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GRADE ESTIMATION 
OF KULLBACK-LEIBLER INFORMATION NeTMBEW 

BY 

J. MIELNICZUK (WARS~AWA) 

Abstract. An estimator of the Kullback-Leibler information 
number by using its representation as a functional of the grade density 
is introduced. Its strong consistency is proved under the mild 
conditions on the grade density. The same approach is used to study 
the entropy measure of bivariate dependence (mutual information). 
Some applications to detection theory are also given. 

1. Introduction, Let X and Y be real random variables with distribution 
functions F, and F,, respectively. We assume that F, is absolutely continuous 
with respect to (w.r.t.) F,. It can be seen that if F, is continuous, then the 
density g of the random variable F1(Y) w.r.t. Lebesgue measure exists. We call 
it the grade density (of F, w.r.t. F,). The assumption that F, is continuous is 
imposed throughout the paper. In the paper we deal with estimation of the 
Kullback-Leibler information number 

where log denotes the natural logarithm. This quantity frequently appears in 
testing and large deviations theory as the important characteristic of the 
problem. Our approach to estimate (1.1) is based on the fact that under the 
above assumptions ensuring the existence of g,  KL(F,, F,) is its functional, 
namely its entropy 

Thus the problem of estimating the Kullback-Leibler information number can 
be reduced to that of estimating the entropy of the grade density. Given any 
estimate of the grade density and any method of estimating the entropy it is 
possible, straightforwardly or with small modifications, to derive the required 
estimator. As to the first problem we focus on the histogram estimate of the 
grade density introduced in [6] and follow the approach of [9] to solve the 
second one. However, kernel estimates of grade density (cf. [2] and [7]) and 
various known estimators of entropy (see [4] for an almost exhaustive list of 
references for this subject) yield a handful of potential competitors to the 
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estimators introduced in this paper. We refer also to [10] where the asymptotic 
behaviour of MSE for some kernel estimators of entropy is investigated. 

We prove in Section 2 strong consistency of the introduced estimator 
under the mild conditions on the grade density. Estimation of the entropy 
measure of bivariate dependence (mutual information) can be viewed as the 
particular form of the considered problem for two dimensions. This is dealt 
with in Section 3. In the last section, ideas developed in the paper are applied to 
study the behaviour of a new detector in the detection theory. 

It should be noted that it is possible to study in a similar fashion various 
measures of discrepancy based on the grade density, in particular those having 
the representation f H(dF2/dF,)dF2 for some measurable function H. 

Let XI,  . . . , X ,  be an i.i.d. sequence pertaining to d.f. F,  and let Yl , . . . , Y, 
be an i.i.d. sequence pertaining to d.f. F,. Let k, E N and bn = (k,)-'. Put 

(1.3) 
# { j :  F i ( q ) ~ A n i }  

d n b )  = 
nbn 

for x € A n i 9  Ani = ( ( i - l )b , ,  ib,] for i = 1 ,  2, ..., n and A,, = [0, b J ;  F; de- 
notes the empirical distribution function of X I ,  . . . , X,.  Observe that 8, 
depends only on the ranks of Y's in the combined sample X I ,  ..., X,,  
Y,, .. ., Y,. Denote by K,(x) = i , (Fi (x) )  the corresponding estimate of the 
Radon-Nikodym derivative dF2/dF, (x) .  We consider 'the following estimator 
of KL(F,,  F,): 

where (a,) is a sequence of positive numbers tending to 0. 

2. Strong consistency of the Kollbaek-Leibler information number es- 
 ato or. First we prove an exponential inequality for the difference between 8, 
and the histogram estimate based on an i.i.d. sample pertaining to g. Let 

Rtx)  = # { j :  Fl(I;.)~Ani}/nbn 

for x € A n i  and A,, defined as in Section 1. 

