PROBABILITY
AND
MATHEMATICAL STATISTICS

Yol. 13, Fasc. 2 (1992), pp. 277-292

MALLIAVIN CALCULUS
FOR STABLE PROCESSES ON HEISENBERG GROUP

BY

TOMASZ BYCZKOWSKI anp PIOTR GRACZYK (WRoCLAW)

Abstract. Smoothness of symmetric stable semigroups and some
related semigroups of measures on the Heisenberg group is studied
using Malliavin calculus for jump processes. If the Lévy measure of
a symmetric stable semigroup is %™, then the semigroup is 2"~ 4. If
the Lévy measure of a truncated stable semigroup is ‘€‘ then the
semigroup is €>.

0. Introduction. Smoothness of stable semigroups of measires on homo-
geneous Lie groups was examined by analytical methods by Glowacki ([3], [4]
in the case of the Heisenberg group, [5] generally) and recently by the
second-named author [6], using Malliavin calculus for jump processes. In [5]
and [6] it was proved that if the Lévy measure of a symmetric stable semigroup
is smooth, then the semigroup itself has smooth densities.

In this paper* we examine smoothness of a-stable semigroups of measures
(#):> 0 on the Heisenberg group, with Lévy measure v of class ¥™, m < co. In
particular we show that if ve %™, then p,e %> * (if « > 1, then p,eC*"73).
This kind of implication may not be obtamed by applying mequalltles of
Sobolev type.

We prove also the smoothness of a symmetric semigroup of measures
():> o With the Lévy measure of class ¥'. We assume that the Lévy measure
of (u)>o has a density of class ¥ with compact support, coinciding
on a neighbourhood of 0 with the density of a stable Lévy measure.
We call such semigroups truncated stable. Truncated stable processes appear
in some problems of stochastic analysis even in the case of Euchdean spaces
(cf. [8D).

Our results are new and do not follow from the analytlcal methods of
Glowacki. They are proved by using methods of Malliavin calculus. In
particular, following Bismut [1] we avoid iteration of integration by parts

* This research is supported by KBN Grant.
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on the same interval as it was made in [6]. The Markov property of the
corresponding stochastic process is highly exploited here. However, the
noncommutativity requires a subtle stochastic analysis using properties of the
adjoint representation and martingale methods.

For simplicity, we present our results in the case of the Heisenberg
group H. The proofs can be generalized immediately to the case of nilpotent
homogeneous Lie groups of order 2. In the case of higher order the
computations become complicated but they are still feasible.

This work is an extension of [6]. We use the same notation and we repeat
some fragments of the proofs of [6]. Theorem 3 of this paper generalizes
the final Corollary 5.7 of [6] but its proof is much simpler and direct and it
provides more effective estimates of L,-norms of derivatives of considered
measures.

Section 1 has a preliminary character. In Section 2 we present some rather
technical lemmas concerning stochastic integrals on H and convergence on the
‘Skorohod space Dy. Section 3 contains the result concerning truncated stable
semigroups. In Section 4 we extend this result to stable semigroups and to
some other semigroups with Lévy measure of noncompact support.

Acknowledgements. This paper has been completed during the
second-named author’s stay at the University Pierre et Marie Curie in Paris.
He would like to express his gratitude to Professors Paul Malliavin and
Jacques Faraut for their hospitality and comments.

1. Preliminaries. In this paper we consider the Heisenberg group H=R
with the group product

(01, 02, 03)0(Ty, Ty, T3) = (0,474, 63+ 7T, 03+ T3+ 0,7,)
and the dilations
t(oy, 05, 03) = (to;, t6,, t?63), t>0.

We denote by 0= (0, 0, 0) the identity of H.
A homogeneous basis of the Lie algebra ) of H is given by

-0 0 0 - 0
@. . X=53—C, Y=5;+x5;, Z=a,
where 0/0x, 0/dy, 6/0z are usual partial derivatives on H.
The adjoint representation on [ acts as follows: .
(2) Ad X=X-y(0)Z, Ad,Y=Y+x(0)Z, Ad,Z=2Z,
where for ¢ = (g,, 6,, 05) | ‘ |
A3) ‘ : x(0)=0'1, y(o) = o,.

