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GRADE ESTIMATION ‘ :
OF KULLBACK-LEIBLER INFORMATION NUMBER

BY‘

J. MiELNICZUK (WARSZAWA)

Abstract. An estimator of the Kullback-Leibler information .
number by using its representation as a functional of the grade density
is introduced. Its strong consistency .is proved under the mild
conditions on the grade density. The same approach is used to study
the entropy measure of bivariate dependence (mutual information),
Some applications to detection theory are also.given.

- 1. Introduction. Let X and Y be real random variables with distribution
functions F, and F,, tespectively. We assume that F, is absolutely continuous
with respect to (w.r.t) F;. It can be seen that if F, is continuous, then the
density g of the random variable F,(Y) w.r.t. Lebesgue measure exists. We call
it the grade density (of F, w.r.t. F,). The assumption that F, is continuous is
imposed throughout the paper. In the paper we deal with estlmatlon of the.
Kullback-Leibler information number ~ :

w . KL(FZ, F,) = {log(dF ,/dF, (x))sz(x)

where log denotes the natural logarithm. This quantity frequently appears in -
testing and large deviations theory as the important characteristic of the
problem. Our approach te estimate (1.1) is based on the fact that under the
above assumptions ensuring the emstence of 9 KL(F 2 F,) is its functional,
namely its. entropy : e

12)  KL(F, Fy) =i logg(y)dF’;‘d Fr?(y) - flogg('y)g(y)dy.
0 : o . : .

Thus the problem of estimating the Kullback—Leibler information number can
be reduced to that of estimating the entropy of the grade density. Given any
estimate of the grade dens1ty and any method of estimating the entropy it is
poss1ble straightforwardly or with small modifications, to derive the requlredq
estimator. As to the first problem we focus on the histogram estimate of the
grade density introduced in [6] and follow the approach of [97 to solve the
second one. However, kernel estimates of grade density (cf. [2] and [7]) and
various known estimators of entropy (see [4] for an almost exhaustive list of
references for this subject) yield a handful of potential competitors to the




-3

(1.3) G =

for xeA,.,, A,ll =((i—1)b,, ib,] for i=1,2,...,n and A, =[0,b,]; Fy de-
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estimators introduced in this paper. We refer also to [10] where the asymptotic
behaviour of MSE for some kernel estimators of entropy is investigated.

We prove in Section 2 strong consistency of the introduced estimator
under the mild conditions on the grade density. Estimation of the entropy
measure of bivariate dependence (mutual information) can be viewed as the
particular form of the considered problem for two dimensions. This is dealt
with in Section 3. In the last section, ideas developed in the paper are applied to
study the behaviour of a new detector in the detection theory.

It should be noted that it is possible to study in a similar fashion various
measures of discrepancy based on the grade density, in particular those having
the representation | H(dF,/dF,)dF, for some measurable function H.

Let X,, ..., X, be an ii.d. sequence pertaining to d.f. F, andlet Y}, ..., Y,
be an iid. sequence pertaining to df F,. Let k,eN and b, = (k,)~'. Put

# {J: F‘(Y)GA...}
nb, '

notes the empirical distribution function of X, ..., X,. Observe that g,
depends only on the ranks of .Y’s in the combmed sample Xiseens X
Y, ..., Y,. Denote by h,(x) = g,(F.(x)) the corresponding estimate of the
Radon—leodym derivative dF 2/dF 1(x) We consider the followmg estlmator
of KL(F,, F,): : . R
a9 RumkF)- 5“’ ﬁ,.(Z)logg‘,.(Z)dz,

' NS PR S A S {zmlz)Z2an 0 o
where (a,) is a sequence of positive numbers tending to 0.

2. Strong consistency of the Kullback-Leibler information mumber es-

timator. First we prove an exponential inequality for the difference between ¢,
and the hlstogram estlmate based on an iid. sample pertammg to g. Let

Ga) = #{J F (Y)EA..I}/nb
for xeA,,, and A,; defined as in Section 1. R
LEMMA 1. Assume that the grade denszty exists and is bounded Then

@1)  P(sup |g,(x)— gn(x)l > &)

. xe[0,1]

N Cexp( n82b2/32G2)+4Cexp( ne?b2/32),
where Gy =supg and C is the constant appearmg in the Dvoretzky, Kiefer,
Wolfowztz (DKW) mequahty [5].