LEMMA 1. Assume that the grade density exists and is bounded. Then 

(2.1) P( SUP IB,(x) 
X E I O , 1 1  

< C exp( - ns2 b:/326:) + 4C exp(- ns2 b:/32), 

where 6, = supg and C is the constant appearing in the Dvoretzky, Kiefer, 
Wolfowitz ( D K W )  inequality [ 5 ] .  

proof. Let 

A, = {sup IF; (4 - F ,  tx)l > 
X 
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where 6 is a positive constant to be chosen later. In view of the DKW 
inequality we obtain 

Observe that on the complement of A, we have 

where Cia = ((i- 6)b,, (i + 6)b,] , i = 0, . . . , k,. Let S = &/8G,. Then 

b ~ ' { P ( F i ( r ) ~ ~ i - l , a ) + ~ ( ~ ~ ( ~ ) ~ ~ i a ) )  G &/2 
and 

',< P( man I# { j :  F l ( $ ) ~  Ci- I ,a v Cia}/nbn 
l < i Q k n  

G 2 ~ (  max 1 # { j :  F1 (q) E Cia}/nb, - P(F, ( Y )  E Cg)/bnl > e/4). 
OCidk,, 

Observing that # { j :  F,  ($) E Cia}/n = G,((i + S)b$ - G,((i - 6)  b,), where 6, is 
the empirical distribution function pertaining to the sample Fl(Y,), . . . 
..., F,(Y,), we see that the left-hand side of (2.1) is less than 

where G(x) = F,OF;~(X) .  Thus using the DKW inequality once again and 
taking into regard the inequality (2.2) we obtain the result. 

Re m a r k 2.1. Observe that sup E JJ,  - gl = 0 (b,) for g boundedly differen- 
tiable. Using the DKW inequality for I@,,-Eg",,I it is easy to see that in this case 
Lemma 1 implies that - 

2 112. b supld, -91 = O,((log nlnbn) + n). 

THEOREM 2.1. Let F ,  and F2 be distribution functions such that KL(F,, F,) 
is finite and the grade density is bounded. Assume that there exist positive 
constants E, such that 

(1) C exp(- cn$ b:) < + ao for c > 0; 
(2)*&, = o(a,), 0 < a,, a, -, 0. 

Then KL(F,, F,) -, KL(Fz,  I;,)  a.s. 

Remark 2.2. Note that when b, is of IMSE-optimal order n-'I3 (see 112)) 
the conditions of the theorem are satisfied for a, = An-u6+bi th  6 > 0. 

Proof. 'We put d = d, and g" = J, in the proof. Observe that a, is the 
histogram estimate of g based on the ii.d. sample Fl(Yl), . . . , P,(YJ pe 
it. Moreover, conditions (1) and (2) imply the assumptions of Theorern 2 in C9). 
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Thus 

Hence, using the decomposition 

and the triangle inequality, it is enough to prove 

First we prove (2.4). Let us put 

j dlogd- j dlogg" 
(0 3 an) 10 3 0") 

= 1 gjlogd- j dlog#+ j dlogg"- 5 g"logg"=I,+l,. 
( @ B a d  @ 2 an] (8 2a.I (0 Ban) 

Using the inequality Ilog xl < Ix - 11 + 1 l lx - 11 we obtain 

In view of (1) and Lemma 1 we get sup Id(x)-g"(x)l < E,, a.s. Thus, in view of (21, 
the integration is taken over an x such that g"(x) 2 an/2 for sufficiently large n. 
It follows from (2.6) that 

1111 < C,E Jan -, 0 a.s. 

Analogously, using the inequality Ilogxl 4 x+ llx we obtain 

1121 j (g"(x) + (g"(x))- ')li(x) - g"(x)ldx 
( x : ~ ( x )  3 on) 

< 6, sup - g"l(l+ l/a,) -+ 0 a.s. 

Observe now that, by Lemma 1 and the assumptions of the theorem, 

sup I&)- g"(x)l < a J2 a.s. 
X 

for suflticiently large n. Thus for such n we infer that the symmetric difference of 
{x: @(x) 2 a,} and {x: #(x) >, a,,} is a subset of {x: 3a J2 > g(x) 5 a $1. 
Hence 

I j /logP- j g"logBl<l j slogsl 
40 &an) (I  a an] (an12 61 < 3a.12) 
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since the integrand of the last integral does not change sign. However, the last 
expression is the absolute value of the difference of two estimators of entropy 
truncated at the levels 3aJ2 and aJ2, respectively. Since both the terms tend to 
I(g) in view of (2.3), the result is proved. 

