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Abstract. We obtain refinc versions of thc dual representations for 

inf {[Ed"(X, Y)I11p: Pr, = P, Pry = Q )  
(SUP) 

for probabilitjcs P and Q on a separable metric space (U,  d). 

1. Introduction. Given a separable metric space (s.m.s.) ( U ,  d) let 
Bp(U) (p 2 1) be the space of all Bore1 probability measures (probabilities) 
P on (U, d) with finite jdp(&, a) P(dx). For P, Q E ~ ~ ( U )  let Jl ( P ,  Q) be 
the set of all probabilities on U x U with fixed rnarginals P and Q. For 
P E df. (P, Q)  let 

and let 

The problem of dual and explicit solution for the minimal and maximal 
YP-metrics, 1, and L,, has a long history which goes back to the work 
of G. Monge, C. Gini, M. Frechet, W. Hoeffding and L. V. Kantorovich (see, 
e.g., 1121 and the survey [15]). The dual forms for 1, and L, are given by 

(1.4) E; ( P ,  Q) = sup (ffdP+ SgdQ: (5 9) E g p j  , 

where 9, (resp. 9;) is the set of all pairs of bounded continuous functions on U 
satisfying the dual constraint f (x) + g  (y) d dP (x, y) (resp. f (x) + g ( y )  3 
2 dP(x, y ) )  for all x ,  y E U (see [67, [9], [12]). While in the case p = 1 
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one can replace g with (-f) in (1.4), in generaI, for p > 1, there is no dual 
representation for (1.4) as a [,,-metric 

where 9 is a class of 'bounded continuous functions (see [lo]). 
The aim of this paper is to obtain more informative dual representations 

than (1.4) and (1.5) by showing that the supremum in (1.4) (resp. the infimum in 
(1.5)) can be taken over smaller than 9, (resp 8:) set. 

Basing on the Kantorovich representation I, = with 

Lip(1) = {f: U+R,f(x)-f(y) G dCx, Y) YEU),  

SzuIga [I 81 made the conjecture that for P, Q E 9, ( U )  

(1.7) 1, ( P ,  Q) = AS, ( P ,  Q): = SUP IJ l f I P ~ P ] ~ " -  [l lf l ' d~ ]  lA(.  
f ~ L i p ( l )  

Despite the fact that I, and AS, induce one and the same convergence 
in P,(U) we shall construct an example showing that Szulga's conjecture 
fails. We shall characterize the optimal solutions p in (1.3), i.e., those 
p E A (P, Q) for which L, (P, Q) = Sp (p). Finally we shall discuss some 
open problems. 

2. Dual representations for minimal and maximal L,-metrics. First, we 
shall show that l;(P, Q) admits a dual form similar to that of [ , (P ,  Q) 
(cf. (1.6)) but with 9 depending on P and Q. Denote by v,  = (P-Q)' and 
v,  = (P-Q)- the positive and negative part of the Jordan decomposition 
P-Q. Let A, be the support of (P-Q), and A, = U\A,. Define the set 
PP(P, Q) of functions f = f,IA1 +fZIAz7 where J;. are bounded functions on Ai, 
having finite Lipschitz norms 

and satisfying the dual constraint 

fl ( ~ ) - f 2 ( ~ )  G dP(x, Y) v x ~  Al, Y E A , .  

THEOREM 2.1. For any P ,  Q E 9, (U), 

Proof.  We start with the following dual representation for I: (cf. (1.4)): 

(2.2) l,P(P, Q) = sup {jfdP+ fgdQ: (f, 8) E g,, Lip If; U)+ Lip (g;  U) < a) 
(see [12]). Suppose first that 

(2.3) P(A,) = Q(Al) = 0. 



L,-minimal metrics 

Lip (g; A,) < ao, we have 

(2.4) 1; ( P ,  Q )  =G sup { j f d  ( P  - Q):  f €FP (f', Q)) 
inf sup J(fon1-fon2)dp 

a=.di(P,Q) S E ~ ( P , Q )  

To omit the assumption (2.3) set = ( P -  Q)+ , Q = (Q -P )+  , ii = P - p 
= Q - Q  and recall that ~ ( u \ A , )  = Q (A , )  = 0. We then get 

(*I SUP {.ffd(P- Q): f E 5 (P, Q)) = SUP {Sfd (F - Q): f E %(p ,  Q)] 
= 1;(2, Q) 
= inf {J dPdv: n,v = P ,  x,v = Q) 

= inf { j dpdp: p E A ( P  , Q ) )  

I The equality (a) can be shown as follows: 
( 3 )  Given v choose p by 

p(B) = v ( ~ ) + f ( n ; ' ( ~ n ( ( x ,  x ) :  X E U } ) ) .  

(<) Given p  choose v by v (B ,  x B,) = p(B,  x 3,)-f(3, n B,). rn 

Remark. More interesting would be [,-representation for 1, (not E!) with 
an 9 that depends only on the support of ( P - Q ) + .  The next example shows 
that this is impossible (cf. [lo]). 

