 
Further eexaaoples of symmetric srabli: grocessQs with different indexes of 
sta&fity wEc.ch are; eqaaivalalellle am 

H 

xi = (xtft) =; C r"fiflZ~,(t); t E T), 
~ / = t  

where fm eack i = 1 , 2 the vector ( A  ,, , . . . , A$,) is positive (~,/2)-stablfs, in- 
degetldent of the mutually indepndent Gaussian proc;esr;ts Gn = (G,(f); t E JP), 
rn = l l  ? * " $  N -  
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As a consequence of Proposition 3-2, h&rm~&abie processes are either 
equivalent or singular and raecessary and salcienr conditions For the two 
alternactives are provided 

C Q R ~ L L ~ Y  3.3. Let X, = (X, (t); t E T) ,  k =: 1 , 2 ,  be two harnfonizcrb!e SQE~S 
processes, with ctk ~(0, 2]$ i.e., 

where 1 = Rd, respectr'uely t -le, K]', for T = 8" respectively Ed, and Z, are 
independently scattered Sa, S measares with finite spectral measures rrtk which are 
not prc;.ly discrf;.te with a $nt'te number of catom. Thea pxl m2d pX2 are 
equSoaIent i j  and oxrty if (i)-(iii) of Propcrsifion 3.1 are satisfied, and they m e  
sin,r;rufar otherwise, 

Proof. Clearly, X, anci X ,  are simultaneously invertible, s ine  indicator 
functions can be approximated unifomly, and h e m  in LaL",(mJ, by linear 
sombiraations of the functions fit, 4 = exp(i(.t, e r } ) ,  Hence the result folbws 
from Propsl~art  3.2. sr 

As a special case, let S md Nube tlarmcuniuMe SctS sipa1 and noise 
proms@& as in CorolIary 3.3, that me independent s f  each sther. Then, 
h+# and pH are equivalent if any only 3 r n ~ , ~  = 0, the atoms af m, are atom sf 
rnR, and 

m3({attll 
2 

< a.3, 

Otherwirze, p x + ~  and p, are sin@ar, and the presence of the raadom simal 
S in the additive noise M can be detected with probability one fa1 least in 
principle). In pwticular, ,usus,, m d  icl, are: singular when the signal has 
cantimucbus spectrum or the noise has no atomis spectrum. (Similar results hold 
when the s ipd and noise pmwssw have simultmeoudy hvertible represea- 
tatims as in Bropositian 3.2,) 

The resuXts in Prcrpositisns 3.1 and 3.2 and Corollary 3-3 are idenliml in 
the non-Gaussian stable case and ia the. Caussi~n case [6] .  Mawever, in the 
case aF gfosulhry 3-3 m u ~ h  more is known for Gaussian promsses. Namely, for 
statinnary Gaussism pracesses {d = 1) restricted over n .fi-~liie inkrval, the 
eqwivaknce-singularity rlichotamy pre~ai18 and necessary and suEcient GOD- 

ditilons for the two alternatives are k n o w  IS=, e.g, [17]). Both uf these 
Important quastions remain open ia the aon-Gaussian stable ease. 

Aaaathr consequence of Proposition 3.2 is the singularity of mulriples d 
inveflible procmses. 

COROLLARY 3.4. Lcl: ,X = ( ~ ( t ) ;  t E T )  be atlr imerlible SaS process with 
EE(C), 21 a ~ d  contr~l  t l z ~ r ~ ~ t l ~ e  IIE wkich is M B ~  pmrely atomic with a finite mmbei3 
of ati7ms. Thus X and bX are siqtml~r wherever Ibj $ 3. 



