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Abstract, In this paper, we use the multivariate Liouville distributions to
generalize many aspects of the classical approach to statistical reliability theory. Using
the results of Gupta and Richards {10], we show that the assumption of independent,
identically distributed, exponential data can often be replaced by the more general
reguirement that the observations have certain Liouville distributions. In this context,
we generalize many classical results on the construction of minimum variance unbiased
estimators, inference under Type I and Type 11 censoring plans, and applications to
prediction problems and stress-strength studies,

1. Introduction. In this paper, we develop statistical applications of our
general results [10] on the multivariate Liouville distributions. The present
article is motivated by the current interest in distributions which are defined
through functional form assumptions (cf. Cambanis et al. [4]; Fang and
Fang [7]; and Gupta and Richards [10]). For example, Cambanis et al. [4],
and other authors have extended many properties of the multivariate normal
distributions to the elliptically contoured distributions; while Fang and
Fang [7], [8] and the present authors [10], [11] have shown that many
probabilistic results which are valid for the exponential, gamma, and other
distributions extend to the Liouville distributions.

Here, we want to extend some statistical properties of the exponential,
gamma, and related distributions to the Liouville family, and make ap-
plications to statistical reliability theory. We will consider random variables
X,,..., X, which have a joint (continuous) density function of the form

(1.1) XIS g+ x)0), x,>0,i=1,...,n,

for some function f(-), where the parameter > 0 and « is a nonnegative
integer. The densities (1.1) are special cases of the Liouville distributions (see
(2.1) below). In the case where « = 1, (1.1) is also known as the multivariate
l,-norm distribution [7], [8]; further, (1.1) and (2.1) have arisen in several
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aspects of real-life reliability theory [16], [18], [19], and in signal detection
theory [12].

We will show that, in many situations, the assumption of independent,
identically distributed, exponential data may be replaced by the more general
requirement that the observations have Liouville distributions. Thus, in Sec-
tion 3, we prove that some uniformly minimum variance unbiased estimators
(um.v.ne’s) of reliability functions are invariant for all the Liouville distri-
butions (2.1); and in Section 7 we extend some results of [14], on prediction
problems under censored exponential data, to the setting of the Liouville
distributions (1.1). Further, most of these results carry over to the Liouville
distributions under the assumption that the data are Type I or Type II censored.
These results generalize many standard results in reliability theory [15], [17].

The paper is arranged as follows. In Section 2, we list some basic
properties of the family of Liouville distributions. In Section 3, we obtain the
um.v.n.e’s of some reliability functions when the data are distributed accord-
ing to the Liouville family (2.1). Further, we derive the um.v.u.e.’s under Type
II censoring plans when the data are distributed according to (1.1). In Section
4, we derive the maximum likelihood estimator (m.Le.) of the parameter 0 under
both Types I and II censoring schemes. In Section 5, we obtain um.v.u.e’s of
reliability based on stress-strength studies, extending resulis of [5]. Some
applications to prediction problems, generalizing results of [147, are presented
in Section 6. Finally, in Section 7, we provide some dependence properties of
the distributions (1.1), complementing the total positivity properties ([10],
Section 5) of the Liouville distributions.

2. Preliminaries. An (absolutely continuous) random vector (X,, ..., X,)
has a Liouville distribution, with parameter 8 > 0, if its density function is of
the form " "

2.1 ¢, 073 x,/0) T] x#~ 1.

i=1 i=1
Here,a;>0(i=1,...,n) and a = a, + ... +a,; the variables x,, ..., x, range
over the octant R% = {(x;,..., x,): x,>0, i =1, ..., n}; the function f(-) is
continuous, positive on R,, and we also require that, for all o > 0,

22) Cpi= | £ (1)dt < co.
o

We write (X, ..., X,) ~ L,[f(*), 0; ay, ..., a,] whenever (X, ..., X,) has the
density (2.1).
For any « > 0, the Weyl fractional integral of order « of f(-) is

(2.3) ft) = f%c?i :fs’*;‘f(t-{—s)ds, t>0.

Since lm,.o4 f(t) = f(), t>0, it is natural to adopt the convention
fo(®) = f(¢). As in our previous article [10], we will again make repeated use of
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the fractional integrals. Well worth noting is the “semigroup property”
(fdp = fusps e, for all @, >0,

(2.4) Foep(®) = Fl('[s)ﬁ z S+ s)ds,  £> 0.

