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Abstract. Necessary and sufficient conditions for equivalence or singularity of
certain product measures are given and applied to the problem of distinguishing
a sequence of random vectors from affine transformations of itself. In particular,
sequences of independent stable random variables are considered and the singularity of
sequences with different indexes of stability is proved. By using these results the
dichotomy, “two processes are either equivalent or singular”, is established for certain
classes of stable processes, such as independently scattered measures and harmonizable
processes. Also sufficient conditions for singularity and necessary conditions for absolute
continuity are given for p™ order processes.

1. INTRODUCTION

This paper investigates the equivalence and singularity of measures
induced by non-Gaussian stable processes.

For two Gaussian processes the following dichotomy prevails: they are
either mutually absolutely continuous (equivalent) or else they are singular (see,
e.g., [6]). For non-Gaussian stable processes some results are available in [13],
[30], [29] and [24].

In Section 2 an idea of LeCam [23] is developed further to provide a necessary
and sufficient condition for equivalence and for singularity of certain product
measures (Proposition 2.1). As an application, the results on the discrimination
between a sequence of random vectors and its perturbation by rigid motions in [27]
are extended to more general classes of perturbations (Corollary 2.2). Also necessary
and sufficient conditions are given for the equivalence and for the singularity of
certain sequences of independent stable random variables (Corollaries 2.3 and 2.4);
and the singularity of two sequences of independent symmetric stable variables with
different indexes of stability is proved (Proposition 2.5).

In Section 3 an equivalence-singularity dichotomy is shown for certain
symmetric stable processes (Proposition 3.2), including independently scattered
measures (Proposition 3.1) and harmonizable processes (Corollary 3.3), and
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necessary and sufficient conditions for the two alternatives are given, identical
to those in the Gaussian case. The singularity of an invertible symmetric stable
process to its multiples is also proved (Corollary 3.4).

In Section 4, a necessary condition for equivalence of two Gaussian
processes, namely the setwise equality of their reproducing kernel Hilbert
spaces (RKHS’s), is extended to symmetric stable processes with the function
space of the process introduced in [24] replacing the RKHS (Proposition 4.2).
Further, for p® order processes with 1 < p < 2, necessary conditions for
absolute continuity and sufficient conditions for singularity are presented
{(Proposition 4.3) analogous to those in [12] for second order processes.

The following setting is considered: X, = (X;(t) = X,(t, w); teT),i=1, 2,
are stochastic processes on a probability space (@, &, P) with parameter set
T and real or complex values, ie, values in F=R or C. When X,(t)
eL,(R, #,P) = L,(P) for all teT and some p >0, X, is called a p™ order
process and its linear space % (X)) is the L (P) completion of the set of finite
linear combinations of its random variables

10X) 2 sp{X,(0); teT}.

FT denotes the set of all extended F-valued (ie., real or complex valued)
functions on T, € = ¥(F") the o-field generated by the cylinder sets of F7,
and y; (or py ) the distribution of the process X, ie., the probability induced
on € by X;: u(C) = P({w; X,(, w)eC}), Ce¥. We are interested in the
Lebesgue decomposition of u, with respect to p,, and in particular in
conditions for u, and p, to be singular (u, 1 u,), for p, to be absolutely
continuous with respect to g, (4, < u,), and for u, and g, to be mutually
absolutely continuous or equivalent (u, ~ u,).

2. ON THE EQUIVALENCE AND SINGULARITY OF CERTAIN PRODUCT MEASURES

In this section we consider the case where X, = (X, ,; neN),i=1, 2, are
sequences of independent random variables or, equivalently, p, and u, are
product measures on FV. The equivalence-singularity dichotomy of product
measures was characterized in [18] in terms of the Hellinger distance of the
marginal measures, which may be difficult to compute, e.g., for stable measures.
The case of translates of product measures with identical marginals was solved
in [25] under finite Fisher information. The sufficient condition for equivalence
in [25] was extended in [23] to a more general scenario under LeCam’s “I”
condition. Proposition 2.1 derives a nearly complete extension of a result of
Shepp in [25] under a condition closely related to LeCam’s. As an application
the equivalence-singularity dichotomy is established for a sequence of iid.
random vectors and an affine transformation of itself in Corollary 2.2
(extending the results in [27] about rigid motions), and for sequences of i.i.d.
stable random variables in Corollaries 2.3 and 2.4.
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Before stating the main results we need to introduce some concepts for
which we refer to [28].

2.1. Preliminaries. The normalized Hellinger distance d of two probability
measures P and Q on a measurable space (2, #) is defined by

d*(P, Q) =} [ (dP/dv)'* —(dQ/dv)""*|*dv,
n

where v is any o-finite measure dominating P+Q, ie, P+0 <€v (eg,
v=P+0Q); and d does not depend on v.

Kakutani’s theorem [18] states that if (u,; neN) and (1,, neN) are
sequences of probability measures with p, ~ 4, and p= X %,p, and
A= ¥ 4, are their product measures, then

o o0
(21) p~ie Y d*p, d)<oo and plie ) d*(u, 4)= .