Proof. lIE Xft) -- If@, u)Z(du), where 2 has control measure m, then 
bX(1-) = Sf@, ts) Z,(du), where Z, = bZ has c~ntrol measure fb]"m. Cleady, 
X md bX we sdultaneoudy invertible and the result follows from Psoposi- 
tiran 3.2. a 

The result in Corollary 3.4 is known to hold for ewry Gaussian process 
with infinite dimensional linear space, Here again the class of SlxS sub- 
Gaussian prowsses polrides arr. example to show that the result is not tm for 
all k f i i t e  dinzenJonal SaS peesses. In fact, if X = ( A ~ ' ~ G ( ~ ) ;  re TIs as before, 
for e z b  b 2 0 we have 

The distdbutions p, and pbA are qequivalent for all b > O so that px - pbx. 
In the Gaussian case the multiple b in Corollary 3.4 is anowed to be 

a fmction b(tc), but t h l ~  problem remrtins open in the nan-Gaussian stable case. 
Corouary 3-4 is relevant to the detection of a constant signal in multiplicative 
noise (see [23. 

4. REFIIAEKS CPN SmGUtAWI'FY AmQkUTE CONTINUtTP7 
OF pgk O m E E  AND 5mS PROCESSES 

For two Gausgan prowsses, the setwise equality of their RKHS"s is 
s necessary conditian for equivdenca For two ~ e ~ o n d  order processes 
a necessary condition for absalute continuity and a sufficient condition for 
siagdarity in terms of their RKHS's are proved in 1121. We show that these 
resulb remaitin true far Sat3 processes and for pth arder promsses with 
1 < p x 2, respectively, with the RKMS replaced by an appropbiinte function 
8p.d.m fl spp1Cified in the sequel. 

The func.ticsn space of a p" adder ~ T O C ~ R S S  % = ( ~ ( t ) ;  t E 21) i s  degncd in 

Note that when p ..: 2, d - RKHS. If Xi = (X,(t); EE i = 1 z3 are two $" 
order grocesfas, we say thiat XI hmiwtes X, if there exists 0 -i K e ao such 
that far all N E N, a,, . . . , aN E R1 and f , , . . . , t, E T, 

The ce1atioarsKp &tween domination and the fundion spaces is drrrified in the 
fallowing 
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(i) XI d~miuurtes X,, then flz r PI, 
(ii) X, demirzates X ,  &f a d  oualj? ij' here exists a b0tmdt.r l ! i ~ea~  

Iransfi-rrmakian V: 2?f(X,) + 9(Xz)  satisfying V (XI (1")) = X ,  (t) t E l", Can- 
rsegwe~tiy, i j  X ,  d ~ ~ r r a t e s  X, and vice: wr,'ia, then 9" = P2 (sawulisc?), 11 - I j  s and 
1 1 .  [I,, are eq;~$ioale~t, and the tmn$ormation TJ has hounded isruerse. 

Proof. (i) If XI dominate X,, it follows that, lor all functions, s, 
Ilsl14 < Klls14, and thus P2 c PI, 

(ii) h t  F+: 9(X1)-.* 4(X2] be defined by 

It is creu that V i s  a: weII-defind bounded linear transfornation and as such it 
can be extmded tu 9 ( X , )  if and only. if X, dominates X,. s 

Far %S prows=, the next prapositlon shows that mutual domination is 
a rrt:casssary condition for absolute continuity, in,, nan-do~nation is a suf- 
ficient ~ ~ a d i l i ~ ~  for singularity- This propasircion is a stochastic pmwss version 
of Proposition 7 in [930]. 

morn~rna~ 4.2. Let Xi = (Xs(t); t ET), i .= 1 ,  2, be two Sa,S prucesses. If 
p, and pa. me not singular; than Xi dominates X,, X, dominares X,, aazd 
FI = ,Fa= Equiuale~tly, if Fl $5, then either X ,  does not: dominate X, or XZ 
dbes not daminate Xi cnzd p, l y, . 

P r o f- Sin= far YE Y (XJ, 11 Y I! ~ , ( p ,  = Cpgi JI Y 11 ,I (see [4]), X I  dozninates 
X, if and only if 

N N 

Assam X, does not dominate X,. Then for any positive sequence Km -., m, as 
n -+ au, them exist 

N m  
go - ~ , ~ X ~ ( b ~ ~ f ~  i ==. 1 ,  2, 

k= l 

such that X6;I(")Slma 3 K, 11 Y,flFll,L, iq = 1,2, . . . Without loss of generdity we s r s l ~ l  

arssllme 11 gl"ll,, = I far dl n. Thus 

PJow eomider the squenw of random variables (%; t t ~  N) dehed on [Fr, %f) 
by W 