By a repeated application of (2.4) it follows that the normalizing constant ¢, in
(2.1) is given by ‘
23) ¢t =[] I'@)] £00).
i=1

Another consequence of (2.4) relates to the density functions of order
statistics from the distributions L,[f{), 6; a, ..., «]; this requires the result
below. First, we will need some notation. If J = (j,, ..., j,) is a multi-index, we
define: J!=j,!j,t ... 7.0 Ml =j,+... +j, and

(5)-G)G)-C)

for any nonnegative integer «. Then we can now state the following result:

2.1. Lemma. Let (X,, ..., X,) ~ L,,[f(-), 9; o, ..., 0], where o is a positive
integer, and t = 0. Then, for k=1,2,...

P LAWAC) a—1Y (/o) 2V
2.6) P(Ql{X Z( )()[f(a)}“z"( J) o

% Jon—iaris(it/0)

Faal0) '

Proof Note that the inner sum over J in (2.6) is over a finite number of
terms, since

(a;l) =0 ifjj>a—1foranyi=1,...,n

From the inclusion-exclusion principle and the exchangeability of X ,, ..., X, it
follows that

(H{X f)=1- P(U{X > t})

=1+ Z(wl)" y PX, >t,....,X,>1)

j=1 islhi<lz<..<Li=sk

-1+Z ()P(X1>t , X, >0).

Since (X,,..., X,) ~ L,Lf(*), & e, ..., u], by [10; Proposition 4.1] we have
s over X) ~ Ll fina ), 05 6, .. 6],

§ — PAMS 122
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Hence
i -3 o i i
@D () {X,> ) = e | oo | fumnal0™ Y, x) [T 55 2xs
j=1 t t j=1 j=1
where
(2.8) Crit = [T()].(0).

Replacing x; by 0x;+1t in (2.7), 1 <j < i, we obtain
i i i

29) P(N{X;>t) =cui | fo-nalit0™*+ 3 x;) ] (x;+107 1) 1dx;,.

j=1 Ry i=1 i=1
To evaluate (2.9), expand each term (x;+0~ 'Y~ ! using the binomial theorem.
This leads to a multiple sum wherein term-by-term integration can be
performed using the identity (2.4). On simplifying the resulting expression, we
obtain (2.6).

In the special case o = 1, Lemma 2.1 reduces to the following

2.2. CorOLLARY. If (X,, ..., X )~L,[f(*), 6;1,...,1] and t = 0, then,
for k=1,2,...,n,

; k B k 3 k\ f,(jt6™ 1)
(2.10) PN =)= 2 ( ”’(f) 5O

In the sequel, we will often derive results for the distributions L,[ f(-), 8;
1,..., 1] using (2.10), and indicate how those results extend to the distributions
L,f(-),0;a,...,0] by way of Lemma 2.1.

3. Minimwm variance unbiased estimation.

3.1. Lemma. Let (X, ..., X))~ L,[f(*), 8; a4, ..., a,]. Then
@ U=X,+...+X, is a sufficient statistic for 0;
(ii) U is complete iff

(3.1) ?@(r) f@/0)dt =0 for all 0> 0=>@) =0 ae;

(ili) the conditional density function of X, given U is
“—dx:‘rixflu-lu_xluwl)a"m«l
where B(a, B) = I'@)I'(B)/I' (e + ).

Proof. Part (i) follows from (2.1) and the Halmos-Savage decomposition
theorem. Next, using the stochastic representation given by Gupta and Richards
[10; Theorem 3.2 (i)], it may be shown that the joint density function of

(3.2) h(x, |u) =

, O<ix, <u,
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(X, U) is

@*ax? *1un-a1 -1

(3.3) hoxs W) = e

(L—x,u™ "7 (u/6),

where 0 < x, < u < co. In particular, the marginal density function of U is
(34 C 07w f(u/0), u>0.
Then (ii) follows directly from (3.4), and (iii) is a consequence of (3.3) and (3.4).

Whenever (3.1) holds, we shall simply say that f(-) is complete.

3.2. PROPOSITION. Suppose that

‘(Xl? wErr Xn) ~ Ln[_f[')! 8; a‘ja sery aﬂ]a

f(*) is complete, and c is a given constant. Then the uniformly minimum variance
unbiased estimator (u.muw.aue) of R0, c)=P(X,>c) is
‘i 1, c<0,

(3.5 1 —I(cfu; ag, a—a;), O<c<u,

0, u<c,

where I(t; a, p) = j; s*"1(1—5)f~1ds/B(x, B) is the incomplete beta function.

Proof. Since U is complete and sufficient for 0, by the Rao-Blackwell
theorem R, = P(X, > c|U) is the u.m.v.ue. of R,. So (3.5) follows from (3.2).

In a typical application of the previous result, X, represents the life length
of a component, and then (3.5) estimates the probability that the component
will survive beyond a given age. More generally, we may want fo compare the
life lengths of two components produced through differing manufacturing
processes. Thus, we now consider the sitnation where we have two independent
samples

(XU ey Xn) ~ Lfi[:f()! ﬂ‘i; Qysenns ‘zm]3
and

(YD very 1;!! ~ Lm[g{‘)’ 92: bi? LR bm]s

and we want to estimate P(X, > Y,). As before, we let a=a,+... +a,,
U=X;+...+X,, b=b,+...+b, and V=Y, 4+ ... + Y.