Remark that the mappings x, y defined in (3) are homogeneous of order-1 and
additive with respect to the group product.
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If ¢ is a complete left-invariant metric generating the topology of H we write
lell = ¢(©, o).

{|-]| is a pseudonorm on H.
A continuous semigroup (u,)>o of measures on H is said to be stable (with
exponent o, 0 < a < 2) if for every Be %y and ¢t >0

#,(B) = py (¢~ B).

For the properties of stable semigroups on homogeneous Lie groups see [6],
Section 2.

We will say that (i), o is & truncated stable semigroup of measures on H if
it does not have the Gaussian component and if there exist a stable semigroup
(1) on H with Lévy measure v and a nonnegative function he% (H) equal
to 1 on a neighbourhood of 0 and bounded by 1 such that the Lévy measure v
of (u) is given by

C)] ' v="hv.

2. Properties of some stochastic integrals. Throughout this section {z,},>o
is a symmetric stochastic process on H with homogeneous independent
increments and sample paths in the Skorohod space Dy (R™). We suppose that
the generator of the corresponding semigroup of measures does not have the
Gaussian part and that the Lévy measure v of {z,},- o has a compact support.

Identically as in [6] we denote by N (T, ¢)(z) the number of jumps of ze Dy
such that | 4z| > ¢, up to moment T, and by S, ..., S§lz., the consecutive
moments of these jumps. We define

2P = Azgp ... Azg@,
to be the process with the Lévy measure V. >g. We write S for the
stochastic integral with respect to the process {z{*}.

In the first two lemmas we define stochastic integrals of the form S, < 7rx
and S,<ry with x, y as in (3) and examine their properties. The definition of
these integrals, using convergence in L?, is more general than the definitior of
stochastic integrals appearing in [6]. This is caused by a more subtle kind of
analysis used in this paper.

Two next lemmas concern the continuity and convergence on the
Skorohod space Dy [0, T] of some functionals of the process {z,}, appearing in
the sequel.

The results of this section are true on any nilpotent Lie group (in place of
X, y one may take any global coordinate function).

LeMMA 1. (a) The sequence SP rx converges when e¢—0 in L. We
define

S,<rx = lim S¥ ;. x
>0
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Then for each sequence &,|0 we have S¢2rx—S;<rx almost everywhere.
(b) Sq<rxel? for all p>= 1. .
(© lim,, oS 7 x =S,<rx in L? for all p> 1.
(d) lim, _, o (S 7x)" = ST« yx in LP for all p>1 and meN.
In place of x one may put the function y.

Proof We have

E|Srx—S2x?=E( Y  x(4z))
<
1< ||SAstH <gz

=E( Y x*(dz))+2E( ) x(4z5) x (4z,,)).

s<T 5 <s2€T
£1% || dzs|| <e2 21 S || dzgl <e2

By Theorem 1.4 of [6] the first expected value in the above formula equals
T } x2 dv(x)

{e1 < x| <e2}
and tends to 0 if ¢, , £, —0. By independence and symmetry of jumps of {z,} the
second expected value equals

Y Ex(Az,,) Ex (4z,,) = 0.

For each sequence g, |0 the sequence S¢2 rx may be represented as a series of
independent random variables S¥z:Px—S¥2x. Convergence in L? of this
sequence implies convergence almost everywhere. This proves (a). Arguing
similarly as in the proof of Lemma 4.3 in [6] we get, for every me N and ¢, |0,

Y, EiSCeP x—Sf2 x> < C,ES, <7 X°)".
n=1
Thus, by Theorem 1.4 (c) in [6], the sequence S ;x converges in L*" and (b)
and (c) follow. To prove (d), one uses the Holder inequality and (c). We omit the
details. = '

In the following lemmas we fix an g, > 0 and consider a continuous
function ¥ on H such that supp? < {J|"|| > &,}. We denote by ¢/ the product
of successive jumps of the trajectory, greater than ¢, following Azgeo, up to
moment 7.

