PROBABILITY AND MATHEMATICAL STATISTICS Vol. 13, Fasc. 2 (1992), pp. 245–252

MINIMUM L_1 -PENALIZED DISTANCE ESTIMATORS OF A DENSITY AND ITS DERIVATIVES

Lesław Gajek

Abstract: Let F be an (m + 1)-times differentiable distribution function (df) generating the data. Let f be the density of F. Let F_n denote the empirical df. The paper concerns fitting an (m + 1)-times differentiable function G to the data by minimizing $d_n(G) = ||F_n - G||_1 + \beta(n)||G^{(m+1)}||_1$, where $|| \cdot ||_p, p \ge 1$, denotes the L_p -norm and $\beta(n) > 0$ is a sequence of smoothing parameters. Let \hat{F}_n be an (approximate) minimizer of the above problem. We establish an upper bound for $E ||\hat{F}_n^{(i)} - F^{(i)}||_1$, $i = 1, \ldots, m$, with respect to the choice of β . In particular, the choice of $\beta \sim n^{-1/(m+1)}$ results in the optimal L_1 -rate of convergence of \hat{F}'_n to f. The estimation $E ||\hat{F}_n^{(i)} - F^{(i)}||_2$ is also evaluated.

2000 AMS Mathematics Subject Classification: Primary: -; Secondary: -; Key words and phrases: -

THE FULL TEXT IS AVAILABLE HERE