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Abmact Xn this paper, we usr: the multivapiate Liou~llt distributims to 
ge:enm* many aspects of the dassicd approach to statatistiml xeIiabiliry henry. Using 
the results of Gupta rurd Ridards [la], we sbww that the asrrumpeon d independent, 
identically &stfibuled, exponential data mn often be s p h d  by the mare general 
requirement tfiat the ob=mations have cclrtaio Liouvifie dbtribrrtions. In this context, 
we genmlk m y  clazssicd ~ s t ~ l &  on thl: ~anstruCtion OF R l j n h m  variaslm unbiased 
atimtoss, idewnce undm Type I and Type 21 ansoring plans, aad appEcations to 
predidoa prablerns and sbss-straga studies. 

1, E:nIrrr~la~tian. Sa this ysaper, we develop statistical appE~ations of our 
generd results [I91 m the multivariate; Liouville distributians. The present 
artisle is motivated by the current interest in distribardons which are &filled 
through functional form assumfliolss (cf. ambanis et dal. C43; Fang and 
Fang [7]; and Gupta send RicIfi~rcls [IQ]) For exmple, Cambanis et al, [4J, 
and other authors have extended many properties of the multivariate namd 
distribntions to €the dlipticat1y  ont tau red distributions; while f i n g  and 
Fmg [TI, [8] and the present authors ClO], [ll] have shown that many 
probabilistic resdts which am- valid for the exponential, gamma, a d  other 
&sttibutions extend to the Ziouf le  distributions. 

Berns we want kio extend some statis~cd prlope~iecs d the exponential, 
gamma, and mlated disbribtions to the LiauviUe bnaljy, and make ag- 
plicaaions to statis~eal reliability theory, We wifl con8idet random variaMm 
XI, , , ,, X, which have a joint (continuous) deasia function of the form 

far some fm~tion f ( - ) ,  where the parameter 0 0 and m is a nonnegative 
intagm. The densities r(l,lj are s p e ~ a l  case6 of the Liouar: distri*barions (see 
(2,1) below) kfl the case where ct .= It, (1.1) is dso h o w n  as %he mltivariaie 
l,-norm diat9ibutiun [71, 681; fUf"tllcr, ( l l , E )  and (2,X) haw arisen in several 
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aspeca of real-life reliability theory Cl61, [I 241, [19], aod in signal detection 
theory [l2]. 

We $how thaf in many situatierm, the assumption of iadependmt, 
identically distrihted, expone~ltlal data maty be replaced by the mexe g~rae~al 
requi~ment that: the obiservations have LiouGEte disezibutlons, n u s ,  in Sec- 
tion 3, we  POII IF: that some ~ Z o r n I y  dnisnum vafiaace unbiased estimators 
Qu.m.v.en,e,%s) of reliabiIity funet:ions are invariant for all the LiolavlUe distri- 
butjion~ (2.1); and in Section 7 we extend some results of [14f, on prediction 
problems under ansored exwnentiat data, to the setting af the Lioudle 
distributj;oas (1.1). Furthe& m s t  of these results carry over to the LiouviUe 
distributions under the assutrrption that the data are T y p  I or Type Il wnsclrd, 
m s e  results g c a e r h  many stand& results in reliabaity theory [15a, C172. 

The paper is arrangd as follows, In Section 2, we list s o m  basic 
properties of the fmi ly  of Liouvgle distributions, In S&Gtio;tl 3, we o b t ~ n  the 
am.v.u.e.% sf some reliabiGty Functions when the data are distributed amord- 
ing to the Lisuv2le Emily (2.13, Furthez; we &rive the u,m.v.n,e.'s s d e r  Type 
EX wnsa~ng frlans when the data are distributd according to (l.lJ, In Section 
4 we derive the max imu liZceIihood mtifsaaror (m.1.e.) of the parameter 61 under 

s I and 11 mnsoring scl-iemes. In Section 5, we obtain u.m-v:u.e,% sf 
rdiabilit y Is%& on stress-strengh stu&es, extending resvlts of [S ] .  Some 
applica~rms to prediction problems, generalizing raults of Ek41, are presenaedi 
in Section 6. Finally, in SsIlian 4, we provide some depnderace properti= of 
the distributians (1.1), complementing: the totd positivity proparties (1101, 
Section 5) of the Liouville &stributions. 

2. Preliminaries. An (absolutely continuous) random vector (XI:. . . , XJ 
has a LiouviUe distributiosa, with parauneter B 0, if its density Sbllnctjan is of 
the form I! t~ 

CZ.IP C ~ Q - ~ E  ::do) n .?-I. 
C== 1 i m t  

Here, a, 10 (i =. 1, ..., n] and s =; a, + e * *  +ca,; the variables x,, ..., xB rmg: 
over the scQnt R: = ({x,, ..., x&: x1 3 0, i = l1 . .., R ) ;  the function f ( - 1  is 
continuous, positlve on R , ,  md we also require that, bbr all cr 0, 

do 

(2.21 e,:= j tU-y(t)dt 4 013. 