3.3, THEOREM. Suppose that
(X5 onns X) ~ LLSC), 045 045 ..., 1]

independently of (Yy, ..., Y,) ~ L,[g(*), 03; by, ..., b1, f(¢) and g(-) are
complete, and a—a, and b—b, are integers. Then the umv.a.e. of R,(0,, 6,)
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=P(X,>Y,) is

3.6)
" I'(a)
I'(a,)B(b,, b—b,)
| b=bi-1 b—b,— I'(a; +b,+j) prd,
- X Z (— 1)’( j )(b +) I (a+b, +j)(” =
R, =<

T'b)
I'(b,)B(a,, a—ay)

D e

1—

(ay +)T(ay+b+))

e

where =X+ ... 4+X, V=% ... + V-

Proof. By (3.2) and the mutual independence of (X,, U) and (Y,, V), the
conditional density function of (X,, }), given (U =u, V=1), is

(3.7y [B(ay, a—a,)B(by, b—by)]7?
% uwmv-hx? "]Eﬂg*l(l —X, 0 l)aw-m"l(l _ylﬁ— 1){}“&.—1’

where 0<x; <u, 0<y, <v. Since (U, V) is complete and sufficient
for (6y,0,), by the Rao-Blackwell theorem the umvue. of R, is
R,=P(X,> Y,|U, V). Letting Z= Y,U/X,V, then we obtain also R,
= P(Z < U/viu, v).

Starting with (3.7), we obtain the conditional demsﬁy of Z, given (U, V),
to be

11

(38) iz = z

B(ay, a—a,)B(by, b—b,)

ol=) )
x [ gmrhm i grram (] gy igy
0

where z > 0, g(z) = max(z~?, 1). If z < 1, use the binomial theorem to expand
the term (1—¢z)’"®~*! and integrate termwise; this leads to a finite sum for
h;(z) and in turn to the first part of (3.6). The second part of (3.6) is obtained
similarly when we expand the term (1—f)*"“~! in (3.8).

34. Remark. In the literature [15], [17], no attention seems to have been
paid to the form of R, when a—a, or b—b, are not integers. In this situation
the density h, () in (3.8) and R, can be obtained as infinite series. Proceeding as _



Multivariate Liouville distributions, 11 297
in the proof of Theorem 3.3, we obtain

( (@I ®B)T (ay +b,)(u/o)
T(@a)I(b,+ ) (a+b)I'(b—b, +1)

b+by,a,+by, b lu
3F[ a+by, by+1 B u<v,
T'(@I'(b)I(ay +b)vfu)"
(e, + 1)) (a, +b)(a— a1+1)

—a+ay, a,+by, ay|v
aF,
al+b ﬂ1+1

(39) R, =

e

where 3F, is the generalized hypergeometric series [6]. If a-—a and b—b, are
integers, then both 3F,’s reduce to finite sums, and we again obtain (3.6). In
general, (3.9) is the simplest formula available for Rl

Next, we obtain the um.v.ue of R,(0,,0,) using Type II censored
samples from L,[f(),0,;1,...,1] and L,[g(-), 0,5 1, ..., 1]; in this situa-
tion, sampling is terminated after predetermined numbers of items have failed
and the data consists of the ordered failure times X, <... < X (I <k <n)
and ¥y < ... < ¥, 1 < p < m. (The case of R, (0, ¢) is similar so we omit the
details.) Below we use R,(n,m, u, v) to denote the estimator in (3.6) with
m=1, b;=1.

3.5. TueoreM. Suppose that (X, ..., X,) ~ L[ f(*), 05 1, ..., 1] indepen-
dently of (Yy, ..., Y} ~ L,[g(-), 0,5 1, ..., 1], f(*) and g(*) are complete, and
both samples are Type H censored as described above. Then

Z: iey Xy +(n—k) Xy and Z__l Yy +(m—p) Y, are complete suf-
f ment statistics for 8, and 0,, respectweiy, and the umuv.u.e. of R,(8,, 05} is
Rz(k p. uk: v )

Proof. Since X,,..., X, are exchangeable, the corresponding order
statistics Xy, ..., X, have the joint density function

n!f( z x(l’)/@l)/gl“; f;;(o), 0< X1y < oes < Xy«
i=1

Then the marginal density function of (X, ..., X¢) is

n

(310} h(xm,..., x“._)) G“ f( ) j..»! f{z x(;,/B 1;!‘1dX(i}

Hlle) S Xl + 13 vor KXi(n) =1

n‘ <o n

m j f A Z X(/64) JAI dxg,

(ke xggy =1

3.11)
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since the integrand in (3.10) is symmetric in Xg.4 1), ..., X@m. Replacing x, by
X+ Xgy (k+1<i<n)in (3.11) and applying (2.4), we obtain

k
(3.12)  hlxuys ..s Xgg) = j;! kwx z xm-ﬂ-ﬂfl(n-k)x{k}},
i=1

(n— k}’ﬂ“‘ £:(0)
0< X1y < oos = Xy < 0.