Remark 2.3. Let 6,(x) = i,(FA(x)) be the corresponding estimate of the 
Radon-Nikodjrm derivative, and Z,, . . . , Z, be an i.i.d. sample pertaining to 
F, independent of X,, . . . , X,,  Y,, . . ., Y,. Note that the alternative estimate of 
KL(F, , F ,) may be considered : 

- v n 

KL(F,, F,) = n-' log 6,(Zi)I(6,(Zi) 2 a,}. 
i= 1 

Assume that g is boundedly differentiable on [0, 11 and 
(1) 1 n exp(-cnat b;) < + co for c > 0; 
(2) b, = o(aJ, 0 < a,, a, +0. v 

Then it can be proved by using Lemma 1 and Theorem 1 of 191 that KL is 
a strongly consistent estimator of the Kullback-Leibler information number. 

3. Estimation of mutual information. Let Fxy be a bivariate distribution 
function with density f (x, y) and FQG be the product of the respective 
marginal distribution functions. We assume that FXp is absolutely continuous 
w.r.t. FQG, The Kullback-Leibler information number for FXy and F @ G  can 
be considered as the dependence index for Fxy. This index is called mutual 
information in the literature. Joe [ll] introduced its estimator based on 
plugging the estimates off (x, y) and the marginal densities into the definition. 
However, separate estimation off (x, y) and marginal densities can be avoided 
by extending the method proposed in Section 1. This consists in estimating the 
density g of the copula function,'i.e. the distribution function of (F(X), G(Y)) ,  
where (X, Y) is a bivariate random variable distributed according to Fxy. 

Let X,, . . . , X, be an i.i.d. sample pertaining to Fxy, and F,, G, be 
empirical marginal distribution functions based on XI,  . . ., X,. Define the 
histogram estimate of the density of the copula function based on X,, . . . , X,, 
Xi = (Xli, X20, by 

where (x, y) E Anij, Anij = ((i - l)b,, ib,] x ( ( j -  l)b,, jb,] for i, j = 2, . . . , k,, 
when one of i, j is equal to 1, the respective segment of the boundary is included 
into Anij. Moreover, put &(x, y) = @,(F,(x), G,(y)). For the definition and 
properties of kernel estimates of g see, e.g., [I] and 181. 

We define E!L as in (1.4). Theorem 2.1 remains valid with condition (2) 
replaced by 

~ b ; 2 e x p ( - c n ~ ~ b ~ ) < c o  for c > 0 .  

This can be proved as above by using Theorems 1 and 2 of [9] for d = 2 and 
the lemma stated below. It is easy to see that the above condition implies 



conditions (2.7H2.9) in [9] for two dimensions. Put 

LEMMA 2. Assume that g(x, y) exists and is bounded. Then there exist 
positive constants 6 ,  and C2 such that 

P( sup ( d , ( x ) - & ( x ) l > ~ ) < C ~ b ; ~ e x p ( - ~ + ~ b . 2 )  
x€[O.ll x [ O , l l  

for &/16G0 < 1, where Go = supg. 

Proof. We indicate only the main lines of the proof. Outside the sets 

A, = {sup IF,(x)- F(x)l > Sb,), 8, = {sup IG,(x) - G(x)l > Sb,) 
X X 

of probability not exceeding Cexp(-2nS2b,2) we have 

where 

Aija = (((i- 1 -6)b,, (i-1 +6)bR] 

u((i-8)b,,, (i+S)b,]) x ((j-1-8)bny (j+s)b,], 

& = ((i-1-S)b,, (i+6)bR] x (((j-l--S)b,, ( j- l+S)bn] 