LEMMA 2. (a) The sums x(c%) = S‘(:()Eu)
g

We define

. 2
\T<s<p X COnvErge in L? when ¢—0.

T .
Sseo o X = lim x ().
e—+0

For each sequence &,]|0 the convergence holds almost everywhere.
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(b) Let us put

N(T,e0)

G({z}i<n) = ), P(4z500)S5e0, 7 X.

i=1
Then G({z?}) > G({z,}) in L* and for every ¢,|0 almost everywhere.
Proof (a) We have

(5) x(6%) = 8¢ r x—8%seo , 7 X,

so by Lemma 1 (a) it is enough to prove the convergence of S L5 7 X We
proceed as in the proof of Lemma 1 (a). In order to prove that

(6) E( Y  x(4z)x(4z,) =

51<52S8FO AT

e1€ "Azs.' “ <e2
we show that the sum under the expected value is a martingale if we replace
SSF"’ A T by t < T, so by the optional sampling theorem it is also a martingale
indexed by j.

(b) The convergence almost everywhere for ¢,]0 is obvious by using (a).
Now, by the Schwarz inequality and (5),

E|G ({z9) — G ({zE2))? < (BSZ< 7 |P)"2 (Esup |x (o) —x (a¢?)2)
J

1

< C(E[S¥Y 1 x—S¢2 x| + Esup| x4 z))'".
. j <s¥olaT

61SS || 4z |f< g2

The first integral in this estimation tends to 0 if &, &, -0 in virtue of
Lemma 1 (a). By the Doob-Kolmogoroff inequality and symmetry and
independence of jumps we have

Eswp| F  xz) <4T | xdv(9-0

e1 < ||z]l <ez
€1 || dzs|| <e2
if £,,6,0. =
The following convergence lemma will be very useful in estimations after
the integration by parts in Section 3.

LeMMA 3. Suppose that
(i) @ is a bounded continuous function on Dy [0 T] such that ®({z®})
= ®({z,}) for e <&y
(i) F is a mapping defined on the trajectories of {z,},<1 and {z®},<r, &> 0,
such that F ({z?}) > F ({z,}), g—0,in L' and almost everywhere for all sequences
€, 40;
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(iii) for all e > 0, F({zP}) = F,({z,}), where F, is a function on' Dy [0, T]
continuous almost everywhere with respect to the distribution of {z}.<r;

(iv) fe¥,.(H).

Then for ¢—0

™ E[o({z") F({z"}) f{zPD]1 - E[@ ({z}) F({z}) f(zr)]-

Proof. It suffices to consider a fixed sequence ¢,}0. We will write £ in
place of g,. Let ¢, be a nonnegative continuous function on R such that
¢, (x) =1 for |x|] <m, ¢,,(x) =0 for |x| >m+1 and ¢ < 1. Then we put F™
= F¢,,(F) and F™ = F,¢,,(F,). First we reduce the proof to the case of
F bounded. We have

®) IE[QF({z1")) f)]-E[®F ({z}) [l
<IEL[OF (2%)) f()]~E[OF™ (") £z
+HELGF™ ({z) [P -E[OF™ ({z}) Sl
- +E[OF™({z}) fzp)]—E[®F ({z}) fz7)]l.
Denote the terms of the right-hand side of (8) by J,, J,, J,. Then

SN2l NLEF{zD—F™ ({2 <C | IF{z¥})dP.
UFQzEN > m)

By (ii) the variables F ({z{}) are uniformly integrable with respect to &. Thus
J, =0 if m—> oo, uniformly in & Next

”‘PH If I EIF™({z})-F({z,})| -0
When m— oo since |[F™)| < |F| and F({z,}) is integrable by (ii). Thus it suffices to
show that for m fixed J,—0 if ¢—0. We approximate F™ by continuous
functionals F{™:
) Iy S [E[OF™ ({z0)) f(ZP1-E[SF ({z}) S9N
+E[® ({z"}) F§ ({27}) f)] —E [®F(” ({z,})f ()]l
+E[OF ({z.}) flzp)]—~E[@F™ ({z,}) f (z ]l
Denote the terms dn the right-hand side of (9) by K,, K,, K;. We have
Ky < 91l Sl EFF ({z7H— F™ ({211,

K3 < (|9l f | EIFE ({z,}) — F™ ({z,})].
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Remark that
F({z?}) for =9,
@y — T
Fa(tz") <{Fé({z,}) for & < 0.