From (3.12) it is now clear that U, is sufficient for 6,. To show that U, is
also complete, define random variables T, ..., T, by the transformation

(3.13) Xo= Y —j+1)7'T, 1<i<gk.

i=1
The corresponding Jacobian is (n—k)!/n!, and U, = Zﬁ"l ;; again from (3.12)
we obtain

TZ{) “aay Tk) ~ Lk[ﬁi“ﬁ(-}! gl; l! LRRS? I]
By [10; Theorem 3.2], U, ~ L, [ f,—(*), 8,; k]. Now suppose that, for all 8,,

(3.14) § @t fui(t/8,)dt =
0

integrating by parts n—k times in (3.14), we get
o
| Ya-rl®) f2/0,)dt = 0,
0

where y(t) = t* "1 ¢(t). Since f(-) is complete, ¥, ,(t) = 0 a.e.; hence Y (t) =0
a.e. since the fractional integral operator is injective, and we have proved that
U, is complete for 8;. Of course, similar remarks apply to ¥V, and 0,.
By (3.12), nXyy~ L,[fi-1(-), 8;;1]; hence nXm = X Therefore
R, = P(nXy, > mYy,) and, by the Rao-Blackwell theorem, mhe wm.v.ne.
of R, is
Ry = P(nX gy > mYy)| Uy, V).

~ To complete the proof, we need only to show that the joint density function of
(nX1), Uy is given by (3.3) with g; = 1, and n replaced by k. However, this
result follows immediately from (3. 13), in fact, (nXyy, Uy = (f, Ti+...+ 1)
has the desired distribution since

{'Tii sesy T;:) ~ 'L.k[j;z“h()& 01; 15 (AR} l]'

Under Type I censoring (sampling each item for a fixed period of time),
a complete sufficient statistic for 0, does not exist; not even in the exponential
case [3].

When (X,,..., X)) ~ L,[f(), 0,; «, ..., a], where o (3 1} is known, an
argument similar to the derivation of (3.11) implies that the marginal density
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functiﬂ’ﬁ Of {Xi“’ ey Xﬁl}} iS

! B.-nm

k
AT ETLE (L)

(3.15)

n

X j .E et Z X@w) ﬁ”xﬁf“ld"m

X)Xt
n
nlé; 1

= =R @T 70 (ﬂ X ')
X ,‘,f,,kf (0" [ut i t)) fl (t;+ Xy " Ldt,,

i=h+1 i=h+1

where u, = Z _1 %@+ (n—K)xg). Therefore, the pair (U, X) is jointly suf-
ficient for 8,. If @ is an integer, an explicit formula for the density (3.15) can be
obtained by expanding each factor (t;+xy,)* ! and integrating term-by-term,
similar to the proof of Lemma 2.1; however, it seems difficult to determine
conditions for which (U,, X)) is also complete.

Finally, if o is unknown, it follows from (3.15) that U,, X,, and H ' X
are jointly sufficient for 8, and «. Again, it appears difficult to determine when
the sufficient statistics are also complete.

4. Maximum likelihood estimation. If (X,,..., X))~ L,[f(*), 6; a,, ...
..» @,], then the log-likelihood is

L) = c,—aln@+1n f(/0),

where u=x;+...+x,, a=a,+...+a,, and ¢, is a constant. Then we
observe that @, the m.le. of 8, exists iff the function h(f) = “f(£), t > 0, has
a unique positive maximum. If f(-) is also twice differentiable, then # satisfies
the equation

(4.1) alf w/0) +uf " w/6) = 0.
4.1. ExampLE. Let f(tf) =t*¢™", t>0, a+a>0. Then (X,,..., X,) are

correlated gamma variables, and § = (a+a) 'U. By (3.4), (a+« )@’B has
a gamma distribution with index a+«; in particular, § is unbiased.

4.2, ExampLE. If @(t) = —tf"(1)/f(t) is strictly increasing, then 0 = cU, ¢ is
a constant.

Proof. From (4.1) we have a— ¢ (u/0) = 0. If ¢~ ! is the function inverse of
@, then ¢~ *(a) = u/0 or 0 = u/p~*(a). In particular, E(f) = (C,+ /0~ *(a)C,)0.

In general, the mle’s of R,(d,,c) and R,(0,,0,) are R,(0,,c) and
R,(4,, 8,), respectively, where 4, is the m.le. of 8;, i = 1, 2. Unlike the case of
u.m.v.u. estimation, we need to derive R, (f,, ¢) or R,(6,, 8,) explicitly in order
to compute its m.lLe.
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4.3. EXAMPLE. Let

(X0 X)~LISC) 051,10,

(Y ooos Ty~ Lylg(), 055 1, ooy 10,
where f(t) =e™, g(t) =t*¢™", a > 0. Then

R(0,, 0;) = (1—85)S,,(—0),

where 05 = 0,(6,+0,)"* and
F(;’() Ef'gl_) —(m+1) {(1+z)m+aml _ ';i: (m-i-;t_l)zi}'
Proof If m =1, (4.2) is an easy calculation; so we assume that m > 2.

Then from (3.3) we get ¥, ~ L,[gm-1(-), 0,; 1], and

i @ ,
T 1).j ST (s t)e s = 2T e T W (m—1; w+m; 1),
im—1) %

(42) S,(z) =

Im-1(t) =
where ¥ is a confluent hypergeometric function [6; p. 255, eq. (2)]. Therefore,

) §§ e ™Yo (y/0, ™= L Wim—1; o4 m; y/0,)dxdy.