Q 

We write (X, , . . , , X,) - Ln ), 8; a I . . . , whmever (XI. . . . , X,) has the 
denait y (2.1). 

b r  m y  ct 1 0, the Weyl fra~tisnal integad sf order a of f(-) is 

Shce lb,,, , &(t) - At), t 0, it is natural to adopt the ~onveation 
&(t) E J@J. As in our previuus acr't-ide [I 0J5 we wiEI agdn make repeated utie of 



the f~actionai integrals, Well worth noting is the "'semigroup property'" 
(JJ@ = &+@, is&., for alP a, +l3 > 5, 

By a repeated application of (2.4) it fallows that the nomaking constant c, in 
(2.1) i g  given by 

n 

f2.3 = [ n rCai)j",f,lQl- 
i - l  

Another consequence of (2.4) rdates ;fo the demity fun~tiom of order 
stat;isti~s from the CListributians [f( - ), 8; a, . . . , m] ; &is req~res  the result 
below, Firtit, we will need some notation. If J - 0% I . .. , jJ is  a multi-index, we 
defme: 6? = j,! j21 ... A?, IJ1 .= j , +  ... +j,? and 

for any nanne$arive integer a. Then wre &n now state the follawing result: 
2.1, L ~ m k  Let (XI, . . ., XJ - L,[f(.), 8; at, . . E], wtibere a is a positive 

integer, and t 3 Om Tkn:, for k =- 1 ,  2, . . . , fa, 

Proof, Mote that the inner sum over J in (2.6) is over a finite number of 
terns, s;ince 

m-l 

d 
=I) iEj;>a--1 f a r a n y i = 1 ,  ..., n, 

Frem the hclu&i~n-(3~~1usian phciple and the ex~hangeabuib of X,  , . . , , X, it 
fellows that 

Ir k 

P ( r )  {xi G t)) ' 1-P(tJ (X, 3 t ) )  
i m L  i= l 

Since (X, , . . . , XJ - [fie), @; a, . . . , a],  by f f 0; RemsiGcun 4.1 3 tvl: have 
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Hence 

where 

Replacing xj by 6xj+ t in (2,7), 1 G j g i,  we obtain 

(2.4") P( { X j  > t ) )  = cn,i $ -aa (if@-' + C x j )  ]lsl ~xj+tQ-')1X-'"j. 

j= 1 R& jsi. ,jzi 

3% evaluate (2.9), expand eaeh tern (x,+cB-'lp"-busing the binamial theorem. 
This h d s  to a mdtiple sum wherein term-by-term integration clan be 
prfbimed ms4ng the identity (2,4). On simplifying the resulting expression, we 
obtain (2.61. 

In the special case rx. =: I ,  Lemma 2-1 redurns to the FoNoag 

2.2, COROLLP~~~Y, Jf :jf(X1, ,. . ?  .Xn) Ln&j"(-S3 0; .. ., I] and t Z 0 ,  tkelrs, 
f i  k =  1 , 2  ,..., tl,  

In the sequel, we wil l  ojFtea derive results fm the distrib~tions L, [f( * ), 8; 
1,  . . ., 11 using (2.10), md indicate bow those results extend to the distributions 
L,,[f(*), Bi; a, . . . , 3~1 by way of Lemma 2.1. 

3.1. LEMW. Let (XI, . . . , X,) - it, [ f (  - 1, 0; aI, . . . , an]. Tkefz 
(2)  U = Xi + . . . + X, is a *mficient ~tab&~Sti~ POP O;  

(ii) U iis caqlere ifl 
EO 

(3.1) f p(t] f[t/t3)dt = 0 for all 13 > 0 -s p(t) = 0 a.c.; 
Q 

(iii) the mdititovswl de~s i ty  jknetiocln of Xr given U is 

where B(E, f l  r(~)r(&/r(.u+F], 
Pro sf. Part (i) foaaws fiam (2.1) and the Hdmas- Savage stccomposieion 

thearm. Next, ~xslng the s t m h a s ~ ~  mpra@:nta~on @ven by Gupta and Ricstlardfi 
[lo; meorm 3.2 (i)], i t  may be shown that t h ~  joint densi-ty fmcti0it.a of 



where B < x, < u .= oa. Ea pmicufar, the mar@al density franction of U is 

Then (ti) follows dkectly from (3.41, and {iii) is  a eonsequenet: of (3.3) and (3.4). 

Whenever (3.1) holds, we shall simply say that f (  r )  is co3.npEete- 

f{ * )  is eorszpl~te, a ~ d  e is ta gBiae~ mlasfarzt, Then the u n g ~ m l y  minimtarn variarsce 
~ ~ t h i a ~ e d  estim'mator (u.m.v.u.e.) af* R,(B, e) =. PCX, > c) is 

where i ( t ;  a, j?) = fb sx- I  (1 - ~ ~ - I ~ s / B ( D L ,  8) is the incomplete beta funcrion. 