Thus K, =0 if 62 6. For e< ¢ |

(10) P9 (0] — F™ (0] < [P ({z)— F*™ (2} |

+HIFP {z) = F™ ({2 )l

Let # > 0. There exists §,> 0 such that for all é < J, one has |
EF{ ({z )= F™ ({z ) <nl @12 115"

By (10), for 6 < d, and all ¢ we get the estimates K, < 2 and K; <.

For 6 < §, fixed, Theorem 1.1 in [6], the a.e. continuity and boundedness
of @, F™ and z+ f(z(T)) imply K, —0 when £— 0. Thus for ¢ sufficiently small
we have J, < 4y. This completes the proof. =

Now we will prove that condition (iii) of Lemma 3 is satisfied for some
mappings appearing in the integration by parts in Section 3.

LEMMA 4. Suppose that the Lévy measure of the process {z,} is absolutely
continuous with respect to the Haar measure on H.
(a) Let ¢ be continuous on H. For all 6 >0 the mapping
(Pﬁ(z) = Z QD(AZs)a ZGDH [03 T]a

s€T
| 4zs)| >

is continuous almost everywhere with respect to the distribution of {z}i<r On
Dﬂ [Os T]'
(b) In the notation of Lemma 2 (b), the mapping

N(T,e0)(z)

Gi)= Y ¥(dzsep)x(0f (2)

i=1
with & < &, is continuous almost everywhere with respect to the distribution
of {z,} on Dy[O0, T].

Proof. First note that for any § > 0, by the absolute continuity of the
Lévy measure of {z,}, we have P{||4z,| = ¢ for some s < T} = 0. Hence almost
all trajectories of {z,},<r do not have jumps of norm equal to .

Define the Skorohod distance '

d(z, w) =inf{e > 0 | there exists AeA such that
sup o(z(t), wA() <, llid—All, <e},
0SI<T

where A = {f: ‘[O, T]+— [0, T] continuous and strictly increasing} (cf. [2]). If
zeD,[0, T] does not have any jumps |[4z,| =4, then [Az| <d—a or




284 ) T. Byczkowski and P. Graczyk

l4z||> d+a for an «, 0 <« < 8. Then if d(z, w) < a/2, we have
(11 14z (@)l > 6<>[[AwA ()| > 9,

where AeA is such that sup,<7llz”1()wA(d)] < a/2. Observe that
¢5;(Wd) = @;(w). The jumps of z greater than § are fixed and the function ¢ is
continuous. Therefore, for any ¢ >0, if w is sufficiently near to z, then
|@5(z) —@s(W)| < &. This proves (a).

To prove (b) we fix ze Dy, such that ||4z,|| # 6 and |4z, # ¢, for s< T,
There exists 0 < o < § such that

4z |l€©, 6—) U (S +a, egg—a)u(gy+a, 0) for s< T
By (11), if d(z, w) < /2, then
[4z(0)] > 6« AwA(®)]| > 6 and | 4z(@)] > eg<> || AWA(@)] > &,.