O =G5, rem

Integrating x over (y, o), and then applying a Laplace transform formula [6;
p. 270, eq. (7)], we obtain

Yy

(8 ) ‘ . b,
- (614‘92) 2F1 (1, e 0, +92)’

where (4.3) follow from- [6; p. 64, eq. (23)]. Finally, (4.2) is obtained from (4.3)
by applying a remark from [6; p. 87].

Under a Type II censoring scheme, we have the following result on the
m.le. of &

4.4. PROPOSITION. Suppose that (X,, ..., X,) ~ L,[f(*), 0; 1, ..., 1], where
J(+) is strictly log-concave, f'(*) exists and is continuous, and f(0+) < . Then
the mle. of O exists under Type Il censoring.

g+ m
4.3) R(f,, 8,) = (mﬁl———) . Fy (m- 1, a+m; m;

Proof. Assume that censoring occurs after k failures X;, <... < X, are
observed. Then, by (3.12), we need to show that the function h(t) = t*f, - .(t) has
a unique positive maximum.

Since f(t+s) is strictly log-concave {s 1 c.)in t for each fixed s > 0, and any
positive integral of s.l.c. functions is again sl.c, then, by (2.3), f,-(*) is slc,;
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therefore, so is h(t). Further,

Xps s X~ Ll fon0), 051, .., 1]

(see [10; Proposition 4.1]); so, by (2.2), {7 h(f)dt < co, and then h(t) -0 as
t—>00. As t—0, h(t) >0 because f(0+) < 0.

In summary, h(t) is slc, h(t) -0 as t — oo or t —0; and #'(t) exists and is
continuous (because of (2.3)). Therefore, h(z) has a unique positive maximum.

In the setting of Type I censoring, we place n items having lifetimes
Xy, ..., X, on test, and each item is monitored until a fixed time ¢, has elapsed.
Let R denote the numer of observed failures.

4.5. THEOREM. Suppose that (X, ..., X, )~ L.[f(-),6;1,..., 1] and the
sample is Type 1 censored. Then
@ for r=0,1,...,n,

_ - j;((n—r-é—j}@“’t )

i=0

(ii) the joint density function of (Xm,..,, Xy, R) is

n! (07 {(n—1)tg + i X))
(n—r)10"£,(0) ’

where 0 < xg) < ... < X4 < ty, 1 <7 < n;in particular, (R, Z;; X+ m—R)ty)
is sufficient for 0 '
Proof. (i) Since {R =0} ={X, >t,,..., X,>t,} and {R =n} = {X,
< tys v s X,y < Lo}, (4.4) follows from (2.8) and (2.6) when r = 0 and n, respectively.
Suppose 1<r<n—1; then P(R=r)=P(X,, <ty < X444 Using the
marginal density of (X, ..., X¢41)) as given by (3.12), we obtain

4.5)

n}g {r+1) v+l

PR =1 = gy U0 et 2 x)) TTas,

and the region of integration is {0 <x, <...<x, <1, <X4; < ®}. Re-
placing x; by Ox; (i=1,...,r+1) and integrating over x,,,, we have

n! [of  fo=n)ie07+ 3 x) [T dx,

PR=P)=—"
(n‘—r)‘j;(ﬂ) D <ay <. < xp<ofd =1 =1

(7:) tofd  toff . )
oy § o | Rl Z) [

= (:)j;([”""ﬂtng_l)ﬂzl St074 ., Z, < 1,07/, (0),




302 R. D, Gupta and D. St. P. Richards

where
‘(le sery Zr) ~ Lr[g()h 15 ]ia waey 1:] and giﬁ}' = f;i-"r((n ...r)&toﬂw 1+t)'

Then (4.4) follows from Corollary 2.2.
(ii) Choose real numbers t; <t,, i=1,...,7. Then

48 P(() (Xo>uh R=1)=P([) {t < Xep < to} 0 {Xew1y > 1o})

i=1 i=1
tg oo r+1
_j j j'hxia" ey xr+[) dei:
i1 ir to i=1

where h(-), the marginal density of (X, ..., X¢+ 1), is given in (3.12). Then
(4.5) is obtained by first integrating over x,., in (4.6), and then differentiating
the result with respect to ¢y, ..., ¢,.

It follows directly from (4.5) that the m.Le. d, of 0, exists if and only if r > 1
and the function #f,_,(t) has a unique positive maximum; then @ satisfies the

equation ./ wh. 1 1
k Un—p— AW U)s Kr<n-1,
_rgﬁl“r(ufg) = {uf,(u[m’ F=n,

where u = (n—r)t,+ Z:= . %- Further, Proposition 4.4 remains valid under
Type I censoring.

