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Abstract. In this paper we introduce several approximation 
schemes for It8 equations with two parameters which are suggested by 
the Lie-Trotter product formula from the theory of nonlinear semi- 
groups. 

By using the splitting up method the equation is decomposed 
into two simpler equations. The convergence and speed of convergence 
of schemes are discussed. 

1. Introduction and notation. Approximation schemes for one-parameter 
It8 equations have been considered by Glorenecc [3], Milstein 141, Pardoux 
and Talay 151, Platen [6], Rao et al. 171, Rumelin [9]. For the two-parameter 
case Ermoliev and Tsarenco [2] have proved the convergence of finite 
differences, and in [lo] some approximation schemes are considered for the 
infinite dimensional case. Recently in [8] several approximation schemes 
suggested by the Lie-Trotter formula are proposed (see also [I] for the case of 
parabolic stochastic equations). The method consists in a separation of the 
diffusion and the drift terms and obtaining in this way two simpler equations, 
one of them is deterministic and the other one is stochastic. 

In the present paper we give similar schemes for two-parameter It6 
equations. Next T is a positive number, rn and n are positive integers, and A is 
the Lebesgue measure on R2. We introduce the following notation: 

For a rectangle D = [s, t)  x [u, v) and a two-parameter process Cf,,,) we 
define the increment of f  on D by 

f ( D )  = A , v  -A,, -L," +L,U 



178 M. Tudor 

Let a(p ,  q ,  x ) :  I x R d + R d  and b ( p ,  q ,  x): i x R d + R d @ R m  be measurable 
mappings. We consider the following hypotheses on a, b :  

for all ( p , q ) ~ i ,  xfWd; 

for all (p, q ) ~ i ,  x,  y€Rd. 
Let (w,,)(,,),, be an Rm-valued two-parameter Wiener process, i.e., (wS,*) is 

continuous, w vanishes on 10) x [0, T]u[O, T ]  x (0) for every rectangle D, 
w(D)  has Gaussian distribution with mean 0 and covariance A(D)I,, and for all 
disjoint rectangles D , ,  . . . , D, the increments w(D,) ,  . . . , w(D,) are independent. 
Let FS,, = $?d(w,,,; u G s, v < t )  be the canonical filtration associated with w. 
We consider the two-parameter It6 equation 

where x E Rd and 6 fobdw is the It6 integral as defined for example in [I 11. 

Remark  1. Under (JS) and (L) the equation (1) has a pathwise unique 
continuous solution (~,,3~,,~,, (see [I 11). The initial condition x can be replaced 
by a process (qs,t)(s,t,EI which is PS,,-adapted and continuous. 

2. Main results. First we introduce two approximation schemes for (1) 
with adapted and continuous approximating processes. We define recursively 
the approximating processes uh, xk, ch, 9' for (s, t ) ~  RZis1 by 

The processes uh, xh, iih, gh with the time parameter R,,,, are we11 defined, 
adapted and continuous (in fact, u" is deterministic). Suppose that for some (i, j) 
we defined on RZimj  the above processes which are continuous and adapted and, 
moreover, u:,, is ei- i,,-measurable if (s, t) E Ii- and ui,, is ,-measurable if 
(s, q~ J . , j  1 . - I -  

Now, if (s, t )  E l ir jJ we define 
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where 
fs- ,r-  = lim f p ,q -  

prs,qrt 

If Is, t ) ~  J i J ,  we define 

I f  s = T or t = TT: then we define 
Xh - h -h -h -h (8) d,t = d ! - , t - ,  , - x S -  , f i t  = - X S , ~  = xs- ,x - -  

The approximating processes uh, xh, Gh, 2' are defined for all (s, t) E 1 as 1 follows: by (21, (3) if (3, t)  E R,,,,; by (41, (5)  if (s, t)  E G.1; by (611 (7) if (s, t )  E ~ J ;  

by (41, ( 5 )  if Is, t )  E 12.2 ;  by (61, (7) if (s, t)G 3 ~ 3 . 2 ;  by (41, (5 )  if (s, t )  E 1 3 . 3 ,  . . . ; and 
b y @ ) i f s = T o r  t = T  

~ Remark  2. The processes uh, xh, U"', 2' are continuous and adapted and, 
I moreover, u5,, i s  gist-measurable if (s, t ) ~ l ~ , ~  and u:,, is %,,,-measurable if  