Pro of, Since tr is mmpfete: and suff"rcient for 8, by the Ras-Blackwell 
theorem R, = P(X, le 1 U) is the u.rn.v.u,e. of R, .  So (3.5) follows from (3.2) 

In ae typical applimtion of the previous; result, X, represents the life lengh 
01 a component, a d  then (3.9) estimates the probability that &e component. 
will survive beyond a given age. More generallyf we m ~ y  want to campare the 
life lengths of two ~ ~ m p o n m t ~ ;  produced throilgh dBering manufacturing 
processw, Thus, we now ~ ~ f l ~ i d e r  the situation vvhwe we have two independent 
samples 

*..> X n P - L e C f ( - ) ,  4; -..% 
md 

w i e  - * - *  ~d-LmLfl~*15 03;  - - * %  u* 
and we want to esthate P ( X ,  Y,), As before, we let a = al + .. . +a,, 
U = = X , +  ...+ X,, b = b , +  ...+ 6, and F =  Y , + . . , + Y n t .  

idependentb a$' (a",, ..., YJ- L,&y(.), 8,; b , ,  ..., bJl f ( w )  and g(" me 
conapbte, and a-ai and b ---b, are r'ncegers. Than the u,m,u,u,e, of R,(B,, 8,) 
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Proof. By (3.2) and the mutual ijradepndenm of (XI, U) and (TI the 
conditional density function sf  ( X I ,  Vl), given (U - u, V = u), is 

where O < x, < u, O < y, < v .  Since (W, V ]  k iscompleb and s&cient 
for It?,, O,), by the Rao-EEXzbckwell &eoena the u,mw.u.e. of R:, is 
fiZ -.. P{Xlr %;I U, V). btting 2 = Y,U/X,V, then we obtain also #, - PC2 r U/Y  1 U, v), 

Starting with (3,7), we obtain the csnditioml densiq of 2, given (U, If), 
to be 

dJi - 1 

where z > 0, ~ ( z )  = max(z-', 11, IPz < 1, use the bhsmid t h w r ~ m  to e x w d  
the term ( ~ - - c z ) ~ - ~ ~ ~  md integrate termwke; this led6 ies a finite sum fafor 
h,(z) and in turn to the; first part sf (3.6). The smnd part of (3.Q is sb&bed 
similmJy when we expand the term (1 - tp-""I in (3,8), 

3.4. El em ark, In the literature [flS], [171, no attentian seems to have h e n  
gdd doi the form of H, when n-a, ar b- b, are not h t e ~ r s .  Irlt this situaholfa 
the density k, (s) in (3.8) and hT, can be 4Jbtaisld as idmite ~s iea .  Proweding as. 



in the proof of Theomm 3.3, we obt&n 

where ,r?, is the %neraliz;ed hmrgeomet~c series [63 If a--a, and b-tu, are 
integers, than both 3,Fds eeduoe to 5 ~ k  sums, and we again obtain f3.6)- Eo 
general, (3.9) is the simplest formula avaSlable for I?,, 

Next, we obbh the u.m.v.ua. of a,(@, , B,) using Type I1 cemored 
saartplas from LnL,Cf(q), 8,; 1, .,., I] and L m b ( - ) ,  8,; 1, ..., I); in: this f;itua- 
tian, smpliag is teacriinated after prdetemined numkrs sf items have failed 
and the: data condsa of the ordered faifure Irkza XtI1 6 . . . G X,, (1 G R < t3) 
md TI, Q . , ,. d qpl, 1 G p zg m. (The case of R,(O, c) is simjlar, so we omit the 
details.) Below we use g,(ra, HZ, u, vI) to denote the astimator in (3.6) with 
a, E 1, bj = 1 ,  

3.5, 'FwRL~~M- Suppose that {XI, , , . , XJ - Ln[ftJ*(.), 19,; 1, . .. , 19 i~depen- 
&ntly of (Y,, ,*., HJ - L , b ( = ) ,  Q2; Ir ...* 13, f(=) ancl g ( - )  me rmplegcr, and 
Aozk samples rape Typ~! Jlb c t m ~ r d  as describ~d abbeue, Then 

P 
Lik zm x.) + (n - k ) ~ , ,  and V, = x,_, qil -k (m - p) Y, are complete su$ 

$jieient ~tatjstics &r- 8, and B,, respectiasdy, a d  the u,m.o,u,e, cj  R,(8,, 8,) is 
R,lk, P ,  u,, up). 

F" r o o f. Sinoe X, , . . . , X, me exchangeable, the carrespanding order 
statistics . . * Xftll )nave the joint den~ty  funcdon 

men the menal l  density function of (XI1,, .. . , is 
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sirace the integrand in (3.10) is symme~c in x~,, ,,, .. . , x(,). Repfacing x , ~  by 
xti)-i- xcx, (k  + 1 ,< i < n) in @I I )  md applying (2.4), we obtain 

0 < Xrlj  < ... 'C= Xfk) < 00. 