=1 LESD
We consider the following setting: (2, #, v) is a o-finite measure space, and
{P,, 0 ®} a family of probability measures on (22, #) with P, < v and @ an
open subset of R*, Then F: & - L,(Q, #,v)= L,(v) defined by F(b)
= 2[dP,/dv]*? is said to be differentiable at 0 if there exists a map
DF(0):= DF(-, 0): 2 — R* such that

IDF (8)|2.0.5.vm9 = [ | DF(w, 0)]*v(dw) < oo,
2

ie, DF(6)eL,(Q, #,v; RY, and

JIF@+h)—F@)—<DF(0), hyI*dv =o(|h|*)  as k]~ 0.
2

As usual, F is said to be differentiable (on @) if it is differentiable at each e ©.
The Fisher information matrix is defined by

J(0) = [ DF(6)DF(0) dv

(where DF(0) is the transpose of the column vector DF(0)). It is non-negative
definite as @' F(f)a = [o(a’ DF(9))*dv, and is positive definite if and only if the
components of DF(f) are linearly independent functions in L,(v).

2.2, Main result. As in [23] our purpose is to consider product measures

w0 el
22) pu= X p» 4= X4, where p,=P,and i, = Py,

n=1 n=1
0e@ is fixed and 6+h,e@, n=1,2,... Under LeCam’s condition
“I”: limsup d*(Ppsp Pe)/llh]| < o,
o< ihli 0
Proposition 2 in [23] shows that 3 [lh,|? < co implies u~ 4. Here we
obtain an equivalence-singularity dichotomy along with necessary and suf-
ficient conditions for the two alternatives, when #(0) is positive definite at
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§ and the following separation type condition (which is usuvally assumed in
asymptotic statistical theory [16]) is satisfied:

(2.3) “for all sufficiently small 6 > 0, inf d*(Pysy, Py > 07,
I{Bil >4

ProrosiTion 2.1. Let pu and A be as in (2.2), F be differentiable at 0 and #{6)
be positive definite.
(i) If 0< b, >0 as n— 0, then

p~Aes Y P <o and plie Y ||h)? = oo.
n=1 n=1

(ii) If condition (2.3) is satisfied, then the conclusions of (i) hold for any
sequence (h,; neN).

The sufficiency for equivalence follows from [23, Proposition 2], since
L,-differentiability is clearly stronger than condition “I”, but we include
a simple complete proof here.

Proof. (i) Since F is differentiable at 0, as 0 < [|h| = 0 we have
[IF (O +h)—=F (0)]| oy — [ <DF (6), B ||, = o(llAl).
Thus for any & > 0 there exists § = d(g) > 0 such that if 0 < ||h] <4, then
I~ IKDF(6), h) |l —2 < [l ™ |F O+ h)— F (0,0
< ||k~ IKDF(6), )]l +e-
But [DF(8), k|2, = [o|(DF(6), hD|*dv = I #(0)h implies that, for all h # 0,
k(0) < [|hl = IKDF(0), B lizam < K(0),

where k(6) and K(9) are the smallest and the largest eigenvalues of .# (8). Since
J(0) is positive definite, k(f) > 0 and we can choose 0 < & < k(6) so that, for all
h, 0 < |[h|| <8,

0 < L(O) < [jrl = |F(O+R)—F(O)lr, < U(B),
where L(8) = k(8)—¢ and U(f) = K(0)+ . Thus since it follows that d(P,, Py)
= || F(6)— F(8")|,,/8, we have for n large

0 <$L*O) 11> < d*(pty, A1) < U (O) 11,12

and the result follows from (2.1).
(1) If (2.3) is satisfied and h,++ 0, then there exist > 0 and a subsequence
(n;; jeN) with |k, |l > J. Tt follows that

o =41

z dz(‘u’” ) Z 'Zl dz(ﬂau’ j"nj) Z Z inf dz(Pﬁ+ha”Pa) = 0,
i=

n=1 i=1 [ik]|>3d

and from' (2.1) we obtain ul A. This combined with (i) gives the result. m
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It should be mentioned that the differentiability of F(8) is generally
difficult to verify, but is implied by the classical Cramér-Wald and Hajek
regularity conditions, which play an important role in statistical estimation
theory and are in principle easy to check (see, e.g., [28, Section 77]). However,
L,-differentiability is weaker than any of these classical conditions, and the
definition of Fisher information presented here extends the classical one,
namely S(0) = —E{0*In(dP,/dv)/60*} under the usual conditions on dP,/dv.

2.2. Examples.

Affine transformations in R*. Suppose (X,; neN) is a sequence of iid.
random vectors in R¥, (4,; ne N) a sequence of (k x k)-matrices, and (b,; neN)
a sequence of vectors in R In order to compare the sequence of random
vectors (X,; neN) with (4,X,+b,; neN) we can take as a parameter space
© any open subset of the set

{0 =(4, b); A =(ay): (kxk)}matrix, b = (b)eR"}
. = {0, 0= (an, vany Bgs ey Apk s b“ AN bk)} = sz*k = sz % R*
containing the point (I, 0), with norm
k k
101 wssose = NAluert bl = 3, ad+ Y b2,
1j=1 i=1
With P the common distribution of the i.i.d. random vectors X, and 8 = (4, b),
we define
24) Py(B) = Pyu(B) = P({AX,+beB})
and note that P = P;. From Proposition 2.1 we have the following

COROLLARY 2.2. Let the probability measures P, defined as in (2.4) be such
that, for an open set © < R x R* with (I, 0)e®, the family {P,; 0@} is
dominated by some o-finite measure v on R¥, F(0) is differentiable at (I, 0) and
F(1, 0) is positive definite. If A,—1 and b,—0 as n— 0, then

o ok
(X)) ~ (A, X, +b)< 3 bl < oo and 11— A, || Bexw < 0,
g1 n=i ’
and otherwise (X)) L(4,X,+b,). Furthermore, if condition (2.3) is satisfied, the
above conclusions hold for all sequences (A,, b,) in ©.