To close this section, we consider uncensored data

Xy, X))~ LIFC), 050, .0y 0],

where o is unknown. We want to discuss statlsﬂcal inference for a. By (1 1), the
likelihood function is

o~ rm gria—1)
rero’
where X =n"1y ' x;and %= (H‘ LX) are, respecmely, the arithmetic and
geometric means of the data. Therefore, (X, X) is sufficient for (0, ).
If we wish to perform maximum likelihood inference simultaneously for
§ and «, then the results are extremely complicated [15, p. 204il], even in the
classical gamma case where f(f) = ¢”". However, we can perform inference on
o as follows [15, p. 12(}9ﬂ]. Since (X, X) is sufficient for (#, «), we may instead
use (X, W), where W = X/nX, to perform inference. Proceeding as in [15,
p. 209], we change vanables from X,,..., X, to U= Zﬁ X Y =X, /U,
vy Yoy = X,-,/U. From the stochastic representatmn [10, Thaorem 3.2 (1)
ntfollnm that U ~ Ll[f( ), 0; nad, (Y, ..., Yut) ~ D(o, ..., @; o), a Dirichlet
distribution, and U is independent of (Y, ..., Y- ). Hance
X S
W=ig=[hT Yol 3 B

L(0, a) =
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has a distribution which is not dependent on f{-) or 8. Therefore, inference on
o proceeds entirely as in the classical case [15, p. 211].

5. Estimating reliability from stress-strength studies. Consider a system of
n components, assembled in series, with random strengths X, ..., X,. A ran-
dom stress Y, which is independent of X,,..., X,, is applied to each
component. If ¥ < X, 1 €i< n, then the system continues to function and
g,=P(Y < X,,...,Y < X,) may be defined to be the reliability of the system.
We wish to estimate g, (and p,=P(X, <Y, ..., X, <Y)) when the dis-
tributions of the X;’s and Y include the normal, uniform and exponential ones
(cf. [51).

IfX,,..., X, are exchangeable, then, by the inclusion-exclusion principle,
we have

1—p, = P(;Ol (Y<X})= zl(——l)f”‘ Y P(Y<X,,..Y<X)
= -

15§ <...<};<n

i
Therefore

M=

(—1y-1 (';).;j, gG=PY<X,, .., Y<X), 1<j<n

[

1

Py = Z (wl)j('f)qjs 4o =1,
=0 J

so we will only consider the estimation of ¢,, n=1,2,...
To obtain a further reduction of this problem, suppose that X; > 0 as.
(i=1,...,n) and that Y has a density function k(-). Then

4] @
G =PY <Xy)=( ] + [)P(Xq,> »h()dy.

- 0

Since P(X,>y) =1 if y <0, we have
(5.1) gu=P(Y <O)+ [ P(X5) > »)h()dy.
0

If Y is normally distributed and X ,, ..., X, are ii.d. exponential variables, then
(5.1) reduces to a result in [5; eq. (4.3)]. Under minimum variance unbiased or
maximum likelihood estimation methods, the difficulty in estimating g, lies in
the estimation of the integral in (5.1); hence, we restrict our attention to the
case where Y is a positive random variable.

5.1. ProposiTiON. Suppose that (X,,...,X)~LJf(:),0;1,...,1],
6 known; Y,, ..., Y, is a random sample from Y, where Y has a density function
h{y; ) for some parameter u. If there exists a complete sufficient statistic
Y(Yy, ..., V) for p, then the umovue of q, is

du = E(,n07* Y)Y (Y, ..., L)),
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Proof By (5.1) and (3.12),

,,,,,,,,,,,, my, ) j;;, (a0 x)dxdy

1
= 1 H0% 400 )y

Then f,(nf~1y)/f,(0) is an unbiased estimator of g,, so the conclusion follows
from the Rao-Blackwell theorem.

5.2. ExampLe. Consider Proposition 5.1 when Y is exponential, h(y; u)
=p"le” y>0, p>0. Then V=Y, +...+Y, is a complete sufficient
statistic for p. By (3.2), the conditional density function of Y; given X is, for
m>1,

h(y,|0) =(m—Do {{1—v "y "%, O<y, <w.
Then we have

dn = B(£,(n07 1 Y)1 V= 0)/f,(0) = (m— 1) ,n(n6 ™ *0)/£,,(0),

where
1 .
Lna(t) = [(1=p)" " 2f (t0)dy, m=2.

By using integration by parts, it turns out that
(=0 () = fos1Q)—(—2)Ip—1,04:(), m23,

and this recurrence relation provides an efficient method for computing 4,.

Example 5.2 can be easily extended to the case where the distribution of
Y belongs to the one-parameter exponential family. Further, Proposition 5.1
remains valid if ¥;, ..., Y, are exchangeable and a sufficient statistic exists. We
can also extend Proposition 5.1 to the distributions L,[ f(*), 8; a, ..., ] using
Lemma 2.1, but the results seem to be very complicated.

6. Applications to prediction problems. A life test of n components is Type
I censored when k (< n) failure times X4, < ... € X, are recorded. Based on
these observations, we want to predict quantities such as X 4,); the spacing
Xp—Xgk<r<npand U, = Z‘; , X+ (n—r)X,, the total time on test for
the first r failures. We begin by generalizing a result in [13].