From (3.3 2) it is now cIear chat U, i s  suEfieient for 6,. THb show that Uk is 
also compPete, defme random variables T,, . . . , T, by the transformation 

The corresponding Jacobian i s  (a - k) !In!, and U, = x;= 1;; again from (3.12) 
we obtain 

P - ' % V  q1- & ~ L - k ( - l ,  @ I ;  3 s  * * . %  11" 
By [lo; Theorem 3.21, U, .n- L,[fn-k(*)r 8,; k], Now suppose that, for all O,, 

integating by parf:s rs-k times in (3.141, we get 

where $(t) = t" PI$). Since f (  1 is complete, +,-,(t) = O as. ; hencie $[t] = O 
ax. since the frlictional iinegrd operator is hjective, and we have proved that 
Uk is complete far 0,. Of course, s ~ l a r  remarks apply to V, and O,, 

By (3.13, n.XtIl - L, [ f , . . , (= ) ,  11; hence nXI, ,  XI. merefare 
R, == P ( f l { , ,  =r mql)) aad, by the Rao-Bla~kwell theorem, the u.m.v,u,e, 
06 R ,  is 

R,  = p.(,x,*, 4 @JV;III UK, FpI- 

'Fa complete the proof, we need only to show that the jaiilt density function af 
(nX6p)o kP& is  given by (3.3) with a, = 1 ,  m d  n I-eplased by k. However, this. 
mtesutt fallows immediatt:ly from /J,13); in fact, (nXrl).. Uk) = ('T;, TI+ ... +2J 
has the desird dist~bution since 

Under 'Type I censoring (samphng each item for a fie$ period of thle], 

a c:ompIe:ti: sufi~imt statistic for 01( does not mist; nat even in the exgoaential 
case [3]. 

When EX,, . . . , %& -. L&,,&r(a 1, 0,; a, . . . , XI,  where ol f $ 1) i s  kmwn, am 
argument shilar to the derivation of (3,111) implies that the mar@nd density 
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where u, = x:= , qil + (n - k)xCx,. Therefore, the pair (U, , X&$ is jointly suf- 
ficient for 6 ,  , If a is an integer$ an explicit formula EOE the density (3.15) saa be 
obtained by expanding each factor (ti + xCk)y- "allcl integating term-by -tern, 
similar ts the prtsfo~f sf b m m a  2.1; however, it seems diEficult to datemine 
conditions for which (U,, XtRJ is slm complete, 

Finally, if ar is unknown, it follows from (3.15) that ti,, X,,, and ~1::: X,, 
are jointly sacient for 43, and a. Again, it appars dacbllt to determine when 
the sficiemt statistics are also complete. 

4. Maraimm IikeHhaed est;&imaas"om. If (XI, , . , , XJ - La$f( ), 8; a,, , . , 
. . . , a,], then the log-likelihood Is 

where w - x, J- . . , + x,, a - a, + , , . +a,, arad c i  is a constant. Then we 
sbseme that @, the m.Le. of 8 ,  exists iff she function h[e) = tef(t), t > 0, has 
.a unique positive maximum, If f-(.) is aIso twice diff~mtltiablk~ then 6 sati&es 
the equation 

4.1. EXAMPLE. Let f ( t )  = f"ed{ # t:> 0, u-be~, > 0, Then (XI, ..., XJ are 
correlatd gamma variables, and @ = (a s a)- W 11, ESjr (3.41, fa + a)  &8 has 
a g m m a  distribution with index a+@; in particular, 6: is rankasect. 

42, EMMPM. Ij p(t) = -tfl(t)F{t) is strktly incpeasfng, then 5 = cU,  c is 
a coxastant. 

 roof, ~mrnf4.1) we hsl\rea-cp(er/8) = 0, f f  q-"isllhefunctioninversgr of 
tp , then dp- (a) = u/8 or 8 -- u/q-' (a). In palrticular, E(@ == (C, + a/v- I&] C,)@. 

In general, the m.1.e.b eof R,{Bl, c) and R,(8,, 8,) are R,(@,,  c) and 
~ , ( d ~ ,  41, ~spectively, where a, iii tile rn-1.e. of B,, i = 1,2. Unlike the case csf 
u.m.v.u, athation, we need to derive R ,  (B, ,  e) or R2(B,, 8,) explicritty in order 
to compute i t s  m,X.e.. 
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4.3. EXAMPLE Let 

I(-&, .,,, X,) - -&lf('c.)+ 1, ."", 11, 

@I, - + " ?  Y$,I& L,aL@(*l? 4; * * . P  11, 

whwe f(t] .= E(-', g($) - tSe-', cx 0, Thm 

RCd,, 8,) = /I - @,)5,(-@,), 

where B3 = BZ(B, + 0,)- b a d  

Pro o E If m = 1, (4,2) is an easy calculalion; so we assume that m 2 2. 
Then h m  (3.3) we get V; - L,[g,-,(=), 8,; 11, and 

where Y? is a coduent hypergeometric furrctiovl[6; p, 255, eq, 1211. The~fom, 

Integrating x over b, and then applykg a Lapiace traflshm farmula [6; 
p 274 q. we crbtdn 