Proof. Putting 0 = (I, 0) and (4, b,) = 0+h, we have h, =(4,—1, b,)
and
1Byl o roie = 1A, — Tl feemso + 1By | e
The conclusion then follows from Proposition 2.1: s
Remarks. (a) Since the space of (k x k)-matrices is finite dimensional, any
norm can be used in place of (- [ gex«s.
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(b) When A, = I for all n, Corollary 2.2 extends the result on translates in
[257 from random variables (k = 1) to random vectors (k = 2).

(c) Corollary 2.2 contains Theorems 1 and 2 in [27], which consider the
case where A, is a rotation, ie, 4,x+b, is a rigid motion of xeR"

(d) When the X,’s are Gaussian random variables (k = 1) with mean zero
and variance one, Corollary 2.2 can be checked directly by computing
Hellinger distances. However, the computation of Hellinger distance is not
simple in higher dimensions (k > 2) even for Gaussian random vectors.

Stable sequences. Here we denote by f; 5. the univariate stable density
whose characteristic function [ exp(iux) fu,p.05(x)dx is

exp{—lau*exp[ —inf sgn(u)/2] +ibu} if 0 # 1,
exp{—|au| ~i2f/m)auln(aul) +ibu} i a=1,

where 0 <a <2, |fl<aan(2—a),a>0and —o0 <h< oo (see [9). If =0
and b =0, we have the symmetric a-stable case (SxS).

We establish the equivalence-singularity dichotomy for certain sequences
of independent stable variables. Since results about L,-differentiability and the
validity of condition (2.3} at o = 1 are not known, we consider only limiting
values o # 1.

CoroLLARY 2.3. Let (X, ne N) be a sequence of i.i.d. stable variables with
Aensity fiag poaons and let (X,,; neN) be a sequence of independent stable
variables where the density of each X,, is fiunpoanpy With (%, B, 0, b))
— (g, Po» g, bo) and g # 1. Then

(Xin) ~ (X2 }‘#{z:;i &=, <, Z:; 1 (B,—Bo)* < co0,

| Z:';  (a,—ap)* < w0, Z:il (b,—bo)* < o0,
and otherwise (X} L(X,,).
Proof Let @ be any open subset of the set
{0 =(x,B,a,b) a0, DU(L2),|fl<ar2—a),a>0, —0 <b< w0}

containing the point 6, = (e A By, G, ). It is known that the densities
{fs, 0 ®} satisfy the usual Cramér-Wald regularity conditions ([9], p. 952);
hence fi!/* is L,(Leb)-differentiable at each fe @ (see, e.g, [28, Section 77]).
Moreover, the Fisher information matrix .#(f,) is positive definite [9, p. 954].
Therefore, the assumptions of Proposition 2.1 (i) hold at 8,. Since for
hy = (0 — % 5 B —PBo> @, —ay, b, —bo) we have

halls = (ta—0t6)* + (B, — Bo)* +(a, — a0} +(b,—bo)?,

the result follows. =
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When all parameters except shift b are kept fixed, the separation condition
(2.3) follows from the inequality in [16, Example 3, p. 57}, and when f = 0 and
xe(0, 2] is fixed, it has been proved in [19]. Hence we have the following

CoroLLARY 24. Let (X,; neN) be a sequence of iid. standard SuS
variables with density fi,,0,1,0) and a€(0, 2], and let (a,, b,) and (ay, b;) be two
sequences of pairs of real numbers with a,# 0. Then

(@, X,+b,) ~ (@, X, +b)<=(X,) ~ ((a,,fa;)X w (b, — b;'l)/af,,]
- i {1—la,/a}|}*> < o0 and i {(b,—Dj)/a,}* < o0,
n=1 r=1

and otherwise (a,X,+b,) L (a,X,+by). ]

Proof. The first equivalence follows since the map (x,) — ((x, —b,)/a;) is in-
vertible and the second follows from Corollary 2.2 since (a,/a;) X, +(b,—by)/a,
has density fi, 0,406 0 -biyan)- ®

We next explore the tail behaviour of a stable distribution to show that
two infinite sequences of independent symmetric stable variables with two
different indexes of stability are singular.

PropPOSITION 2.5. Let X;=(X;; neN), i=1,2, be two sequences of
(non-degenerate) independent symmetric stable variables with index of stability o,
in (0, 2] and scale parameters (ay). If oy o, then p, L p,.

Proof. Assume o, < o, < 2. For each ye(0, 2) let Z, denote an SyS r.v.
with scale parameter 1, Thus

1in(B) £ P(X,€ B) = P(auZ, € B).

Since ¢"P(|Z,| > ¢") — C, as ¢ — oo, where C, is a positive constant (see, e.g,
[11]), given any & > 0, there exist M,, such that, for ¢ > M, ,,
(C,~e)e™? < P(1Z,| > ¢) < (C,+8)c™".
From now on fix & such that 0 <¢ < min(C,,, C,).
Case 1. Assume
A \
O, = Qi,ft3, =0 as n— 0.