I (s1 t) E J i j -  

1 LEMMA 1. The following equations hold: 
I s t  [slh i lhi  1 

I (9) u;,t = x + 1 j a(p, q,  uh,,q)dpdq+ f j b(p, q, x;,,)dw,,q 
0 0 0 0 

i f ( s ,  ~ ) E R , , , ~ ,  i + j  is odd; 
s i s [tlhzlhz 

(10) u:,t = x + j 1 a(p1 qY 4,q)dpdq+ 1 j MP, q, x!,,1dwp,q 
0 0 0 0 

if (s, ~)ER,,,,, i+j is even; 

Es/hilhi t s I 

(1 2) Q.t = =+ j j 4 ~ 1  q1 x"!.,)d~d4+1Sb(P, q,  f$,q)dwp,, 
0 0 0 0 

if (s, t ) ~  R,,,>, i+j is odd; 

i f  ( s ,  ~ ) E R , , , ~ ,  i+ j  is even; 
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Proof.  On R,,., the equations are obvious. Assume that they hold on 
RZinj  and let us prove their validity on Ii,j and J i S j .  B y  hypothesis, for 
(s, t) E Ii- we have 

Then, using (15) and the induction hypothesis, we have 

Similarly one obtains the equations for (s, t ) ~  Ji, j  and for 9, Xlh.  

LEMMA 2. The following estimates hold: 

(16) sup E(lz,,,12) < C, : = 6(1xI2 + T 4 ~ ,  + T ~ K ~ ) ~ X ~ { ~ T ~ ( T ~ K ,  +Kz)) 
(s , t )~I  

for z = uh, xh, fih9 gh;  

(17) SUP E(Ixkt - U : , ~ I ~ )  < C2(hl + h2), C2 = TK2(l + C,); 
( s , ~ ) E I  

Proof.  Define K, = 3(1x('+T4K1+T2K2) and K, = 3(T2K1+K2). 
Using Lemma 1 and (K), for (s, t ) ~  I we obtain 
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Similarly we obtain 
S t 

(20) E(lx!,,lZ) d K 3  + K4 1 [ E ( l ~ ; , ~ l ~ )  + E(Ix;,,1211d~dq- 
0 0 

Summing (191, (20) and using Gronwall's lemma we obtain 

Similarly we deduce (16) for Ch, Z h .  
Next, if (s, t )  E R ,,,J and i + j  is odd, we have 

Similarly, if i + j  is even, we have 

An analogous argument works for zh-fib. 
THEOREM 1. Assume (K) and (L) are satisfied. Then 

where C, = 3T2LlC2exp{3T2(T2Ll+L2)} ;  

where c, = 3L2C3 exp (3T2(T2  L ,  + L,)) . 
Proof.  We justify only (21) (similarly for (22)). We have 

0 0 
S t 

+ 1 1 C ~ P ,  q,  es;,q) - 4 ~ 7  4% x;,,)l dpd4 
0 0 

Then, using (L) and Lemma 2 (the second estimate), we obtain 

+ 3 T 2  L, sup E(lu$,, - x ; , , ( ~ )  
(P&I 
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and with Gronwall's lemma we get 

I where C, = 3 T~ L, C ,  exp {3T2(T2 L, + L,)) . In the same manner we estimate 
I E(IP:,,-X~,,~~). Thus the proof is complete. 

Next we introduce other approximating processes oh, yh, 8, Yh which are 
more appropriate for the numerical treatment. For (s,  ~ ) E R , , , ,  we define 

For some ( i , J  we defined the processes vh, yh, P, P on R , ,  such that: 
h vJpt -h are E,t-measurable, v:,~ is - ,,,-measurable if (s, t) € I i -  l,j, vkt 

is e,l, - ,-measurable if (s, t)  E Ji,j- ,, and j$, is $t,,-measurable if 
I (s, t )  E I ;  - l,ju Ji,j- l. NOW, if (s, t )  E ii,jl we define (with the convention 
1 A-.* = d.0- = XI 

and if (s, t) E J i , j ,  we define 

h -  h Also, if s =  T or t =  T, we set v:,~=$-,,-, ~ ~ , , - y ~ - , ~ - ,  fit,,= VS-.t-, -' 
-h - -h 

Ys,t - Ys-,r - - 
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The definition of v", yh ,  C h ,  yh on the whole I is obtained as follows: we start 
with z E Rzl,, and define the processes by (23), (24), and then alternatively on 
I I , ~  by (23,  (26X on J2,1 by (27), (281, on I2,2 by (251, (261, etc. 

Remark  3. The processes yh and ndh are .%,,-adapted; vt,, is 
&-measurable if (s, t)  EL^,]; v!,~ is E,timeasurable if (s, t) E J i , j ;  $',, is 
q, + ,,ti-measurable if (s, t) E l i j ;  and j:, is e,,t,+ ,-measurable if (s, t)  E J i , j .  