Observing that G;(w) = G;(wi) and denoting by ¢, ..., ¢, the moments of
jumps of z greater than ¢, we have

(12)  [G;(2)—G;(w)l < Zl Y x(4z) |¥ (4z,)— P (4 (wh),)|
I dz)>

+ Z | ¥ x(dz)—x(4 (WA))| | P (4 (wa),)|
i

<max| Y x(dz)| ¥ | ¥ (4z,)— P (4 (wh),)|
Jj<n s>t ji=1
| dzs]|>6

n

+max| Y [x(dz)—x(4wd))]| ¥ | (4 (wi),)|-

isa s>t i=1
|| 4zs|> 6
The first term on the right-hand side of (12) tends to zero when w—z by
continuity of ¥. The continuity in z of the mappings

we Y [P dw)l, we Y x(4w), j=1,...,n,
| =t awell>5 |

following from part (a) of the lemma implies the vanishing of the second

term in (12) when w—z. Thus G;(W)—>G,(z) if w—2z in the Skorohod

topology. =

3. Smoothness of a truncated stable semigroup. In this section we prove
smoothness of truncated stable semigroups with Lévy measure of class %!.
In [6] this result was obtained under the assumption ¥® on-the Lévy
measure. Still under this assumption it was generalized for stable semigroups
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(Proposition 3.3 in [6]). We present some generalizations of our result in

Section 4.
Throughout this section {z,},5, is a truncated symmetric stable process
with Lévy measure v of class €7, ie.

v(dx) = g(x)dx, ge¥; (H),

and the function h in (4) is ¥ on H.
The notation in this section is identical to those of [6]. All constants are
denoted by C.

THEOREM 1. For all 1,,1,€N there exists C >0 such that
|E [Sic rxSP< 1 y Xfzp)]l < Cllf 1
for every function fe¥>(H). In place of X one may insert Y or Z.

Proof. The idea of the proof is similar to that of Theorem 4.9 in [6].
We consider functions ¢ and u as in Section 4 (a) of [6]. In particular,
suppu < {||*|| > &,} for an ¢, fixed. First we integrate by parts on the jumps of
the process {z*}. For ¢ < ¢, we have

Ef0,(S,< 7" (29) Y2 (Z9) X S = 3 P{N(T, eg) = n}

n=1

: 2y (Kj+u(z)) .
X j;l E [I Wu (2 (i (é,-) x(Azgw)+x )

i2 g(z)
X (i(éj) y(Azsgs))+y(z)) Xf(AZs(ls} vas Azsg_z)) ;—{"—“;g}—dz:l

N(T, 20}

= —E[@,( Y u(Adyw X)u(dzs0) (%% 7 )" 8% 1y ()]

i=1
N(T,e0) Ad,gao) X (ug)
’E[ (X ———(esg)) Stk r 0" (% Ty)'Zf(z@’)]
i=1

—E [ll Qn (Ss ST u) (S(g <T x)h -1 (Sg:)\ T y)lzf(z(a))]
where K; = Y iz ju(4zgey), and
0,(Ss< 1)

Ss <sTH ’

and the last term is zero if I, = 0.
Using the formulas (1), (2) for the adjoint representatlon we get the

on(Ss<ru) 0,Ss<rtt)
S;cTlt Si<ru

®, = ®, =

~ following form of the above expression:
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(13)  —E[®8,<r ¥ (0% 0" (8% r 1) f(27)]
—E [Cpo s < T T(X)( < :l"x)l1 (S.£E< T y)lzf(z(]"a‘))j

N(T,z0}

+E [(D 1 ( Z pa (Azs§=n?) Sg?z{,, AT y) (S 7 x)1 (SEL 1 y)2fi (z(;})]
i=1
N(T,e0)
+E [qj ( Z PP AZS“O’) Ss o) p T J’)( L %) (8¢ 1 y)2f (Z(ﬁ))]
j=1

—E[1,0,(Ss < 74) (8% rx)" 71 (S 1 ) f(P)],

where W = ulu, Y§" = W (ug)/g for any Web.
In order to estimate (13) we apply repeatedly the Schwarz inequality.
In the estimation of Esup;-;

,,,,, N(T.o) ST o7 VI* We use the fact that
(S sep 7 ¥) I8 a martingale, the Doob—IéolmogorofT inequality and the
prop;rty E(S®.7y)* < CE(S§.ry??, obtained in a similar way to that of (6).
Finally, we use Lemma 4.3 of [6] and for every & > 0 we get the estimation
(14)  |E[,(Ss<ruw)x" (Z“") 2@ X P