Define ¥: FN — FN by P(x) = (¥,(x) = x,/az,; neN). It follows that ¥ is an
iid. sequence of standard Su,S r.v.’s under p,, and under y, an independent
sequence of Sw, S r.v’s with scale parameter gy,/a,, = o,.
As before let d, denote the total variation distance between probability
measures. For ¢ > M(1+sup,o,), where M = max{M,,, M,,), we have
dv(ﬂlﬁ ?n_l: #Z%i?;l) ; P(’zmzl > C}“Puﬁnsz > C)

> (Cdtz - e)caz - Ugi (Cm + 8)cml ?

5 — PAMS 122
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and thus
liminfd, (11, s > p2a¥y *) 2 (Csp —2)/c™ > 0.

n-r oo

Since d, < 2d, where d denotes the Hellinger distance (see, e.g., [28]), we have
E d(ﬂm !Fa; l: Han qlnu l) = 00,
n=1

and therefore, by Kakutani’s Theorem, p, ¥~ 'L u,%"', which implies
By, :

Case 2. Assume ¢, 0. Thus there exist § > 0 and a sequence (n,; ke N)
such that o, > 46, ie, o,' <671 Define &: F¥ - F¥ by

D(x) = (D (x) = x, /a1, keN).

Then @ is an iid. sequence of standard Se, S r.v.’s under u,, and under u, an
independent sequence of S«,S r.v’s with scale parameter «5,,/a,,, = a,.'. For
c>M(1+6"') we have

d (10, Pt s Hon, P) 2 P20, > O)—Pllont Z,,) > ©)
> (Cp— )¢ — 0 H(C oy + )¢ > (C,, —8)c™ — 57 1(C,, + )™ £ §(c).

Since o, < a,, we have &'(c) > 0 if and only if ¢ > §"HC,, +&)(C,, —¢).
Thus, fixing
€ > M(1+067" +(cz, +e)(C,, —8) 102 720),
we obtain
limsup dbv'(.uln';pn— 1: #Eu@; 1) > 51(@ > 0,
and the conclusion follows as in case 1.
If ot = 2, the result can be shown with minor modifications in the proof. =

3. DICHOTOMIES FOR CERTAIN SeS PROCESSES

For stochastic processes the equivalence-singularity dichotomy has been
proved for product measures [18], for Gaussian processes ([10] and [14]), and
for certain ergodic measures [20]. In [24], it was shown that this dichotomy
prevails for translates of certain SaS processes. Such a dichotomy for general
SaS measures has been conjectured in [7] but the problem remains open. In
this section we show that an equivalence-singularity dichotomy holds for
certain S«S processes, e.g., independently scattered SxS measures and har-
monizable SuS processes, and we give necessary and sufficient conditions for
the two alternatives for all xe(0, 2].

Recall that a random variable X is SaS with scale parameter | X |,€(0, o) if

E{exp(iuX)} = exp(— | X ||3]u}",
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and a stochastic process X = (X(s); teT) is SoS if all linear combinations
Zk_ a,X(t,) are SaS variables. When a = 2, we have zero mean Gaussian
varlables and processes, respectively. When 0 < o < 2, the tails of the dis-
tributions are heavier and only moments of order pe(0, o) are finite.

We first prove a dichotomy for independently scattered SeS measures. Let
I be an arbitrary set and .# a d-ring of subsets of I with the property that there
exists an increasing sequence (I,; ne N) in .# with | J, I, = I. A real stochastic
process Z = (Z(B); Be.#) is called an independently scattered SaS measure if,
for every sequence (B,; neN) of disjoint sets in , the random variables
{Z(B,); ne N} are independent, and whenever | J, B,€.# we obtain Z({ J, B,)
=) ,Z(B, as., and for every Be.# the random variable Z(B) is SaS, ie.,

E{exp(iuZ(B))} = exp{~m(B)|u"}, where m(B) = | Z(B)|2.

Then m is a measure on .# which extends uniquely to a o-finite measure on
a(#), and is called the control measure of Z. The existence of an independently
scattered SaS measure with a given control measure is a consequence of
Kolmogorov’s consistency theorem. If I is an interval of the real line and the
conrol measure m is Lebesgue measure, then X has stationary independent
increments,

E{exp(iu[X () —X()])} = exp{—lt—t|1ul},

and is called an SaS motion on I.
The following notation will be used in Proposition 3.1. Recall that if
a o-finite measure space (I, ¢(#), m) is such that o(#) conitains all single point
sets (e.g., I is a Polish space, o(#) its Borel sets, and .# the é-ring of Borel sets
with finite m-measure), then m can be decomposed into m = m,+m,, where m,
is purely atomic and m, is diffuse (non-atomic) [217, and the set of atoms is at
most countable, say 4 = {a,}. Thus if Z = (Z(B); Be #) is an independently
scattered SaS measure with control measure m, it can be decomposed into
Z=2,+Z,;, where Z, and Z, are independent SaS mdependently scattered
measures defined for all Be.# by Z,(B)=Z(AnB) and Z,(B)= Z(A°n B),
and have control measures m, and m,, respectively. The atomic component has
a series expansion Z,(B) = E 15(a)Z ({a a}) Which can be normalized by using
the iid. standard SaS variables Z, £ Z({a,})m Y*({a,}) with E{exp(iuZ,)}
= exp(—|u|*) as follows:

Z,(B) = Y 13(a)ym* " ({a,} Z,.