LEMMA 3, The following estimates hold: 

(29) supE(]zS,,~')<Dl for z = v h ,  y h , f i h , ~ " ,  
(s,t)ef 

w h m  D ,  = (4+ 1~1~)exp {5T2(1 + K 1  + K 2 ) ) ;  

(30) sup E(lyrt - $,I2) 9 D2(h1 + h ,  + hl h, + h i  +hi), 
(s,t)el 

where D, = ( ~ K , + ~ T ~ K ,  + TK,)(l +Dl); 

(3 1) sup E(IY!,,-$t12) < bz(h, + h ,  + h: + h$ + h i  h:), 
( s , t ) ~ I  

I 

where 6, = (6K1 + 12TK,+2T2Kl)(1  +Dl). 
P r o  of. By ItB's formula for ([v~,,)~], ,  < , , - = s , + ~ ~  0 < t < t j  is fixed, we have 

I Then we obtain 

so that, by Gronwall's lemma, 

Since v:~ + , - , t j -  is 4;i,,measurable and if s S sf,  t S t', and 
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si 0 

so that 

(34) 
S t  

E(lY;,:l2) 4 E(lvk,, - ,*,-I2) +- TK2 h1 +K2 I E(ly:.IZ)dpdq 
8; a 

and, by Gronwall's lemma, 

(35) E(l~!,tl~) 4 CE(Idi, .-,t,-12)+ TK,h,lexp(TK2h1). 

If we take s r si+ in (33) and we use Fatou's lemma, we deduce 

(361 supE(lvii +, -,*- 1') G Isup E(Id,-,,- 1') + TK, hi] exp ( ~ ( 1  + ~ , ) h , } ,  
t ctj I < l j  

and using (36) in (35) we get 

(37) sup E(ly:,tI2) 
t < t j  

4 {TK,h, + CTKlh, +sup E(IY:~-,~-I')I~XP(T(~ +Kl)hlI)ex~(TK2h1)- 
t < t J  

Taking s r s,,, in (37) and applying Fatou's lemma we obtain 

(38) supE(ly:i+,-,t-I2) 
t d t j  

4 [T(K, +K,)hl +SUP E(Idi-,t-12)Iex~(T(1 +K1 +Kz)hiI 
t c t j  

and inductively we get 

(39) s u ~ E ( l ~ t ~ + , - , ~ - l ~ )  4 (1 +lx12)exp(2T2(l +K1 +K,)). 
t < t j  

Using (39) in (36) we obtain 

SUP E(/V:~+, -,*I2) < lTKl h, + (1 + Jx(')exp(2T2(1 +K, + K2))l exp{T(1 +Kl)hl]. 
t  < t ,  

so that 

(40) supE(Iv!,+, - , * I 2 )  < (2+ Ix12)exp(3T2(1 +K1 +K2)]. 
t c t ,  

Replacing (40) in (35) we obtain 

(41) E(l~;,t1') 4 (3 + lx12)exp{4T2(1 +Kl +K2)J, 
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which together with (33) implies 

The same estimates, (41) and (42), follow if 0 < s < si ,  t j  6 t < t j + l .  A similar 
computation works for E h ,  yh. 

Next, if 0 d t < ti, si G s < s i t l r  we have 

~ Since v:~+, - , t j -  -v$ is ei,T-measurable for t < t j ,  si & s < s ~ + ~ ~  we have 

An analogous computation works for 0 < s  < si, t j  < t < t j + l .  Therefore 

with D, defined as above. We proceed in the same manner for E(I~,h,,-i7:,,1~). 

I THEOREM 2. Assume that ( K )  and (L) are satisfied. Then the following 
estimates hold: 

where D ,  and D", are given explicitly in the pro05 

P r o  of. Let (s, t) E li,j. From the equality 
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we obtain, by It& formula, along t = constant, 
h h a -  h h 

I ~ s , t - ~ s , t l  - lxst-,t- -Ys , - , t - l2  

Then 

and thus, by Gronwall's lemma, 

Next from (44) and (47) we obtain 

I 

Utilizing the zi,,-measurability of u;,,, v ~ ~ , , - , , ~ -  we deduce 

Hence 

so that, by (48) and Gronwall's lemma, 

If we take s r s i + ,  and t r t' in (49), we obtain the recursive inequality 

I ai+ : = sup E(lxti+ ,-,,- -y , ,+,  h - , , -  1') < [2D; +2aiexp (2TL1 h,)]  exp (TL,  h,) 
1 t < t j  
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By induction we deduce from (50) the inequality 