< Cllfllo {(ESZL pr? ESZ2 P ?) V4 {(E[D1S?< 1 T

+ (E[9§S2< r PE])Y2}

+(ESZ< rr?) 1/ (ES3 rr? ESHE 172)! 8 {((E [0} S2< | P P[]

+HELPESI< 7| PPN} + (ESic 7 r? ESc 1912},

where r denotes a homogeneous norm on H (see [6]) and the constant
C depends only on [, and [,.

Next we let e —0 applying Lemmas 3, 1 (d) and 4 (a) to the left-hand side
of (14). To complete the proof we repeat steps (c) and (d) of the proof of
Theorem 4.9 in [6]. w

THEOREM 2. Let {z,},50 be a truncated stable process on H with Lévy
measure of class €, and V be a left-invariant second order differential operator
on H. Then for every T> 0 there exists C > 0 such that

ELVf ) < Clfl, for all fe®Z (H).

Proof. It suffices to prove the theorem for V= YX. The method is
identical for all the superpositions of the operators X, Y, Z.
As usual we start with the process {z} for an ¢ > 0. We consider

E [Q,, (Ss < T/Zu) YXf (Z(E))]

and we perform one integration by parts in this integral. We gct
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E [Q,, Ss<r 2w YX f (Z(Te))]
= —E[®, (5« T2 u)S; < T/2 'Pﬁn Xf (Z(f’)
+®o(Ss < 1724 Ss< 12 P X f1 (Z(f))]

N(T/2,t0)
~E[®,Se<rat){ Y x(060) PP (4z500)} X f27)]
j=1
N(T/2,20)

—E [Q (Ss <T1214) { Z X (03-81) 142 (Azs§.=oi)} Xf (Z(TE'))] s

where @; and ¥; are the same as before

Now we let ¢—0 by using Lemmas 3, 2 (b) and 4 (b). We apply the
conditional expected value E[-|# ;] (cf. [1]) to the right-hand side of the
obtained formula. Writing '

Ss(ao) X = SS 2 x+ST2%
and using the basic properties of conditional expectations and the Markov
property of {z,} we get
(15)  E[o,(Ss<r24) YX[f(z7)]
= - E[{¢1 (Ss< 12 Ss <172 P
+ D, (Ss<12WSs < 112 POYE T2 @[Xf(z T/2)]]

N(T[2.£0)
—E [45 (Ss < <T/2 u) { Z 'P(Z) (4 Zs(so)) ST{ £0) x} E7T2(@ [X f (z T/Z)]]

i=1

—E[®,(Ss<12t)Ss <12 PP E T[S 1pax X f(zr2)1]

N(T/2,e0)
—E [@ (Ss < mu { Z q](Z) (AZS(*‘U)) ST[ £q) JC} E7Ti2 (w) [Xf(ZT/z)]]

i=1
—E[®, (Ss<1/21)Ss < 72 PPE™ 208, ¢ r2x X fzr2)]]-
Next we estimate (15) using Theorem 1 and the equalities
E°[X f(zr2)] = E[X (fol,)(zr2)],
E°[Sy< 12X X f(z1)2)] = E[Ss< 12 x X (fo ) (z112)]
for all oeH. The fact that {8,c5ep .72 %}; is an L%-martingale, the Doob

—Kolmogoroff inequality and an argument similar to that of the proof of (6)
imply
E sup Isssslao),\ /2 x2<4 sup ESsss(ao)A 72X 4ES; < mx

Esup IS5 x|*> = CES, < T/Zx .
i J
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By the Schwarz inequality we obtain finally the estimation
|E Lo, (Ss < 7/24) YX f(z7)]]
S Clfll o {EIP, (S < 1/24) Ss < 172 PP+ E|D (Ss < 1/24) S5 < 772 PH|
+E[97 (S < 1/28) S2< 12l PP+ E[P5(Ss < 1724) SZ< 112l PHIT}

The rest of the- proof is identical to the proof of Theorems 4.7 and
4.9 in [6].