PROPOSITION 3.1. For i =1, 2, let Z; = (Z(B); Be.f) be an independently
scattered So,;S measure with o, e(0, 2] and control measure m; which is not purely
discrete with a finite number of atoms. Then y, ~ u, if any only if the following
conditions are satisfied:

(i) oy = ay,

(i) myq = myy,
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(i) m, and m, have the same set of atoms A = {a,} and
¥ [1—my({a,})/my({a,})]* < .

Furthermore, if any of these conditions fails, then p, 1 u,.

Proof. First suppose that m, and m, are not equivalent, e.g., m, € m,.
Then there exists Beo(¥) such that

1Z,(B)lz; =m(B)=0 and |[Z,(B)|z = m,(B) > 0.

Define I'y: FZ — F by I'y(x) = x(B). It follows that p, I's* L p, ' *, and thus
py Ly, From now on we assume my ~ nt,.

Suppose o, # a,. Since m, and m, are not purely atomic with a finite
number of atoms, we can choose an infinite sequence (B,; ne N) of disjoint sets
in # such that m(B,) >0, i=1,2. Define ¥: F/ > F" by P(x)= (¥,
= x(B,,), neN). Thus, for i =1, 2, under u;, ¥ is a sequence of independent
Se;S r.v.’s with ||¥ t“* = my(B,). It follows from Proposition 2.5 that if a, # «,,
then p, ¥~ L p, P~ so that u, L p,. From now on we assume o, = a, =,

Since m, ~ m,, we have m,; ~ my,. Suppose m;; # my,, so that

my({dmygfdmyy # 1}) >0, i=1,2;
hence

m,—,j({o << dmg,,/'dm“ < 1}) >0 or m;d{{dmz,,/dmm > 1} > 0.
Assume m,d({dmzd/dmm > 1}) > 0. Then there exists 6 > 1 such that
mm{{dmﬁjdmm > 5}) > 0.

Since m;, is non-atomic, we can find a sequence (B,; ne N) of disjoint subsets of
{dmyy/dm,, > 8} such that m,,(B,) > 0. Let @: F¥ - F" be the map defined by
(x) = {B,(x) = x(4° " B,)/my4(B,)""; neN}.

Under u,, @ is an iid. sequence of standard SaS r.v’s, and under p,, @ is an
independent sequence of SuS r.v.’s with |, [|% = my(B,}/my4(B,). It follows

from Corollary 2.4 that u, @ ! and u,® ! are either equivalent or singular,
and they are singular if and only if

31 3 {1 = [mau(BYmya(B)]H}? = 0.

Now, by construction,

maa(B,) = 5 :ﬁza dmyy > dmya(B,).
: 1d
Hence 1 < & < myy(B,)/my4(B,), so that {3.1) holds. Thus p, &' Ly, &%,
which implies pu, L y,.
If ma({dmyg/dmyy > 1}) = 0, we have my({dmys/dmsg > 1}) >0 and an
identical argument applies. Therefore m, ~ m, and my, # my, imphes u, L u,.
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Now assume my4 = m,,. Since m; ~ m,, they have the same set of atoms
A = {a,}. Suppose u, <p, and let E: F¥ —» FN be defined by

"(xf' {Ex(0) = x({a,})/m, ({a,})'"*; neN}.
Thus p, 571 < p; E71, and 5 is an ii.d. sequence of standard SaS r.v.’s under
s, and under p, an independent sequence of SaS rwv.’s with [E];
= m,({a,})/m,({a,}). Hence, by Corollary 2.4, :

(32) Z{lmimz({aﬂ})/mﬂ{an}ﬂ 112 < o0,

Also, if (3.2) does not hold, again Corollary 2.4 implies y, 5~ ' L u,5~! so that
By,
Note that (3.1) and (3.2) are symmetric in m, and m, and independent of
o as for g # 0, ) (1 —u,)? < oo if and only if 3 (1 —uf)?* < 0o. Hence (3.2) can
be replaced by (iii).
Conversely, suppose that (i}{iii) hold. Since my; = m,,, we have

Z, 2 Zu+vZ, i=1,2,

where Z;, and Z, are independent, independently scattered SmS measures with
control measures m;, and m; = my; = m,,, respectively, and L denotes equality
in law. Let &: F¥ — F* be defined by

[GON(B) = (. B) = I Lylaymy (@) y, y=()eZV.

n=1

Thus (@0 E)}Z) L Z,,, so that p, = (@,E Y"1, i=1,2. Now, by Corolla-
ty 2.4, condition (iii) implies pu, 2! ~ p, E7*; hence p,, ~ ua,. Therefore, since
W= phia* py, i=1,2, it follows that pu; ~ p,. =

+ The results in Proposition 3.1 can be extended to certain symmetric
(dependent) stable processes. Let Z be an independently scattered SeS measure
- with control measure m. For any function feL,(I, 6(#), m) = L,(m) the
stochastic integral [; fdZ can be defined in the usual way and is an SzS
variable with |[{; fdZ||, = | f | . The map f - [, fdZ from L (m) into £(Z)
is an isometry and

(3.3) L(2) = {[ fdz; feL,m)}.

I
The stochastic integral allows for the construction of SaS processes with
generally dependent values by means of the spectral representation
(3.4) X[t)«-ff(t wZ(du), teT,
where {f(t,); te T} = L,(m). In fact, every SoS process X has such a spactral
representation in law, in the sense that, for some family { f{t, -), te T'} insome L,(m),
(3.5) (X@); teT) £ (j [, WZ(du); teT)
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(see, e.g., [22] and [15]). Some examples of SaS processes will be considered at
the end of the section.