Pro_of Let - : : _
A, = {sup|F;(x)—F,(x)| > éb,},
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where § is a positive constant to be chosen later. In view of the DKW
inequality we obtain

22) P(4,) < Cexp(—2n5°b2).
Observe that on the complement of 4, we have
sup 16 (%) = G ()l < < max #{j: F{(Y)€Ci_1,50 Cys}/nb,,
‘where Cj; = ((i—0)b,, (i+8)b,], i=0,..., k,. Let 6 = /8G,. Then
by {P(F,(Y)€C;-1,0)+ P(F,(Y)e Cip)} < /2
and
P(suplg,(9)—d,() > 2
P(;::a(:; |4 {j: F1(Y)€Ci= 1,50 Cyj}/nb,
—(P(Fi(Y)€Ci-15)+P(F(VeCy))/b,]| > /2) -
2P(01:i:;"|#{ j: F (Y)ecu,}/nb —P(F,(Y)eCy)/b, | > 8/4)

Observing that # {j: F,(Y)eCy}/n = G,((i+6)b,)—G,((i—5)b,), where G, is
the empirical distribution function pertaining to the sample F(Y,),..
., F{(Y), we see that the left-hand side of (2.1) is less than -

 4P(sup|G,(x)— G(I > eb,/8)+ P(4,),

where G(x) = F oFy!(x). Thus using the DKW inequality once agam and
taking into regard the inequality (2.2) we obtain the result. -

Remark 2.1. Observe that sup E|g,—gl = O(b,) for g boundedly differen-
tiable. Using the DKW inequality for |§,— Eg,| it is easy to see that in this case
Lemma 1 implies that

sup|d, — yl 0; (logn/nb’)”’+b)

THEOREM 2.1. Let F and F, be distribution functlons such that KL(F,, F,)
is finite and the grade denszty is bounded Assume - that there exist positive
constants ¢, such that

6y Zexp( —cnelb) < + o for ¢>0;

(2)s—o(a) 0<a, a,-0. »

Then KL(FZ, F,)-KL(F,, F,) as.

- Remark 2.2. Note that when b, is of IMSE-optimal order n™ /3 (see [12])
the conditions of the theorem are satisfied for a, = An~V¢** with ¢> 0. -

Proof. We put § =4, and §=g, in the proof. Observe that g, is the
histogram estimate of g based on the iid. sample F,(Y,), ..., F,(Y,) pertaining to
 it. Moreover, conditions (1) and (2) imply the assumptions of Theorem 2 in [9].
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Thus. -
2.3) I glogg—>l(g) KL(F,, F,).

Zan}

Hence, using the decomposmon

[ glogg— | glogg

0> an} @=an v _ '
, j' glogg— I glogg+ _f glogg— I glogg,
(@>an) B=an) CELE @>an

and the triangle inequality, it is enough to prove -

(2.4) | | glogg— [ glogg|—0 as.,
{@2an} {8Zan} .

2.5) | glogg— § glogg|—0 as.
BZan @>an

First we prove (24). Let us put.
- § glogg— [ glogg

@=an @>an) ( ‘ o
= { glogg— [ glogg+ [ glogg— | glogg—Il+Iz
v : {D>an} . = {8 Zan} s (@Ban) ‘ 82 an) i
~ Using the inequality [logx| < |[x—1|+|1/x—1| we obtain
(2.6) i< de(@e) +@6)))Ige)—geoldx.

{x:8(x) = an}

Tn view of (1) and Lemma 1 we get sup |§(x)—§(x)| < &, a.s. Thus, in view of (2),
the integration is taken over an x such that §(x) = a /2 for suﬁicwntly large n.
It follows from (2.6) that :

v |l € C,¢,/a,— 0 as.
Analogously, using the incquahty |log\x|_ x+1/x we obtam '

ug'"x (§09-+@0) )9 —geeN

{x:9(x) = an}

< C,suplj— —4l(1+1/a) -0 as.