EXAMPLE. Suppose f p  = i,. Then for 0 < r  < s < 1 we have 

If d (a ,  b) > 0, this yields (s -r)' - = const, and thus p = 1. s 

In the case p = 1, the representation (2.1) leads to I ,  (P, Q) = I;,ip(l) (see 
1171, 171, 1161). Taking the dual form for I , ,  Szulga's conjecture seems 
reasonable. First let us show that AS, and 1, metrize one and the same 
convergence in Yp (U). Let n  be the Prokhorov metric 

(2.5) 7~ ( P ,  Q)  = inf f E > 0: P  (0 < Q (CE) + E for all closed C c U) , 

where Ce is an &-neighborhood of C .  
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P R O ~ S I T ~ O N  2.1. For any P, Q E 9, (P, Q ) ,  p 3 1, the joIluwing inequalities 
hold: 

12.6) AS,(P? Q )  G I,(P, Q)  
and 

(2.7) C,n2 ( P ,  Q )  < ASp ( P ,  Qi, 

where C, 2 l / l p . 2 p -  I). I n  particular, for P,, P E Pp(U) the following are 
equivalent: as n+  co, 

(4 n(P,, P)+O and Jdp(x, uj(P,-P)(dx)+O. 

P r o  of. The inequality (2.6) is a consequence of the Minkovski inequality. 
In fact, there exists a rich enough probability space (9, d, Pr) such that the 
space of laws P r , ,  coincides with the space of probabilities on U x U ,  
and thus 

AS, (P, Q )  = ASp (Pr,, Pr,) G [EdP (X, Y)j1IP, 

which implies (2.6). To show (2.7) observe that for any closed C c U and 

we have 

If ASp(P, Q )  ,< a:= cPc2, then 

The last inequality follows from (aLip  + Cp&), < a + E for any a ,  E E (0, 1). Letting 
G + ASp(P, Q) we obtain (2.7). Next, ( a ) e ( c )  (see [12]); (a) * (b) (cf. (2.6)); 
(b) * (c) by virtue of (2.7) and 

Remark.  If p is integer, one can get a better estimate for C,, 
namely 

The first indication that Szulga's conjecture is not valid comes from the 
bound AS, 2 CPn2 and the corresponding bound for E,, 1 ,  2 n1+liP. Note that 
both estimates have precise order. 



The next example shows that AS, # 1,. For simplicity we consider the 
case p = 2. Let ( U ,  d) = ( [ O ,  11, (.I), P ((0)) = 1 - P((1)) = and Q ((0)) = 
= 1 - Q (( 1}) = $. Then there exists p E X ( P ,  Q), T; (p) = ($d (0, 1))"' = 

I 

and ( P ,  Q) = l/fi follow since, for any p = d ( P ,  Q ) ,  (p) ), l/d. For I 

calculating AS, (P, Q), settingf(0) = a, f (1) = b, we have to maximize Iq (a, h)l, 

9 := ($a2 +$b2)1j2 - (+aZ ++b2)1/2 on D = {(a, b): la- bl < 1). I 
Since (dtp/aa = 0, dq/t?b = 0) e (a = b = 0) and the case a = b = 0 is trivial, we 
have to look for the extrema of y on dD.  We consider b = a-1 (the case 
b = a + 1 is similar). Set g (a) = y (a, a - 1). Then g' (a) = 0 iff 

iff a = 9, Since g($)  = 0, what is left is to consider the limiting behavior of 
q(a,  b)  as a++m,  Ib-a1 < 1, 

@-a)$, a++oo, - l a +  ~ ( - l a + $ ( b - 4 1  = 
I4 + m ( b - a ) ,  a+ -a. 

In both cases, 191 4 +, and thus AS, (P, Q) = f # 1, (P, Q) = I/$. H 

Our next theorem is a refinement of the dual representation for L, 
(cf. (1.5)) in the case of (U, d) being a separable Banach space, 
d(x, Y) = llx-YII. 

Let f be a function on U .  The function f* on U is p-conjugate if 

The pair (f, f *) satisfies the admissibility constraint in (1.5): 

. . 
If f ** = (f *)* is the second p-conjugate, then 

Moreover, f ** is convex and lower semicontinuous 0.s.c.). 

THEOREM 2.2. For any P, Q E PP (U), p 2 1, 

(2.11) L; (P, Q) = inf ( j f d ~  + j gdQ: f, g convex 1.s.c. and 

P r o  of. The LHS (left-hand side) of (2.11) is obviously not greater than 
the RHS (right-hand side). To show LHS 2 RHS for any (f, g) E $$ (cf. (1.5)) 
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consider (f **, f ***). Then, by (2.9) and (2.10), 

f >,f* and f**(x)+f***(y) 2 Jlx-yIJP. This yields LHS 3 RHS. 