Let X = (X(1); te T) be an SeS process with spectral representation as in
(3.4). It follows from the continuity of the stochastic integral map f — [ fdZ
that the representing functions {f(z,); teT} are linearly dense in L,(m),
SP{f(t, *); te T} = L (m), if and only if Z(X) = ¥ (Z). Processes satisfying this
condition will be said to have an invertible spectral representation or, more
simply, to be invertible. Gaussian processes are invertible [1]. For non-
Gaussian SaS processes this is not generally true [5]. Conditions for invertible
representation are given in [3] and [5]. SaS processes with invertible
representation in L,([0, 17) are considered in [30].

Let X;=(X,(); teT), i=1,2, be two invertible Sa;;S processes with
spectral representations X,(t) = [, f(t, wZ(du), where Z; are independently
scattered So;S measures with control measures m; and f(-, )L, (m,)
N L, (m,), te T. X, and X, will be called simultaneously invertible if for each
Be.# there exist N,(B), @n(B), ..., Gun,m(B)s tai(B), ..., Ly s (B) such that

Nn(B) ,

kzl aukf(tnk(B)& ') - 15{ } as n - 0
in L,(m) for both i=1, 2. For example X, and X, are simultaneously
invertible if they are invertible, and either o, = «, and dm,/dm, is bounded
above or below, or their associated random measures Z, and Z, are equivalent
(cf. Proposition 3.1). The simultaneous invertibility of X ; and X, allows for the
study of the equivalence and singularity of u,, p, in terms of that of Z,, Z,.
Indeed, X,(t) = | f(t, WZ{du) is, roughly speaking, X; = L(Z}), where L is
a linear map from #(Z) into & (X). Simultaneous invertibility is like having
Z, = L™Y(X}), so the singularity of Z,, Z, should imply the singularity of X,
and X,, and vice-versa for equivalence. The next proposition makes this
precise.

ProrosITiON 3.2. Let X, = (X,(#); te T) be two simultaneously invertible
So,S  processes with w,€(0,2] and spectral representations X (t)
= [ f(t, WZ(du), where Z, are independently scattered So,S measures with
control measures m; which are not purely discrete with a finite number of atoms.
Then py, and py, are either equivalent or singular, and

By, ~ By, <> Uz, ~ Bzys My, LMy, = by, Lz,

ie., jiy, ~ Uy, if and only if conditions (i)}-(iii) of Proposition 3.1 are satisfied, and
otherwise py, L py,.

Proof. For Be s we can define

Ny(B)

@,(B, )= ) A (B)x(tu(B), xeFT,

k
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so that @,(B, X,(*, w))— Z,(B, w) in probability as n—co, i=1,2, Let
(2,.(B, *); keN) be a subsequence converging as. (), i=1, 2, and put
Z(B) = E(B, ') = lim iﬂf@m,(ﬂ ’ ')1£x;«mnk€x3wnwmeu=}(‘)'
ko

Hence Z(B, X,(-,®))=Z,(B,w) as, i=1,2. The stochastic process
Z =(Z(B), Be#) defined on (F”, %) is an independently scattered So,S
measure with control measure m; under py . If we also denote by Z the map
x - Z(", x), then

”‘Xl ~ ﬂX; @#Xlzvl‘ ~ #ng?1 (i'e' ﬂzx ~ ﬂz;)
and

bz, L g, (ie. ﬂxlzwmi »Lﬂxzfui):’“#xf L sy,

On the other hand, if p, ~ py,, i€, py, Z ™1 ~ py, Z7*, it follows that
(i)(iii) of Proposition 3.1 hold. Thus, we can construct independent processes
X, and X, on (F*, €(F”), pz) such that

Xi é: X~d+X~l‘ﬂ, i = ﬂ., ‘2,

with pg, ~ pg,,. Since py, = ug,* g, we have py, ~ fiy,.

Now, if iy, and py, are not equivalent, it follows that p, 1 pu, (since
otherwise uz, ~ pg,, which implies uy ~ py,, i€., a contradiction), and this
was shown to imply py, Ly, . ®

It follows from Proposition 3.2 that simultaneously invertible processes
. are singular whenever their indexes of stability are different. This is not
generally true for symmetric stable processes with different indexes of stability.
Indeed, let G = (G(¥); te T) be a Gaussian process, and for i = 1, 2 let 4, be
a standard positive (x,/2)-stable random variable where o, # «,, and consider
the sub-Gaussian So;S processes

X, = (X(0) = AI?G(); teT).

We have piy,(B) = [g+ ttc(B)pi ,(dx). Since the distribution p, of A, has
positive density in R*, we get p,, ~ ju4,, so that, by the Corollary to Theo-
rem 18.1 in [26], py, ~ px,. Since the linear space of a sub-Gaussian process
does not contain (non-degenerate) independent random variables (see [5]),
sub-Gaussian processes are not invertible (nor simultaneously invertible).
Further examples of symmetric stable processes with different indexes of
stability which are equivalent are

N
X, =(X,0= Y A*G,0); teT),
n=1
where for each i =1, 2 the vector (4;y, ..., Aw) is positive (@;/2)-stable, in-

dependent of the mutually independent Gaussian processes G, = (G,(1); te T),
n=1,..., N.
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As a consequence of Proposition 3.2, harmonizable processes are either
equivalent or singular and necessary and sufficient conditions for the two
alternatives are provided.