u ((j-S)b,, (j+a)b,]). 
Observe that 

P((F(x), G(Y))E -4ijfi)bi2 < 4G0S(1 +26) < 814 
for S = min(1/2, &/32G0). Thus 

P({ sup I@, - &',I >, E }  n A: n 83 
X 

where p is the measure pertaining to the density g, and p, is its empirical 
counterpart based on (F(XIL) ,  G ( X ~ ~ ) ) ) ) ,  k = 1, . .., n. In view of the fact that 
p(Aija), p(Bija) < sb;/4 and using Bernstein's inequality (ef. [13], p. 96) we see 
that the last expression is bounded by C,  b i 2  exp(- C,nsb,2), which mmpletes 
the proof of the lemma. 
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4. Applica~on in detection. Let us consider the following detection 
problem: An i.i.d. sample Z,, . . . , Z n  is known to have density f, ( I  = 1 )  or f, 
(I  = 2). The densities f, and f, are different on a set of positive Lebesgue 
measure. -The aim is to form the decision f classifying the sample to one of 
those populations on the basis of i.i.d. samples X I ,  . . ., X ,  and Y,, ..., 5 
pertaining to densities f, and f,, respectively. Put h(x) = f,(x)lf,(x). Let Lnk be 
the characteristic function of the set fo ch I # f', The detector f is 
strongly consistent (see, e.g., [3]) if 

lim L? = 0 a.s. and L? = limsup L,,. 
k+m n 

We show that the approach developed in this paper yields a new proposal 
of a strongly consistent detector. Let g, and h, be the grade density and density 
ratio estimate, respectively, defined in Section 1 and based on the samples 
X I ,  . . . , X ,  and Y,, . . . , Y,. Moreover, let gk be an analogously defined estimate 
of the density # of F,(X,) pertaining to these samples. The decision f is defined 
by (cf. 131, p. 280) 

2 if Cn n- l log h,(Zi) I {hk(Zi) 2 a,) > c,, f = {  i =  1 
1 otherwise, 

and 

THEOREM 4.1. Let g be diflerentiable on [O, 11 with a bounded derivative and 
let g be bounded. Moreover, assume that KL(F,, F,) and KL(F,, F,) areJinite 
and there exist positive constants E, such that 

(1 )  C exp(-cn~; b;) < + c~ for c > 0 ;  
(2) b, = 0 (E,), E, = o(an), an -, 0. 

Then f is a strongly consistent detector. 

Proof. Assume without loss of generality that I = 2. Then conditional on 
X . . . , X ,  , . . . , & the random variables log h,(Z,)I {hk(Zi) 2 a,), 
i = 1 ,  . . . , n,  are i.i.d. with expected value of their negative part > - oo. As in 
[3], p. 276, we conclude that 

n 

n-l C log hk(ZJI{hk(Zi)  2 a,) -, S f,(z)log h,(z)dz a.s. as n + oo . 
i =  1 (z:hr(z) B ar} 

Thus 

L? = I { J f2(z) log hk(z)dz < c,) a.s. 
(z:ha(z) B ak) 

Put c = 2-'{KL(F,, Fl)-KL(F,, F,)). Since KL(F,, F , )  > c, it is enough to 
prove that 

(4.1) C, + c as. 

10 - PAMS 13.1 
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I and 
I 

The relation (4.1) is obtained by applying twice Theorem 2.1. It is easy to see 
that sup, IEgk - gl = O(b,) provided that g is boundedly differentiable. Thus, 
using Lemma 1 and the DKW inequality, 'for the term dk-Egk we obtain 
sup,lg,-gl = O(ck) a.s., and the same is true for sup, Ih,-hl. Thus as in the 
prodf of Theorem 2.1 we show that 

5 fi(z) log h,(z)dz - 5 f2(z) log h(z)dz -+ 0 a.s. 
(2:  hk(2) ah) ( z :hk(z )  Ba*) 

Moreover, it is easy to see that 

, 5 f,(z) log h(z)dz -, 0 a.s. 
6 : h k ( ~ )  < ak) 

is implied by 

However, the last expression is equal to 

and tends to 0 since KL(F2, F,) exists. This proves (4.2). 
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