THEOREM 3. If {z,} is a truncated stable process on H with Lévy measure of
class €', and V is a lefi-invariant differential operator of order n on H, then for
every T> 0 there exists C > 0 such that

(16) | E[Vfz)] < Clifll
for all fe%> (H).

Proof. It is enough to consider the case V= X" Then Vf= X (X" /).
Formula (15) shows that in order to have (16) we must have an analogous
estimate of |E [X"_lf(ZT/z)]l and [E[S;<rp yX"—lf(ZT/z)]l- By (13) we
see that

A7) Ele,(Ss<rjat) Sf% 112 y X"~ f(25),)]

= —E [(§D1 (T/HS; < T/4 Ep(fn"' P, (T/4)S; < T/4 T(ZX)) Sﬂ:_ f/z y X"_Zf(z(a) )] ‘

T/2
N(T/4,€0)

+E[@ (T4 { Y PP Uzse0)y(07)} Sk 12 y X" 72 f(25),)]

i=1

N(T/4, o)

+E[o(T/{ Y PP (4z500) ¥ (00} 8Pk 112y X" 72 f(25),)].-

i=1

Now we let ¢ >0 and by Lemmas 14 we get (17) not depending on ¢ Applying
E['|# 1/4a] we see that in order to get an estimation for

[E{Ss;<r2y X"~ lf(ZT/z):“ and [EX"f(zp)|
it is sufficient to have estimations for
IEX"_Zf(ZT/4)| » [E[Ss<tay X"’zf(zT,4)]| and [E[SZ¢ 14y X"~ Zf(ZT/4)]|-

Répeating this procedure n—1 times we reduce the proof of (16) to
estimations of

EXf(ZT/Z"‘l): E[S; < T/2n-1 yXf(zT,;z,.—:)], . E [S?;%"/zn-l yXf(ZT/z"_-})]-

These estimations are given by Theorem 1. =
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LemMa 3.2 in [6] and Theorem 3 imply

CoroLLARY 1. If (p) is a truncated stable semigroup of symmetric
measures on H with Lévy measure of class €', then p, have smooth den-
sities on H. =

COROLLARY 2. Denote by C, the constant in (16) corresponding to z, and
V fixed. Then

sup C, <o for any 0<d< M.
d<t<M

Proof We put .
¢i;(® = E[IS;E VS, |1, di()) = B[S 26 Vul S, |W,(1)'2
and
m(t) = max(ci1, Co2, 411, doz, 1).

Then the procedure of estimation of |[E[Vf(z,)]| throughout the proofs of
Theorems 1-3 shows that

(18) [E [V/(z)]] < Cmym(t/2)...m(t/2"~2)m? (/2" VL[ f |l o

where I, is a linear combination of products of integrals of the form
(ES! <,/2xr?)?. Formula (18), the Schwarz inequality and the fact that S;¢,ue L?
and S,<|¥eL? for all p>1 imply the statement of the corollary. =

Remark. Formula (18) provides a different estimation of the constants in
(16) from that in Theorem 5.6 of [6]. Here the constants in estimation of higher
order are obtained from constants in estimation of order 1 by muitiplication.
In [6] the constants of higher order were cxpressed by expected values of
complicated random variables. :

4. Smoothness of semigroups with Lévy measure of noncompact support. In
this section we present results concerning stable and more general semigroups
of measures, without the assumption that the support. of Lévy measure is
compact.

Theorem 4 presents a relationship between the classes of Smoothness of
the Lévy measure v and of the measures in a symmetric stable semigroup {x,}
that is rather surprising from the analytical point of view: y, are more smooth
than v if v is sufficiently smooth. Theorem 5 asserts smoothness of a semigroup
{u,} with Levy measure v of class ¢* under some asymptotic conditions on v in
infinity.