6.1. TurEOREM. Assume that the component lives

Kyyoons X) ~ LLC), 05 1, o 1.

Then W = (X yy—Xg)/U, is a pivotal quantity, and its density function is

k rek-1 -1 ' o
(61) B(n—r+1,r—k) ,Zo (- UJ( )(1+(H+J~T+I)W) kD,

w > 0,
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Proof. Our strategy is to show that the distribution of W does not depend on
S(+); then we may appeal to [ 13] where (6.1) was established in the exponential case.
From (3.13) we obtain

Xn—X r T;
6.2 0 _Th_ S| ol BN E—
( ) Uk :;Z }+ T +‘:..+JT};
where (T}, ..., T) ~ L[ fo-.(*), 0; 1, ..., 1]. By [10; Theorem 3.2 (i)],
r—=1
( 13 %» ) (Yhf *p r-.h 1— Z Y)
i=1

where (Y;,..., %) and ¥, are independent, ¥ ~ L,[f,-,(*), 0;r], and
(Y, ..., %) ~D(l, ..., 1; 1), the Dirichlet distribution. Then

&
(T oo DY Y TE(Y, o, Yy, 1 z Y/z
i=1 . i=1
and the distribution of the latter does not depend on f(-) since k <r.
Therefore, the conclusion follows from (6.2).

6.2. Remarks. As noted in [13], a 100a% prediction interval for
X follows from the probability statement

(6.3) a=P(W < tg) = P(X4 < Xgo+1oUp).

Further, a similar prediction interval for U,, based on Xy, ..., Xy, is derived
from the equation

(64) ' o =PU, < U+ k™ Hr—k) U FS—1y21),

where F{, denotes the upper 1004% point of the F-distribution with (p, g)
degrees of freedom; (6.4) follows from the same argument used in the proof of
Theorem 6.1.

It is of interest to approximate the distribution of W by an F-distribution.
Such a result is given in [15] and [17], but their result involves noninteger
degrees of freedom; hence the standard F-distribution tables cannot always be
used. To avoid this problem, we proceed as follows. When

foy=et, W0~ 2Xe-XWE Y =i+,
i=kt+1
where the Y; are i.i.d. y3-variables. Using the argument of Gupta and Richards
[9; Section 3], we see that the random variable 2(X,—X)/08 is ap-
proximately distributed as x5y, where § = §{(n—k)"'+(mn—r+1)"1}. Then
kW/B(r—k) is approximately an F _y o-variable. If necessary, error bounds
for this appmximation can be also obtaiued (ct. [9 Sectiun 3]) We have

and determined that ihe: new appmxm)atmn is more accurate
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Although the prediction intervals generated by (6.3) and (6.4) do not
depend on f(-), they exhibit some interesting properties under exponentiality.
Precisely, let @ denote the class of all distributions L,[f(*), 6; 1, ..., 1], where
f{t) =1*e”", = 0. Also, denote by Q the length of the prediction interval
derived from (6.3) or (6.4); or X, — X, the difference in the experiment times
under Type II censoring.

6.3. ProrosrTioN. Within the class 9, all moments of Q are minimal at the
exponential model,

Proof. The lengths of the prediction intervals are proportional to U, while
Xoy—Xpy = Ly, (1—j+1)"* T;. Therefore, in all three cases, @ = 3 o, 7},
®; constant. Defining ¥}, ..., ¥, as in the proof of Theorem 6.1, we obtain

n=1
0Z(+ ¥ (m—a) Y)Y,
i=1
Since (Y, ..., ¥,—4) is independent of ¥, and

E(Y") = 0"I'(n+m) for m(O)T () £,(0)

for any integer m, we have E(Q™) = BT f.+m(0)/f,(0), where the constant §, does
not depend on f(-). If f(f)y=1t*"", then, by a simple calculation,
E(Q™) = B,I'(B+m)/T'(B), where B, = B7I'(n+m) and f = a+n. Since I'(-) is
log-convex [1] or, equivalently, I'(f+m)/I"(f) is strictly increasing in f for any
m >0, E(Q™ is minimal over & when f=n or a =0.

6.4. Prediction intervals for future observations. Suppose that
Xy X)~LIf(-),0,a,,...,a,] and k<n.

Having observed X, ..., X;, we wish to make a joint prediction statement
about X;44, ..., X,. Let Z, = X (X, + ... + X)), k < i< n. Using the stochas-
tic representation given by Gupta and Richards [10; Theorem 3.1 (i)], it may be
shown that (Z, ., ..., Z,) has an inverted Dirichlet distribution with density
function proportional to

(55) (1 + Z zi)“(azi-_.m?anl ﬂ zt;a“],
i=k+1 i=k+1

where z; > 0,k < i < n. Then all the results of [ 14] remain valid for the above model.