( I ,  -a; nr; f 

where (4.3) follow from C6; p, 6 4  eq, (2311, FinnHy, (4.2) is obtained from (4.3) 
by appl*g a remark from C6; p, BrTJ, 

Uder a Type jlj[ mnd;adng scheme$ we have the fallowing rmult on the 
m.1.e. of 8: 

ah%. Pao~osmow, $uppose thae (XI, . . ., X,) -. h[f[ -), 8; 1, . . ., I], w k r e  
f (  .) is srriceiy loipcemm~e, f'( + )  exists a d  Is continuous, and f [O -t- ) < m . TArtra 
the m.Le, of 6' exexists under 76rpe TI cexasori~rg, 

Proof. Assume that mmaAag occurs after k failures X(I) f , . . d X,, are 
sbwmed. Tbas by {3.1212), we need to show that the function h(6  = ?S,-k(t) has 
a ~JJricjur: posi~ve maimurn. 

Siam f(t+s) is sSrietly lop;-cancave (g.1.c.) in t for each fixed scl s 0% and any 
positive integral sf s,l,c. fmctions is again s.~.c., theti, by (2.3), &-,( - ) is s.l,c.; 



therefore, so i s  h(t) ,  Further; 

(see [lo; Proposition 4.11); s q  by (24, jz k(t)dt r m, and then k(t) -+O as 
t-+can As t + O ,  h(t)-aO bewse  f(O+)< m. 

In .nsurnmary, h(t) is sJ.E., k( t )  -+ 0 as t -, s~ or t -a 0; and h'(t] exists a d  is 
c~ntinuous (became BE (2.3))- merefore, h(t) bas a unique positive maimurn, 

In the setting of Type I censoring we place n items frsvhg lifetimes 
X,, . . . , X, on tes5 and each item is monitored umd a fixed 'time 1, has elapsed. 
Let R denote the numer of obiserved faiIures, 

45. T ~ R E I M ,  S 2 t p p w  that (Xi, ..., XJ - f.(n[Jr(-)l 0; I, ..., 11 a ~ d  the 
sarmpie is Type I censored. Then 

(i) for r = 0, 1, ,,,, n, 

(ii) the joint derasity f~nction CEjr (X(ffl. + . , XtR3, R) is 

where O < ql, < - . < < tot 1 G r G n: in particular, ( R ,  x?= Xtlk + (n - R)tD) 
is sec@eient for 0. 

P r o ~ b :  (i) Since { R  ===a) = { X ,  t,,  ..., X, to)  and ( R  = n) = EX, 
< lor . . = , XB 4 fa], (44) f~llows f rm (2.8) and (26) when r = 6 and n, reswively. 

Suppow 1 1 r 6 n- 1; then P ( R  = r)  = PIX", G t ,  d X,+ ,$ Using the 
mardnal density sf (X, , , ,  ..., Xk+lJ i k ~  given by {3.12), we obtain 

a d  the region of intt?gr;ltian in (0 x, < . , . < x, G to < x t , ,  < m), Re- 
placing xi by @xi (i = 1 ,  . . , , p. + 1) and htegaeng over x,+ $, we have 



302 R. D, Guptsr and B. St .  P, Richards 

where 

(ii) Choose reaI numhrs ti .= t,, i = I ,  . . . , r .  Then 

where h ( . ) ,  the margnal drr;ns;ity of (XIIEr . . . , X(r-l- *))* is given in (3.1 21, Then 
(4.5) is obtained by first integratizzg over x,, in (4.61, and then differmGating 
the result with respect ta t , ,  ..., tr.  

It follows directly from (4S3 that the m.l.e, 8, of 8, exists if and only if r & 1 
and the fu'un~tion f f ,  -,(t) has a unique positive maximum; then 4 satisfies the 

where u .= (a -- r)t ,  + zI=, xs Further, Paoposition 4-4 remains vasid under 
T y p  T censoring. 

Ts close this section, we consider uncc~sased data 

where a is dnowm,  We want to discuss stakisticd inference far m. By (1.1X the 
IikeEbood kct ion i s  

where i = n-' z:=, x, and f = (rl;=, xi)'@ are, respectively, the arithmetic and 
geometric means of the data. "lThereEQm, (X, 1) is sufficient fur (8, a). 

If we wish to pr fom maximu lilre;Iihocld Serence sirnrdtancuusly for 
0 and M ,  then the r~suilts are extmmely complicated 161 5, p. mffl, even in the 

a Gase where fit) .= e-'. Hmrwever, we can perform infererne an 
a! as follows L15, p, 2Wa,  Siac% (X, kfl) is sacimt Ear (8,  4, we may instead 
use (3, m, where W ---- z/aX, to perfarm izzferlence. PPOC=&~ as in [15, 
p. 2093, we cha~~ge variables from Xi, . . . , X,  to U = xy=l X,, Y, = X,/LI, 
. . . , '&-, = X, , , /U .  From the slockastir: repxe@ntatisn [dO, Tlaeorem 3.2 ti)], 
it follaws that U - Lb [ f [.)$ 8; m], C YIP . =. , x-  I) D;icr, . . , , ar; Q ) ,  a DirichJet 
distribution, and d" is indmndelat of Ck;, .,., T",-i). Hen= 



has a distribution which is not dependent on fl.1 or 19. Therefore, inference on 
m procwds; entirely as in the classical case [15, p. 21 11. 