CoroLLARY 3.3. Let X, = (X, (t); te T), k = 1, 2, be two harmonizable Sa, S
processes, with «, (0, 2], ie,

X (0) = [exp(<i<t, W) Z,(du), teT,
I

where I = R°, respectively [ —x, n]%, for T = RY, respectively Z°, and Z, are
independently scattered So, S measures with finite spectral measures m, which are
not purely discrete with a finite number of atoms. Then py, and uy, are
equivalent if and only if (i)-(iii) of Proposition 3.1 are satisfied, and they are
singular otherwise,

Proof. Clearly, X, and X, are simultaneously invertible, since indicator
functions can be approximated uniformly, and hence in L (m,), by linear
combinations of the functions f{t, u) = exp(i<{t, u)). Hence the result follows
from Proposition 3.2. & '

As a special case, let § and N-be harmonizable SaS signal and noise
processes as in Corollary 3.3, that are independent of each other. Then
Us+y and uy are equivalent if any only if mg 4 = 0, the atoms of mg are atoms of

my, and
ms{ {an} ) :r
;[m&({an})ﬁ-m”({a,,}) =

Otherwise, g,y and py are singular, and the presence of the random signal
§ in the additive noise N can be detected with probability one (at least in
principle). In particular, us,y and g, are singular when the signal has
continuous spectrum or the noise has no atomic spectrum. (Similar results hold
when the signal and noise processes have simultaneously invertible represen-
tations as in Proposition 3.2))

The results in Propositions 3.1 and 3.2 and Corollary 3.3 are identical in
the non-Gaussian stable case and in the Gaussian case [6]. However, in the
case of Corollary 3.3 much more is known for Gaussian processes. Namely, for
stationary Gaussian processes (d = 1) restricted over a finite interval, the
equivalence-singularity dichotomy prevails and necessary and sufficient con-
ditions for the two alternatives are known (see, e.g, [17]). Both of these
important questions remain open in the non-Gaussian stable case.

Another consequence of Proposition 3.2 is the singularity of multiples of
invertible processes.

COROLLARY 3.4. Let X = (X(z); te T) be an invertible SaS process with

ne(0, 2] and control measure m which is not purely atomic with a finite number
of atoms. Then X and bX are singular wherever |b| # 1.
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Proof. If X(t) = | f(t, u)Z(du), where Z has control measure m, then
bX(t) = | f(t, u)Z,(du), where Z, = bZ has control measure [bf*m. Clearly,
X and bX are simultaneously invertible and the result follows from Proposi-
tion 3.2. w

The result in Corollary 3.4 is known to hold for every Gaussian process
with infinite dimensional linear space. Here again the class of SaS sub-
Gaussian processes provides an example to show that the result is not true for
all infinite dimensional SaS processes. In fact, if X = (412G (t); re T), as before,
for each b > 0 we have

Hpx(B) = Rj; Fx6(B) iy a(dx).

The distributions u, and w,, are equivalent for all b > 0 so that py ~ y.

In the Gaussian case the multiple b in Corollary 3.4 is allowed to be
a function b(z), but this problem remains open in the non-Gaussian stable case.
Corollary 3.4 is relevant to the detection of a constant signal in multiplicative
noise (see [2]).

4, REMARKS ON SINGULARITY AND ABSOLUTE CONTINUITY
OF p" ORDER AND S«S PROCESSES

For two Gaussian processes, the setwise equality of their RKHS’s is
a necessary condition for equivalence. For two second order processes
a necessary condition for absolute continuity and a sufficient condition for
singularity in terms of their RKHS’s are proved in [12]. We show that these
results remain true for SxS processes and for p™ order processes with
1 < p < 2, respectively, with the RKHS replaced by an appropriate function
space # specified in the sequel.

The function space of a p™ order process X = (X(t); te T) is defined in
[24] by

) N Y |
F={s: T-F; |s|z2 su [Rn=1 430 <oo},
{ bl = s 57 X, )i

ESPT 2 4
Note that when p = 2, # = RKHS. If X, = (X (1); teT),i =1, 2, are two p™
order processes, we say that X, dominates X, if there exists 0 < K < oo such
that for all NeN, ay,...,ayeR" and t,, ..., tyeT,

N . N
!E Z a,X,(t,) HLP(P) = K” Z aaaX1(5u)nL,,(P)-

=13
The relationship between domination and the function spaces is clarified in the
following
PrOPOSITION 4.1. Let X; = (X,(1); te T) be p* order processes with function
space #, i=1, 2.
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() If X, dominates X,, then &, c #,.

() X, dominates X, if and only if there exists a bounded linear
trangformation V: ¥(X,)— L(X,) satisfying V(X)) = X,(t), teT. Con-
sequently, if X, dominates X, and vice versa, then F, = &, (setwise), || * | 5 and
Il lls are equivalent, and the transformation V has bounded inverse.

Proof. (i) If X, dominates X,, it follows that, for all functions s,
lsllg < Kllsll 5, and thus &, « .