Observe now that, by Lemma 1 and the assumptlons of the theorem

sup 4()—g 0ol < a../2 as.

for sufficiently large n. Thus for such n we infer that the symmetric difference of
{x: §(x) =a,} and {x g(x) >a,} is a subset of {x: 3a,,/2 > g(x) > a,,/2}

Hence . - .
| ] glogd— | glogg|<| J glc)ggl

@ Zany o {§Zan) : (an/2<§<3an/2)
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since the integrand of the last integral does not change sign. However, the last
expression is the absolute value of the difference of two estimators of entropy
- truncated at the levels 3a,/2 and a,,/2 respectively. Smce both the terms tend to
I(g) in view of (2.3), the result is proved. : :

Remark 2.3. Let A,(x) = g,(F2(x)) be the cOrfesponding estimate of the
Radon-Nikodym derivative, and Z,, ..., Z, be an iid. sample pertaining to
F, independent of X ,, ..., X,,, Y, ..., Y,. Note that the alternative estimate of
KL(F 1 F3) may be cons1dered : SRR ‘

KL(FZ, F)=nt }: logh, (z,)I{ﬁ Z)za).

Assume that g is boundedly dlﬁ'erentlable on [0, 1] and
(1) Y nexp(—cnaZb?) < +oo for ¢ > 0; s
@) b,=o0(@,), 0<a,, a,—0. .
Then it can be proved by using Lemma 1 and Theorem 1 of [9] that KL is
a strongly con51stent estlmator of the Kullback—Lelbler information number.

3. Estlmatwn of mutual lnformatlon Let Fyy be a bivariate distribution
function with density f(x, y) and F®G be the product of the respective
. marginal distribution functions. We assume that Fyy is absolutely continuous
w.r.t. F®G. The Kullback—Leibler information number for Fyxy and F®G can
be considered as the dependence index for Fyy. This index is called mutual
information in the literature. Joe [11] introduced its estimator based on
plugging the estimates of f (x, y) and the marginal densities into the definition.
However, separate estimation of f (x, y) and marginal densities can be avoided
by extending the method proposed in Section 1. This consists in estimating the
density g of the copula function, ie. the distribution function of (F(X), G(Y))
where (X, Y) is a bivariate random variable distributed according to Fyy.

Let X,,..., X, be an iid. sample pertaining to Fyy, and F,, G, be
empirical marginal distribution functions based on X,, ..., X,. Define the
histogram estimate of the density of the copula function based on X, ..., X,
X;= Xy, X3), by :

GA) G ) = (ke (Fu(X14), Gy(X 20) € Auis}/mb,

where (x, y)€ Ay, Awj = (({=1)b,, ib,]x((j—1)b,, jb,] for i,j=2,...,k,
when one of i, j is equal to 1, the respectlve segment of the boundary is included
into A,;. Moreover, put ﬁ (%, ¥) = G,(F,(x), G,()). For the definition and
properties of kernel estimates of g see, e. g, [1] and [8].
~ We define as in (1.4). Theorem 21 remams vahd with condition (2)
replaced by -
o Zb exp( cm—:,,bz)< w for c>O

Thls can be proved as above by using’ Theorems 1 and 2 of [9] ford = 2 and
the lemma stated below. It is easy to see that the above condition implies
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conditions (2.7)-(2.9) in [9] for two dimensions. Put .
Gax, 3) = # {k: (F(X1), G o)) € Auijh/nby;  for (x, y)€ Auy.”

LEMMA 2. Assume that g(x, y) exists and is bounded. Then: there exist
positive constants ¢, and C, such that

' P( sup  |g,(x)= g,,(x)l > s) <C b,, exp( C2 ne>b?)
xe[0,1]x[0,1]

for rs/16G0 1, where G, = supg.
Proof. We indicate only the main lines of the proof. Outside the sets

A, = {sup |F, (x) F(x)| > éb,}, B,= {supIG (x) G(x)l > 6b,}

of probability not exceedmg C exp(—2né* bz) we have
(32 SUP lgo—@a < max (#{k (F&X ), G(X 2k))EAua}

1<i,j<kn
+ #{k: (F(X ), G(X 21)) € Bijs})/nb,
where S : : v

AiJJ = {( l—l 5)bn, (l—1+5)b ]
' U((l—&)b,,, (i+9)b,]} x ((]-—1 5)b,,, (]+5)b ]
B = ((i—'l>—5)b,,, (i+5?b 1x{((j—1-9)b,, (]—1+5)b ] '

, RS U((J 0)b,, (j+9)b, ]}
QObserve that

P((F(X) G(Y))eA,,,,)b 2 <4Goa(1+25) &/4
for & = - min(1/2, /32G,). Thus
; P({ sup g, — 4! > 6} N A;n B;)

P({ max Iﬂ,,(Atjb) ”'(Aub)| Sb'%/ 4})