&(-)c) " a n , k ~ ( t n ~ k ) ,  XCB~''* 
n=1 

It fallms that: 



Hence a subxquerrce ( Y,,; k E N) can be c h o a  such that if 6, - (x; Y,,[x_) -+ O 
as R -., ao) , then y,, (C,) = 1. Qe~rly, C, is a measurable linear subapxe of FT 
and, since p, is an Sa,S measure a f ( ~ ~ ,  %'I, if fallows by the zero-crae law for 
stable: measures [8]1 &at p,(C,) = 0 or 1. 8 a  tbe ather h n d ,  

which iarapjies that g2[Ca) = 0, and thus p, L p2. s 
"The crucial result used in the proof of Proposition 4-2 is the zro-one law, 

w G ~ h  is not available for general pth order proasses. However, the psopositisn 
has same p t i d  analogs far mptajin g8%ordar process=. 

As in El21 we call a p" order promss X =. t~ T )  @on-reduced if 
&ere exists some EECO, 11 such that for dl countable subsets T, of T, 
B((w; X(t ,  a) -- 0, t E  To)) 2 E ;  ~ t b e m i w ~  X is cal l4 reduced. Nan-tsvid SaS 
pmsses are rduced. When X is separdle anel T an interval of the real line, it 
is shown in C123 that X i s  P & $ I I ~ C I  if and only if P({X( t )  = 0,  t~ T)) - 0,  and 
non-mdrzced if and only if P ( ( X ( r )  - 0, t E T ) )  2 E .far some e E (0, 11. 

Next we generalke to pC"".rder processes with I < p < 2 the results in 
[12], Th&or4mes ('3.2) and (3'3.2). The proof is msmtiaily identitical to Forrefs 
,agd is presented in a shorter form. 

mmlao~ 4.3. Let Xi = ( ~ [ ( t ) ;  t E T)  be a p" order process with 1 c p 
< 2 and fmctbra space 6, r' - It, 2. 

(i) if p, 4 p l ,  then Pg n $5 is dense in S2. 
(ii) If either X ,  or X, iis reduced @an$ P, n FZ = (43) , then p1 I p2 
Pr ooE (i) Fix seR2. By P tows i~on  1 in [;?LO] we have 

where z(@> = [21'"V1, Y E ~ ( X , )  and n(x) is st representahsn of Y in L,(g,) 
-@(x( t ) ;  t s  T) c PT Y(wj = a(X[.9 08. Lei 

be the Letlw:s~f: &composition of pz with rape& to p, ,  %fine 
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is., A $5 is dense in P2, 
(ii) For a. fixed to E ';r, let la,(x) =f xtt,) and define 

By Preposition I in [24], s , ~  95, since a , ( x ) ~  &(p21. Let 

= j X C ~ ) ~ ~ ( X ) ~ ~ - ~ ~ ~ ~ ~ ~ ) P , ( ~ X I  = j x(e)cs,(x)CP-o)gtx)~En(x)tu,(dx;19 
PT P T 

SO that s o , ~ P l  n P2* Since Fl n $", = (O), s,, = 0, i,e., s,,(t) = O .For all f~ TI 
In pas.ticular, 

so,(to)= j I ~ ( t , ) 1 ~ g ( x ) p , ( d x ) - O  for M = =  1 , 2  ,..., 
c$=fll 

and hence 
f r ~ C t 0 ) l ~ ~ t S t ) i l ~ X C ~ ~ 1 = 0 =  

focgs 

ConsequenBIg, since t ,  E T is  arbitrary, we have x(t)  .= 0 as. (p,) on 
{Oi <: g < m) for each F E  T But this Ernplies that X, is noaz-redu~d If 

On the 0 t h ~ ~  hand, if ~,((x; O 4 g(x)  c a)) ) 0, then xlt)  = O a.a. lgp , )  for 
each r and SIo c g c  gdpl r 0. Hence 

is., X ,  is non-redumd, Since either X, 01 X, is redud,  we must % I I w F ~  
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