For general a,, ..., a,, it is difficult to compute integrals involving (6.5),
hence also to obtain exact 1000% prediction intervals for Z,.;, ..., Z,.
However, bounds can be obtained in some cases. For examglez in the analysis
of series systems [14], it is necessary to evaluate P(X; > 1, Zj= X, k<i<n)
Although this is generally iniractable, we can apply the total positivity
properties of (6.5) (cf. [10; Section 5]) to obtain the lower bound

(6.6) PZysy2tg s Z,2tg) 2 [1 PZ 2 ty),

i=k+1




Multivariate Liouville distributions, 11 307

and this leads to a lower bound on the confidence coefficient. Furthermore, this
approach also leads to prediction intervals for certain functions (X344, ...
wX)of Xpvsyoon X,

7. Dependence properties. Earlier, Gupta and Richards [10] developed the
total positivity properties of the Liouville distributions. Here we work out criteria
for the distributions L,[ f(*), 1; 1, ..., 1] to have other dependence properties. In
the general case, the depemdenm properties discussed below are treated in
[2; Chapter 5]; and all properties used here are defined by those authors.

7.1. ProrosiTiON. Let (X,,..., X))~ L,[f(-), 1; 1, ..., 1]. Then the fol-
lowing are equivalent: )

) PX,2t,...X,20) 2., PX;>1), 1,20, 1<i<n;
(ii) the function h(t) = —In[ f,()/f,(0)], t = O, is subadditive, i.e., h(t, +1,)
< h(t)+h(ty), 1y, 8, > 0;
(iii) the random variable X1y is new worse than used, ie.,

PXay>t;+1) 2 P(Xy 2 1)P(Xy 2 1), 1y, 5, >0.
Proof. By repeated applications of (2.3) and (2.4),

PX,2ty,.... X, 2t)=flty+ ... +1)/,(0).

Therefore, (i) is equivalent to h{t,+ ... +t,) < h(t,)+ ... +h(t,), the subad-
ditivity of h(-).

Next, (ii) and (iii) are equivalent since P(Xy, > t) = f,(nt)/f,(0).

7.2. THEOREM. Let (X ,, ..., X,) ~ L, [f(*), 15 1, ..., 1]. Then the following
are equivalent:

(1) X, is stochastically increasing in X, ..., X,-y;

() X,, ..., X, are conditionally increasing in sequence;

(i) (X4, ..., X,—1) is multivariate TP,;

(iv) fi(*) is log-convex;

(v) fi(+) is log-convex, i=1,2,...,n—1.

Proof. (i)s(iv). By definition, (i) means that P(X,>1t,|X, =t,,...
iy Xp—y = ty—1) is increasing in t,,..., t,—;. From the conditional dis-
tribution of X,, given X,,..., X,y [10, Corollary 4.3], we obtain

‘fl(tl"{* +tn)
filey+ o+ tmq)
Therefore, (i) holds iff f, (¢, +¢,)/f;(t,) is increasing in ¢, for each fixed ¢, > 0;
that is, f,(*) is log-convex.

(i) «>(v). By definition, X,, ..., X, are conditionally increasing in se-
quence iff X, is stochastically increasing in X,, ..., X;_;,i=2,..., n. Since

(Xh vers Xi)m’ L’i[ﬁ'“i{‘)! |+ R 1]:

P(Xn >"“‘“nl‘Xl =l X, =hhoy) =
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by the argument above we see that X, is stochastically increasing in X, ...
ey Xjq iff f—i(+) is log-convex.

(iv)«<>(v). This holds since the fractional integral operator (2.3) preserves
log-concavity.

(iii) <> (iv). Since (X,, ..., Xp—y) ~ L,—, [ /1(*), 15 1, ...,1], by [10; Propo-
sition 5.2] (X,, ..., X,—,) is multivariate TP, iffl f,(*) is log-convex.

7.3. Remark. Theorem 7.2 remains valid if
(Xpsoois X)~LIFC) 1504, ey Gpegs 1]

for arbitrary a;; for, in this case,

(X-lsl saey Xn—-l) ~ Ln*l[fi(')s 1; Bysenny anmi]:

and (by [10; Section 5]) is multivariate TP, iff f,(-) is log-convex.

74, Tueorem. Let (X,, ..., X,) ~ L, [f(*), ; 1, ..., 1]. Then the following
are equivalent:

() (X4, ..., X,) is multivariate DFR;

(@) P(X, > t,| X, > 1y, ..., Xyoq > by—y)isincreasinginty, ..., t,, forallt,;

(i) f,(-) is log-convex; ‘

(iv) X; is DFR, 1 <i<n.

Proof. (i)« (iii). By definition, (i) means that

(1.1) PX;, >ty +t, .., Xy >p+1) Lkttt +... 4+t
) PXy >ty ... X, >1) Sty + .. 4 8)

is increasing in ¢, ..., t, for any ¢ > 0, where {i,, ..., i} = {1, 2, ..., n}. This
is clearly equivalent to (iii).

(ii) <> (ii). This follows by a similar argument; in particular, it should be
noted that, in the terminology of Barlow and Proschan [2], (i) then means that
X, is right tail increasing in X, + ... + X~ .

(i) <> (iv). That (i)=>(iv) is trivial. Conversely, (iv)=>(i) since

P(X; > t,+8)/P(X; > t) = f,({t; +)/f. ().
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