1<i,j<kn
- +P({ max |u,(Bijps)—u(Bip) = eb3/4})
1<i,j<kn
< b 2{ maxk P({lﬂ,,(AU&) ”(Aué)l 8b2/4})
1<i,j<kn
+ ) lnai(k P({|#,,(Aija) F(A:j6)| bv%/4})}’

where p is the measure pertaining to the density g, and u,, is its empmcal

counterpart based on (F(X 1), G(X)), k=1, ..., n. In view of the fact that
u(Asjs), u(Bijp) < ebZ/4 and using Bernstein’s mequahty (cf. [13], p. 96) we see
that the last expression is bounded by C, b; 2 exp(— C,neb?), which completes
the proof of the lemma.
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4. Application in detection. Let us consider the following detection
problem: An iid. sample Z,, ..., Z, is known to have density f; (I = 1) or f,
(I =2). The densities f; and f, are different on a set of positive Lebesgue
measure.-The aim is to form the decision [ class1fy1ng the sample to one of
those populations on the basis of iid. samples X,,..., X, and Y,,...,Y,
pertaining to densities f; and f,, respectively. Put h(x) f2 (x)/fl (x). Let L,,,‘ be
the characteristic function of the set for which I # I The’ detector Iis called
strongly - consistent (see, e.g., [3]) if :

lim L¥ =0 as. and L} = 11m sup L,.,,
. k= - Lem

We show that the approach developed in this paper yields a new-proposal
of a strongly consistent detector. Let g, and h, be the grade density and density
ratio estimate, respectively, defined in Section 1 and based on the samples
X,,...., X;and Yy, ..., Y,. Moreover, let §, be an analogously defined estimate
of the densnty gofF, (X 1) pertaining to these samples. The decision I is defined
by (cf. [3], p- 280) . ;

& {2 if Y 'lloghk(Z)I{h,‘(Z) @} > G,
1  otherwise,

and S : e

=27 | glogg®ds— [  G(s)loggi(s)ds}.

{s:91(5) 2 ax} . {s:G(s) > ax} )

THEOREM 4.1. Let g be differentiable on [0, 1] with a bounded derivative and
let § be bounded. Moreover, assume that KL(F 1 F;) and KL(F,, F 1) are finite
and there exist positive constants &, such that '

(1) Y exp(—cne2b?) < + 0 for ¢ > 0;

@) b, =0(s,), &, = o(a,), a,—>0.

Then [ is a strongly consistent detector.

Proof. Assume without loss of generalify that I =2, Theii cbnditionail en |

X,,...X,, Y,,...,Y the random variables . logh(Z)I{h(Z) > ak}

i=1,...,n, are iid. with expected value of theu' negatlve part > 0. As in
(3], p 276 we conclude that Gl

n! Z log h(Z)I{h,(Z) 2 a} — j fz(z)log hk(z)dz as. as n-— oo.

S =1 . . {z:bie(z) 2 anc}
Thus ‘ ’ o
v=I{ [ fz(z) loghk(z)dz ¢} as.

EhDZad

Putc=2 ‘{KL(FZ, F,)—KL(F,, F,)}. Since KL(FZ, 1)>c, itis enough to
prove that .

@) | 6= ¢ 85,

10 — PAMS 13.1
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and .

42 ] fz(z)logh,,(z) dz > KL(F,, Fy).

{7- hk(z) 2 ak}

The relatlon (4 1) is obtamed by applymg twice Theorem 2 L It is easy to see
that sup, |[Eg,—gl = O(b,) provided that g is boundedly differentiable. Thus,
using Lemma 1 and ‘the DKW 1nequa11ty, for the term §,—Eg, we obtain
sup, g, — O(ak) as., and the sarne is true for sup, |h,—h|. Thus as in the
proof of Theorem 2.1 we show that

f '.fz(z)iég W@l | f0logh)dz 0 as

{z:hi(2) 2 ax} . {z_:hk(z)_ Zai}

Moreover, 1t i8¢ easy to see’ that

N fz(Z)IOgh(Z)dZ 50 as.

L L ’{z hk(z)<ak) :
is implied by
o fz(z) log h(z)dz -0.

{z:h(z) < 2ax}

However, the last eXpression is equal to

[ g(@logg(z)dz

{z:9(z) <281} -

and tends to O since KL(Fzz, F,) exists. This proves ‘(4.2).
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