@) Let V: £P(X,)— Z(X,) be defined by

v

V(Y a,X,(t) = Y a,X,(t).
B=1

n=1
It is clear that ¥V is a well-defined bounded linear transformation and as such it
can be extended to #(X,) if and only if X, dominates X,. m
For SaS processes, the next proposition shows that mutual domination is
a necessary condition for absolute continuity, ie., non-domination is a suf-
ficient condition for singularity. This proposition is a stochastic process version
of Proposition 7 in [30].
PROPOSITION 4.2. Let X; = (X,(t); teT), i = 1, 2, be two Su,S processes. If
u, and p, are not singular, then X, dominates X,, X, dominates X, and
F, = F,. Equivalently, if &, # &,, then either X, does not dominate X, or X ,
does not dominate X, and pg 1 p,.
Proof. Since for Ye Z(X), | Yl = Cpa | Y, (se€ [4]), X | dominates
X, if and only if
N ¥
|2 a0 < K| X 0,0
n= m=1

Assume X, does not dominate X ,. Then for any positive sequence K, — o0, as
n— oo, there exist

Z nkX tn.& i=1,2,

such that | Y|, = K, | ¥Vl,,, » = 1, 2, ... Without loss of generality we can
“assume || VM|, =1 for all n. Thus

1%, < YK,—»0 as n— co.
Now consider the sequence of random variables (Y,; ne N) defined on (F”, )
by .
= Y GuuX(tpz), x€eFT.
It follows that )

[ exp(iu¥)du, = exp(— V&) »1  as n—co.
FT
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Hence a subsequence (¥, ; ke N) can be chosen such that if C, = {x; ¥, (x) - 0
as k — o0}, then py, (Co) = 1. Clearly, C, is a measurable linear subspace of F”
and, since g, is an Se.,S measure of (F”, %), it follows by the zero-one law for
stable measures [8] that p,(C,) =0 or 1. On the other hand,

F.L exp(iul, )du, = exp(— | ¥, [21") = exp(—[ul™),

which implies that p,(Cy) =0, and thus g, Ly, =

The crucial result used in the proof of Proposition 4.2 is the zero-one law,
which is not available for general p™ order processes. However, the proposition
has some partial analogs for certain p™ order processes.

As in [12] we call a p™ order process X =(X(f); te T) non-reduced if
there exists some ee(0, 1] such that, for all countable subsets T, of T,
P({w; X(t, w) =0, te T,}) = ¢; otherwise, X is called reduced. Non-trivial SxS
processes are reduced. When X is separable and T an interval of the real line, it
is shown in [12] that X is reduced if and only if P({X(t) =0, te T}) =0, and
non-reduced if and only if P({X(t) =0, teT}) > ¢ for some s€(0, 1].

Next we generalize to p™ order processes with 1 < p <2 the results in
[12], Théorémes (3.2) and (3.3.2). The proof is essentially identical to Fortet’s
and is presented in a shorter form.

PrROPOSITION 4.3. Let X; = (X(t); te T) be a p™ order process with 1 < p
< 2 and function space %, i=1,2. ‘

@) If uy < py, then F,NF, is dense in F,.

(i) If either X, or X, is reduced and %, nF, = {0}, then p, L pu,.

Proof (i) Fix se#,. By Proposition 1 in [24] we have

5(t) = BE(X,0) Y~ 2) = [ x(D)a(x)®~? uy,(dx),
FT
where z% = |2/ "'z, Ye #(X,) and a(x) is a representation of Y in L,(u,)
~5p{x(®); te T} = F7, Y(w) = a(X(-, w)). Let

Yy (E) = i gdu, + py(E A N)

be the Lebesgue decomposition of ﬁz with respect to p,. Define
E,={x; 0<g(x)<n}nN°®
and

5,(8) = ny x(B)a(x) P12 15 (x)p,(dx) = FL x(B)a(x)? ™ g(x)1 g, (%) 1, (dx).

Since a‘?~ 1, €L, (u,) and a®?~glg € Ly(n,), we have 5,6 #; N F,. Also

X K
LZ‘ als—s)t)| <[] 13;1 eyx(t)P dp] m[ﬁg P ]

FT
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Thus
Is—s, 1%, < [ 1a® " P*du, = | lalPgdp, -0 as n— oo,
B {g=n}
ie, # NF, is dense in F,.
(ii) For a fixed t,eT, let ay(x) = x(t,) and define

solt) = | x(B)agx)*™" p,(dx).
FT’

By Proposition 1 in [24], spe %, since ay(x)e L, (u,). Let

Sonlt) = ST x(H)ag(x)? 17 1, (Yp,dx) = IT x{0)ao ()1 g(x) 15, ()14 (dx),
F F
so that so,€ %, N %,. Since F; N F, = {0}, 50, = 0, i.e., Sou(t) = O for all te T.
In particular,

Sonlto) = | [xEPglop,dx)=0 forn=1,2,..,

0=g<n}
and hence
I @l g(x)p,(dx) =0
[0 <g=<w}
Consequently, since t,eT is arbitrary, we have x(f)=0 ae. (u,) on
{0 < g < o} for each teT. But this implies that X, is non-reduced if

uy({x; x()) =0, te T} 2 p, ({x; 0 <g(x) < o}).

On the other hand, if u,({x; 0 < g(x) < w0}) > 0, then x(t) = 0 ae. (gu,) for
each t and [ <g<.gdpn, > 0. Hence

pa(fx; x() =0, teT})= [ gduy, >0,

{0 <g<a}

ie, X, is non-reduced. Since either X, or X, is reduced, we must have

po({x; 0<glx) < 0})=0, ie, pylp,. =
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