% &tImadmg rejhM1Ety fmm s&em+t~eagth S ~ ~ ~ B S I  C~mider a system sf 
n components, assembled ia series, with random strengths X , ,  . . . , X,. A san- 
dam stress 1: v~~hich is independent of X,, . . . , X,, i s  applied to each 
conapanent, U Y <. Xi, 1 f i g n, then the system continues ta function and 
4. = P(Y < X,, . . , , V < X,) may be defined to be the reliability of the system. 
We wish to estimate qg (and g, -- P ( X ,  < Y, . .., X,, K r)) rvhen the dis- 
hibutions of the X,"s and P include the normal, uniform and exponential ones 
Cd C5l). 

If X , , . . . , X, are exchangeable, then, by the indlzsion*xelusisa prkciple, 
we have 

so we will only consider the estimation of q,, n == 1, 2,  . .. 
To obt~in a further redu&ion of this problem, suppose that Xi 3 0 a.5. 

(i 1- 3 ,  ..., a) a d  that Y has a. density function h(-$*  Then 

P(ql t  y] = 1 if y d 0, we have 
m 

I5.l) sr, = PCY < Q1-f- 1 PIXCII > YI~(YI~Y. 
0 

Ilf V is nomalXy distributed and X ,  , . . . , X, are i,i,d. exponentid ~va~ables, then 
(5-1) rei$uc~s to a result in L5; ec;l. [4,3)], tfndex minimam varian~e unbiased or 
marrimurn likdihood estimatloa methods, the cliRculty in estimating (a, lies in 
the estirnrz~an of the integral in (5.1); hence, we restrict our attentio-a to the 
w e  where Y is a positive random srahble. 

3.1, PRO~S~TIBEN.  Sugp~se td~lat (Xi, . . . , X,) LJ f (  9, 0 ;  1) . . . , I] 
B kvmw~a; Yx, . . , , Y, is rz vandena sasftple from E: where Y h a  a dmsitjr finetiota 
h(y; Cc) j1r s o w  pnsmmter p Jf t h ~ m  exists # am%p!ete suflcienf statistic 
$fY,, . * .  , Y,] far p, t k n  tka u=m.ta,u,e, of q,, &Y 
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Proof By (5.1) and (3m12), 

Then f , f n B ' ~ ~  y)Jf,(O] i a  an unbiased estimator of q,, so the eonelusion fofliaws 
from the RacL-Blackwell theorem. 

PLR G ~ ~ ~ i d e r  P"ropasitition 5-1 when Y is exponential, h(y;  p) 
- - p-  l e"y/@", y OQ, p r 0, Then V = Y, + . . . + Y, is a complete suffident 
statistic for p. By (3.21, the conditional density fuaclioar d Y, given X iq for 
m >  1, 

h(y ,  j u) = (m- I)v-"(1 - - ~ - l y , ) ~ - ~ ~  0 < yl < U. 

Then we haw 

where 

By using ktegation by part% it turns out that 

and this mcarrrena relation provid~ an eglamt method for computing &. 
Example 5 2  am be easily extended to the case where the Bistfibution OF 

IT bdonpls to the one-parameter exponential family, Further, Proposition 5.1 
remains valid if q ,  . . . , are exchangeable and 5 s a c i g n t  statispic exists. We 
can also extend Propasidon 5.1 to the distribu~ons LmEf(-), 8; . . . , MI whg 
Lernrna 2.1, but the results seem to be very csmplicaLerf, 

6. Applicatbm ta prdic.rcdcm pablmar. A life @st of n corzlganeats js Type 
If mnsgrred when k (*z n) fdlwre times Xtl, $ . . . g Xtk) are record&, Bas& on 
these absetvatitiom, we want to: predict qusndties such as Xtk+ ~ r +  ttaEe spadg 
Xfr, - Xm (k -= r G 4; zaltd Up = xy,, X, + (n -rfX,,,, the total t i m ~  on test for 
the first T fBbjlures. We be@ by ge~eralkil%g a result in [f3$ 

&I, TWRM. A S S U ~ C  that the campanen$ lines 

Thm W = (X,, - Xfkk)/EI, 3s a pimtal q.ucmti~y> and its d a s i t y  _function b 



P r or o f, Our s&aktgy is to show t h ~ t  the d&dbutim d W does not depr:nd on 
j{ -1; then WE may appeal to [I 31 where (16, l )  was sbblished in the expafieatid ease. 

From (3.133 we abbirr 

where ("T;, . .. , LrCfn-r(.)r 8; I?  . t .  13. BY [HI; meorem 3.2 (j)], 

where [V,, . . , , and are kindependent, - L,  If,-,(+), 0; r]  , md 
(&, ..., Z-,) - D(lt ...) I;  I)$ the Dirichlet distribdion. Then 

andi the &strEbutian of the latter does not depnd on f ( - )  since k i r ,  
Therefore, the ~orrclasjaa fo'Ja2ltlws from (6.2). 