Utilizing (51) in (49) we obtain 

(52) E(lx~,t-~:.tl~) 4 (hi +k2 + hi h2 + h?), 
I 

I where 
I 

t (53) 

2'K2+2T2K1)exp  {T2(2L1 + L,))]  exp (T2L2). 
T(2LI + L2) 

Similarly for (s, ~ ) E J ~ , ~  we obtain 

(54) EIIX;,~-Y$,~I') 6 d ; 8 1 + h z + h l k 2 + h ; ) -  
I 

, Now (52), (54), and (21) imply (45) with 

I Next, for (s, t )  E li,j, utilizing the equality 
I 

S t  

I -h -h -k us,t-vs,t = xsi-,t- -Y:,-,t- + S S  Cb(pY q ,  % , q ) - b ( ~ ,  q ,  $ , , ) l d ~ , , ~  
si 0 

I 

I and 9$z,,-measurability of 2ti-,t- -ySi - , * -  "h we deduce 

and, by Gronwall's lemma, 
I 

Also we have 

and hence 
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On the other hand (by using (K) and (56)), we can write 

Next, taking s i* si, , in (57) and using (58), we obtain 

P i + 1  d exp (1 +2L1 T(1 + h l ) ) h l  [Biexp(L,Thl)+Kl(l  +Dl)hlh21, 

P i + 1  d [ P i + K 1 ( l  +Dl)hlh2] exp ( h l  [I +2L1 T(1+ h,)] +2L2 T ) .  

Hence, by induction and putting 

we get 

Then (58) becomes 
-h E ( l ~ ~ , t - ~ , i , 1 - , t j - 1 2 )  G 4exp  (TL2hl)h,+Kl(1+D1)h,h2,  

which used in (57) implies 

A similar inequality follows if (s, t ) ~  J i S j .  Then from (22), (61) we get 

where 

(63) D, = 2C",+[ddj,+~,(l+D,)]exp{T(1+ T)(L2+2TL,)) .  

The proof is complete. 

REFERENCES 

[I] A. B e n s o  us s an and R. Glowil is  ki ,  Approximation of Zakai equation by the splitting 
method, in: Stochastic Systems and Optimization, Proc. of the Sixth IFIP Conference on 
Stochastic Systems and Optimization, Warszawa 1988; J. Zabczyk (Ed.), Lecture Notes in 
Control and Inform. Sci. 136, Springer-Verlag 2989. 



Approximation schemes for stochaslic equations 189 

[2] Iu. Ermol ie  v and T. Tsarenco,  Convergence offinite diflrrmces for the Darboux egwtion 
(in Russian), Kibernetika 5 (1977). . 

[3] P. Glorenecc ,  Estimation a priori drs erreurs duns la risalution numirique d'eqlaations 
diffhrentielles stachastiques, S6m. de Probab. 1, Rennes, 1977. 

[4] G. Mils tei n, Approximole integration of stochastic digerential equations, Theory Probab. 
Appl. 19 (1974), pp. 583-588. 

[5] E. Pard  o ux and D. T a1 a y, Discretization and simulation of stochastic differential quations, 
Acta Appl. Math. 3 (1985), pp. 23-47. 

[6] E. P la ten ,  An approximalion method for a class of It6 processes, Liet. Matern. Rink. 21 (1981), 
pp. 121-133. 

171 N. Rao, J. B or  w an kar and D. Rama kr i s h n a, Numerical solution of It6 integral equations, 
SIAM J, Control Opttm. 12 (1974), pp. 12A-139. 

[8] A. R Qcan u and C. T u d o  I, Approximation schemes for stochastic equations driven by 
semimartingales (to appear). 

191 W. Rumelin,  Numerical treatment of sfuchastic differential equations, S I A M  J .  Numer. Anal. 
19 (1982), pp. 604-613. 

[lo] C. T u d o r  and M. Tudor,  On approximation in quarlrrrtic mean for the solutions of 
huo-parameter stochastic differenxial equations in Hilbert spaces, An. Univ. Bucuresti Mat. 
(1983), pp. 73-88. 

[11] J. Yeh, Two-parameter slochastic diflerential equations, in:  Real and Stochastic Analysis, 
Wiley, 1986, pp. 249-344. 

Academy of Economical Studies 
Dept. of Math. 
6 Piafa Romana Street 
70167 Bucharest. Romania 

Received on 28.8.1990; 
reuised version on 20.8.1991 