If (0, d ,  Pr) is a nonatomic space, then 

(2.12) Lp(P, Q) = sup {(E I(X- Y J ( ~ ) ' ~ ~ :  Pr, = P ,  Pr, = Q )  

and the supremum is attained for an "optimal" pair (X, Y) (cf. [14], 
Theorem 8.1.1). We shall characterize the set of optimal pairs for 12-12). For 
any function f on U let us put 

The next corollary resembles Theorem 1 of Riischendorf and Rachev (see 
[15], p. 3341, characterizing the optimal measure for 1, (P, Q). 

COROLLARY 2.1. The pair (X,, Yo) with Pr,, = P, Pry, = Q is optima/ 
for (2.12) iff 

(2.14) Y,, ',E D, f (X,) a-s. 

for some 1.s.c. convex function f i  
Proof.  Suppose that Xo and Yo - with laws P and Q respectively - 

satisfy (2.14). Then (X,, Yo) is optimal since for any other X and Y with laws 
P and Q we have 

Suppose now that (X,, Yo) is an optimal pair. By Theorem 2.21 of [6] there 

! 
exist fo, go with I foldP < oo, l[g,(dQ < co satisfying fo (x)+go (y) 2 llx-yIIP 
such that 

As in Theorem 2.2 we conclude that (fg*, fz*") is also optimal, and thus 
IlX, - Yo/lp = f X* (X,) +fg** ( Y o )  a.s., i.e., I.', ED, (f X*) as. H 

Next we consider the special case p = 2 and U = with Euclidean 
norm (1 (I. Then 

I (2.15) L$(P,  Q) = sup {E ( /X- Y 1)': Pr, = P,  Pr, = Q )  

=E/lXl12+E11~(12-2inf(E(X, Y): Pr ,=P,Pr ,=Q) .  

I For any f on Rk define the lower conjugate 
i 



(see [4], p. 172) and let 

Then f, = - gfy where gJ ( x )  = - f (- x). 

COROLLARY 2.2. Let P, Q f 3 ( R k ) .  Then the random vectors X , ,  Yo with 
laws P and Q, respectively, attain the supremum in (2.15) if and only if 

(2.16) f (x,) +S* (yo) = <Xol Yo) Pr-a-s- 

for some upper semicontimous concave function $ 

The proof is similar to that of Corollary 2.1, and thus omitted. 

Denote the subdifferential of f in x by 

Then (2.16) is equivalent to 

(2.17) Yo E dg (- X,) Pr-a.s. 

for some convex 1.s.c. function g. 

EXAMPLE. Let P and Q be Gaussian measures on Rk with means  IT^, and 6, 
and nonsigular covariance matrices C, and Z,, respectively. Then 

where ZP1 is the covariance matrix of P(-dx). 

OPEN PROBLEM 1. The Kantorovich metric E l  admits a represen- 
tation. Is it true that 

(2.18) L, (P ,  Q) = inf (f fd (P, + P,): f :  U -+ R, Lip (f; U) < ao and 

On (U, d) = ( R 1 ,  1 . 1 )  the equality (2.18) holds. In fact, if F and G are the 
distribution functions of P and Q, then 
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where a is the intersection point of the completed graphs of F and G (see [14], 
p. 173). The dual representation for PIP, Q) equals the right-hand side of (2.16) 
(with d ( x ,  y) = lx-yl); see [14], Remark 8.1.1, and Kellerer [7], which 
completes the proof of (2.16) in this particular case. 

OPEN PROBLEM 2. Theorem 2.1 provides the dual form for 
m 

l;(P, Q) = pinf{S Pr(d(~, Y) > t)tp-ldt: Pr, = P, Pr, = Q). 
0 

What is the dual representation for 

For any p > 1, 1, is a metric. By the Strassen-Dudley theorem (see [I]) we 
have 

Ic(P, Q) d suptP-linf(Pr(d(X, Y) > E): Pr, = P, Pr, = Q )  
t 1 0  

= ~upt~-~sup{~P(A)-Q(A')]:  closed C c U) =: Y;(P, Q). 
1 1  0 

The metrics 1, and Yp metrize one and the same topology (see 1131 and 131). 
The difference between A, and Yp was first pointed out by R. Shortt in a private 
communication. Here we provide one example. Set 

Pr(X =0)  = 1-Pr(X= 1 ) = a  and Pr(Y= 1 ) =  1-Pr(Y=2) = p .  
The joint distribution of X and Y is then determined by 

Pr(X=O, Y= 1 ) = a  ( O < t l < + ) ,  P r ( X = O ,  Y=2)=$-a ,  

Thus, for P = Pr,, Q = Pr,, 

A; (P,  Q )  = inf max { rnax Pr (lX - Y( > t) t P -  l , 
0 < a < 112 O < t < l  

max Pr(]X-YI > t)tP-l) 
l d t i 2  
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On the other hand, 

sup inf Pr ((X - Y i > t )  tP - l} 
l < r - = Z  O < a < l / 2  

=max{sup inf ( + + o r ) t p - I ,  
O < t < l  O<a-=1/2  

sup inf 2 P - 1 ( $ - ~ ) t ~ - i ) = 3 .  
1 d t < 2  O ~ a 2 : 1 / 2  
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