6 2  Remarks, As mted iar 6131, a 1Wa% ptedicgon interval for 
X,! m o w s  from the pbability s3atemesnt 

Fwtfier, a s ~ l a r  prediction interval for U;, based on XFrl, . . Xtk, is derived 
from the equation 

where F!h denotes the uppm 100o1% point d the F-distribution with ( p ,  q)  
degrees d f~reedom; (6.4) foUsws from the same arpment used in t h ~  proof of 
Theorem 6.1. 

It is of interest to approximate the distdbutjan af W by m F-distPibution, 
Such a rsult is given in [I51 and [I?], but their result hvolves nminteger 
degmes of frmdom; hence the standard P-distributiaa tabba camot &ways be 
used. To avoid this problem we proceed as foUour8. When 

where the 5 are i.i.d. .iy$-variables. Us@ the argment of Gupta and Richards 
[9; Section 31, we see that the rwdom vad.a;ble 2(Xl,,-XRj)/@@ is ilp- 
pr~~matelly Bistributed ss x $ ~ ~ ~ ~ ~ ,  where fi  = 4 {(a -kf (a -r 9 I)-'). Then 
k w f l f r - k )  i s  approasimateiy aun js24,-tlE2k-uasiitbJee I f  necessary, error botrnds 
for this a p p r o x h a ~ o s  em be a/so obtained @fa [9; Section 33). We have 
~ampxedi the two approhatiam fur 10 < n R 20,6 g r g 10 and r 6 8 $ 5 ,  
amad determind that the new apprs+ation i s  more wccurzte, 
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Although the; prediction iateswa1s gegeneratd by (6.3) and (6.4) do not 
depend a n  f (  -1, they exhibit some interesting properties under exponentialiby. 
Pscxisely, let B denote rhe dass af all distdhutians L,[j(- )), SF; I., . , . , 11, where 
f(t) = t"e-5 a & 0. Ailso, denote by Q the length of the prediction interval 
derived from (6.3) er (6.4); or Xc,,--XlkIr the difference in the exprimeat times 
under Type BE censoring. 

6-3. PROPOSITION. Withifa the c h s  B, all moments of Q are mivtimal at the 
exprmential rruldel, 

P x o of The jera@Cths of the preclic~on h t e n d s  are propartiand to U, while 
X,-X,,  =~~=ktt(n-j+l)-L1;. Therefore, in all three cases, Q =Z;=,CI,?. 
ar;f constmt. Definmg lEx, , . . , :,as in the proof of Theorem 6.1, we obtain 

for arty inkger m, we have Ei(Qm) - PT ~ c n ( 0 ) ~ n ( O ) ,  where the constant f i ,  does 
not depend on f(-). IF At) = t"e-', then, by a simple calcuhtion, 
E(Qm) = fl2F@ +111)/r(Is)~ where 8,  = f l r ( n  + rrs) and fl  - a + a. Since r(. ') is 
jog-convex [I] or, equivalently9 S(B+m)/f  (4 L strjctly increaiag in P for any 
m 0, E(Qm) is n;linimsll over 23 when j = 12 or ct = 0. 

6A. Prediction i~ tervab  far future obsmvrations. Suppose that 

4X,,..~,X,f-..L,&l'(-),O;a ,,..., and k < w .  

Having obwrved XI, . , . , X,, we? wish to make a joint. prediction statem~nt 
about XR+ r l  , . . , X,. Let Z, = Xd(X, + . *. c XJ, k < i < n. Using the stochas- 
tk mpre~i&ntatio.a given by Cupta and Richards 610; Theorem 3.1 (ill, it may be 
shown that (Zk ., , , . . . , 2,) has an inwrted Difichkt distfiution witlh dermsiky 
function psopos"kiona1 to 

C6.3 (1 + 
rJ-'l' +..-' 0.1 fi $'=-1. 

t = k + l  i t - k +  1 

wh~re z, 0, k < t 6 n, Then all the resul& of [I41 remia valid for the above model, 
h r  general a , ,  . . ., ta,, it i s  diEcult tor compute Intepds involving (6.5), 

hence also to obtain exact 100a% prediction intervals for Zk + t , . . . XI, - 
However, bounds can be: obtkned in same easa, For exam le, in the analygic $ of series systems C141, it i s  necessary to evaluate P ( X ,  3 to zj=, XI, k c. I < n). 
Although this is gme~'dI1y intr~ctabl$ we ma apply the total posi~vity 
prop0r:sti:s of (6.5) ( c ~  [ID; Section 51) to obtain the lower bound 



md this Ieards to a lower bound on the confidence coefficient, firtherrnore, this 
approach also leads to peedidon, iatcrwals far certain functions q(Xk+ $, . . . 

Xn) of Xk+.ar - 9 . 9  Xn. 