THEOREM 4. Let {u,} be an o-stable symmetric semigroup of measures on

H with Lévy measure v. If v is of class €™ for an m = 2, then u, have densities of .. -

class €*™~* and in the case o.> 1 of class €*™ 3.

8 — PAMS 132
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Proof. As in Section 3 of [6] we take a symmetric function he € (H)
such that 0 < h < 1 and h = 1 on a neighbourhood of 0. We denote by {Z,} the
semigroup of measures with Lévy measure ¥ = hv and we put k = v—7. We
write fi, = el*I* 7. By Corollary 1 the measures f, and f, have smooth
densities.

By a perturbation formula (see [9]), for any fe¥® (H)

(19) s 5 = s [+ [ pporkes fiy s, f D ds.
)]

In the first part of the proof we estimate |{y,, Vf )| for homogeneous V of order
n < m, proceeding in exactly the same way as in the proof of Proposition 3.3 in
[6], ie. differentiating n times the function k under the integral in (19).
Corollary 2 and the final estimation in the proof of Proposition 3.3 in [6] show
that there exist constants C, such that

(20) [Kpes VXIS Cliflles - >0,
for all fe¥>(H) and
(21) sup C, < o0

d<t<M

for any 0 <6 < M.
Now consider V of order m-1. Suppose that V is of the form V= XV,,.
By (19) we have

t/2

(22) [ VIO < Kl VL] I SugxkV i, saf)dsl

+ ‘ j <XVO (Au's*k*/j’t—s)’f>ds|'

t/2

Formula (2) for the adjoint representation implies that
(23) VO (I‘Ls*k*ﬁt—s) = Ztus*Wk*aWﬁt—ss
w

where W are homogeneous of order m, their number is finite and the functions
ay are of the form ay, (z) = x(2)" y(2)'* with [, +1, < m. Distributions a,, i, -,
are finite measures [7]. Applying to (23) the formula

(24) X (uxoxy) = Xpusoxy—Zusypsy—Zux@+yy

© with p, in place of u (by (20), X, and Zu_ are finite measures), Wk for ¢ and

ay i~ for y we estimate the second integral in (22) by

—||fr| Z{ sup_ Xy HWklllosup §law | di,+ sup_|1Zull;

EES 2<€sxt

< (lywkly sup flayldi+[Wkl, sup | |yawldi)}.

0 <5<y 0ss<t
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Using (21), the integrability of yWk and Corollary 2 we obtain propertles (20)
and (21) for the operator V.

Tterating (24) and arguing in the same way as for n = m+ 1 we see that (20)
and (21) hold for V of order n < 2m due to integrability of x'y™~'Wk, where
W is homogeneous of order m and I < m. If & > 1, the function x'y"™*! ™! Wk,
I < m+1, is still integrable, so (20) is true for V of order 2m+ 1. Since H=~R?, it
follows that the densities of y, are of class ¥*™~* and, in the case o> 1, of class
&> 3 (see [10]). m

In the following theorem we consider a more general symmetnc semi-
group of measures {4} related to stable semigroups on H. We suppose that its
Lévy measure v is given by (4) with he %' (H) of support not necessarily
compact. We decompose v = #+k as in the proof of Theorem 4.

THEOREM 5. Suppose that the Lévy measure of the semigroup {u,} is of class
€' and that the functions x"'y"2Dk are integrable for D =X, Y, Zandl, l,eN.
Then the semigroup {i,} has smooth densities.

Proof. The idea of the proof is the same as in Theorem 4. By assumption
one may differentiate k only once. One shows (20) and (21) by induction with
respect to the order of V. In particular, in order to get (20) and (21) for V of
order # one uses the integrability of x''y"2Dk for I, +1, < n. We omit the details
of the proof. m

Remark. The integrability condition in Theorem 5 is not satisfied for
stable semigroups of measures. It holds for example for semigroups with Lévy
measure decreasing rapidly in infinity. Nevertheless Theorem 4 supports the
hypothesis that stable semigroups on H with Lévy measure of class %! have
smooth densities.
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