7, Dependwe plrolpljm Earlier, Cupa and Riclrarh [I03 developBd the 
tad p o s i ~ ~ t y  p170fsier;tks of the LiouviNe djstributions, Here wt: work out criteria 
f o ~  the dsadbuhans L.,[f(*), I; 1, . . . , 13 to have ather depndenca propertias;, In 
&e general case, the dependma propestks discuss& bdm are tmtd In 
[2; Chapta 51; and dl ppropesties used here arc: def"meB by rhme authors, 

7.1, ~ O ~ ~ T E O N .  Let (X,, . .,, X,) - Ln[f(-). 1;  I $  ...$ 11. Thea the Sol- 
bwiw are eeqaiva!e'ent: 

(i) P(X, 3 t , ,  ..., X . 3  t.) 3 nys,P(Xl 3 ti). t i  2 0. 1 C i G n;  
(ii) the finrtion h(t) = -In [fr,(t)lf,(O)J, t 2 0, is szdJjadditioe, i ,~ . ,  h(t ,  -t- t,) 

G hllr,) + h(b,), f , ,  t ,  0; 
(iii) the rand~m wriable XI,, is new wars E ~ ~ E I M ~  used, i,e., 

Pro  of. By repeated applications of (2.3) and [2.4), 

merefore, 0) is eq~valtnt  ta h(t, + . . , -t- t,) 6 hjt,) + . . . + h(t,), the sabad- 
ditivify of h f  -1 .  

Next, (i!) and (iid) are ewivdekt since P(X[,, t )  = f,(~e),'J"~(0). 
9.2, Tmmu. Let (X, , . . . , X,) - L, Cf(-), 1 ; 1, . . . , f 1. Thert tSae f~llotuirag 

are eqniuaietlt : 
fi) X,, is stockastically iinclrensing Bt Xi, . . . , X, - ; 
(li) X, .I . . . I are ~ ~ ~ C l i t i ~ n ~ l l y  incremi~g Erz  sequence; 
(iii) (Xi, . .., X,-ij is multivariate TPz; 
( i ~ )  fi { ) ~Q&-c@:~~uEX J 

(v) is log-csnuex, i = I ,  2, . .., ra--1. 

Pr a of' e- (iv). By defhtion, (i) mans that P(Xn  > 1 Xi = t, , . . . 
. . , &- = t,- z] is increasing in t ,  , , . . , t.,- From the conditional dis- 
tzibu~on of X,, given X,,  . .., X,- [IO, Corollay 4.33, we obtain 

TP"hereFsre, (i) holds iX;f f, ( t ,  +tr)lfiQtr) is ins~slsing in t ,  for each hd 1, > 0; 
that i ~ ,  ,&(.) is log-convex, 

(ii)+(w). By defini~on, X,, . .., X ,  am coaditioraUly inmashg in se- 
quanee iff X, is stochastically increasing in XI, . . . , X i - ,  , i = 2, . .. , tz. Since 
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by the argument above we see that X ,  is stoclsasticalZy iacreasing in X,, . . . 
. . . Xi-- ifT f , - i ( . )  i s  log-convex. 

(iv;) * (v). This holds since: the fractional intepd operator (2.3) preserves; 
log-concavityY 

(iii]*(iv), Sins EX,, ,.., X#-,) %n-l[fi(*)E 1; 1, . *  Ir l l ] ,  by [lo; Propa- 
sitioo 5-21 (X, , . . . , X,- ,) is mnlhvariate TP,  iff f, ( - 1  is Isg -convex. 

73* Remark.  Thealrem 7.2 remains valid if 

for arWtrary aj; far, in this case, 

and (by [lo; Section 51) is mlll~variate TP,  iff $,(*) i s  jag-oonvex. 
7.41. T ~ R L E M .  Let (Xi, . . . , X,) -- LRCf(-), I; 1, , . . , 13, Thm the fillowing 

me squiualent: 
(i) (XI, . .. , X,) is mubtiura~iczte DFR; 
(5) P(XR 3 tmjXl > ti, ...$ Xs-s 3 fm-L)hincremiqh~lb + * . *  t,-lforal/tar; 
Gig) S,f a )  is log-mlzstex; 
(iv) Xi  is DFR,  1 G i G n .  

Proof. 6)-(G). By defixlii;ion, (i) means that 

P ( X , , > e , + t  ,..., X,>t,a-t) & , f k t + t , + . . s + t k )  
(7.11 - - 

P(x;, t,, .,,, xi, ek)  h@l + - -4- tk?! 

is  increasing in t , ,  . .., t, far any t > 0, where ( i t ,  ... , i,) c (1, 2, .. ., n>. This 
is clearly qukalent to (iii). 

(ii) ~ ( i i i ) .  This follows by a similar agummt; in parlrieuhr, it & ~ u l d  be 
noted that, in the taminolegy of Barlow md Pmschan [ap (ii) then nzeam that 
X, i s  right 'tail increasing in X, + . . . + X,- 

ti) - (iv). f i a t  (i) * [iv) is trivial. G.ollur=rsely, (iv) =+ (i) sin= 
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