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Abstract. Some statistical completeness results are proved for 
location families. For the proofs in the first step some generalizations 
of the Wiener closure theorem to LP-spaces with weight functions are 
established. The idea then is to relate the statistical completenevs 
notions to the functional analytic notions of completeness in those 
weighted LP-spaces. 

1. INTWQDUCTION 

Let P = f lZ1 be a probability measure on (R1, B1) with Lebesgue density 
f and let 9 : = (f, (x) = f ( x  - 0): 8 E R1) denote the densities of the location 
family 9 generated by P. The Wiener closure theorem says that 9 is boundedly 
complete if and only if f(t) # 0 for all t E R1, where f(t) = j e f ((xdx denotes 
the Fourier transform of J: This theorem extends to general locally compact 
abelian groups, but we will restrict in this paper to the case of the real line. The 
Wiener closure theorem has been used in the context of estimation theory in 
papers [lo] and [6]. Stronger forms of the completeness of location families 
have been established in the literature only in very exceptional cases as, e.g., for 
normal translation families, using the well-known completeness result on 
exponential families. Some related completeness results based on analyticity 
properties of characteristic functions can be found in 151, [16], and [32]. 
Some further examples can be found in 1231. 

For 1 < q < cr, let 

(1) gq = LZq(il) = {f: (R1, B1)-t(R1, gl); j]f(x)Iqdx < a) 

and 

If F c dpP, where l/p+ l/q = 1, then 

10 - PAMS 13.2 
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(3) 9 is called 9'q-complete if g €9 and 

g * f * (9) = 1 g (x)f(x - 0)dx = 0, VO, implies that g = 0 [A1], 

where f * (x) : = f ( -x). In a statistical context there is a stronger notion of 
completeness: 

(4) 5 is 24(8)-eomplete if g E dPq (6) and 

J g (x) f(x- 0)dx = 0, VO, implies that g = 0 [A1]. 

The Zrn = LFm ($)-completeness is also called bounded compEeteness of F, 
while the Sf1 (9)-completeness is called completmess of 9 in the statistical 
literature. Since 9" c Sf4 (9) for 1 < q < co, the condition 

( 5 )  z$:= (t: )(t) = 0) = 0 

is a necessary condition for Zq (P)-completeness. 
The idea of this paper is to establish extensions of the Wiener closure 

theorem to weighted Zq-spaces (so-called Beurling algebras) in order to 
derive from these results necessary and/or sufficient conditions for the 
$Pq(F)-completeness of 9. Since the literature on the generalization of the 
Wiener closure theorem is somewhat scattered and abstract and not easy 
accessible to a non-specialist in harmonic analysis, we also include for the ease 
of reference some results known in the literature. 

To see the difference between the notions of gq- and 2Zq (9)-completeness 
take, e.g., the Cauchy density 

Then for g~ T 1 ,  8 €R1, 

is called the Poisson transformation of g.  Iff * * g 0, then pgj = 0 implying 
that 4 = 0, since ~f = 0 and, therefore, g = 0. This result is equivalent to the 
T1-completeness of 9 = {L, f; 8 E R1}, L, f (x) : = f (x - 9). The more involved 
91(9)-completeness was established in [25] by proving a general inversion 
formula for the Poisson transformation. It was used in statistical context in 
[lo] and [23]. Our methods allow us to establish the 9g(5)-completeness for 
q > 2 only (cf. Sqction 4). 

The functional analflic completeness results for $pq are also of relevance in 
estimation theory but allow to deal with a more restricted class of estimators. 
For this reason it seems to be justified to give also a fairly detailed 
representation of these results. A more complete exposition of these results is 
given in [15]. 
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2. WIENER'S THEOREM FOR BEURLING ALGEBRAS 

A measurable function w: R1 +R1 is called a weight function if 
(a) w (4 3 17 
(b) wIx+y) w ( x ) w ( y ) ,  
(c) W(X/Q) < w ( x ) ,  VQ 2 1, x ,  y € R 1 .  
For a weight function w define 

g L : =  {f: R 1 + R 1 ;  Ilf I,,,:= 11 fwllp < CQ}, 

(6 )  
34,- := (f: R1+R1;  11  f Ilq,,,- := 11 fw-'lla < a}, 

where l n l ,  is the q-norm in LFq(A1). Then (Lt'k)' = 9%- for 1 d p < co, 
1/p+ l / q  = 1 and for H c 8: the following holds (by a Hahn-Banach 
argument) : 

(7) H is 9%--complete if and only if linH is dense in TP,. 

For the general theory of the Beurling algebras 2': we refer to the books of 
Reiter 1271, Benedetto 111, Hewitt and Ross [13], and Donoghue [9], and to 
the articles [3], [8], and [31]. 

2.1. The case p = I. Let us put 

(8) X, (E) : = {PE d;: E c z!) for E c R1 closed and 

XW(E)  is a closed ideal in the commutative Banach algebra d ; ,  which is 
isomorphic to 9;, and d ; ( E )  is a commutative Banach algebra with unit (in 
the quotient topology). There exists an element cp E di with compact support, 
such that cp (t) = 1 for all t E E. The projection p (rp) of rp to d h  (E) is 
a unit of d$(E).  If f ~ d k ( E )  with E n Z(f) = 0, then a well-known 
theorem on Banach algebras implies that l i p  (f ) E dk (E), and so there exists 
an element g ~ d h  with 

(9) ( t )  = 1 for t E E. 

This means that the Wiener-LCvy theorem holds for 9; (for a different 
proof cf. [27], p. 16). Wiener's theorem for 8; now has the follbwing form 
(cf. [27], p. 16). We give a proof of this result since we shad use some of 
the arguments of this proof in the following part. By l i n 9  we denote the linear 
hull of 9. 

THEOREM 1. If f~ 9; and 9 = (L,  f ;  0 E R1), then: 
lin F is dense in Yk o ZP = 0 -9 is 9;--complete. 
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P r o  of. (-) If )(to) = 0 and g E 9; with 1s (to)l = E > 0, then 

in contradiction to the assumption. 

(e) For the converse direction let ~JEY; .  Then 

1. 3 g , ~ 2 ~  with supp (j,) compact such that l I~-g~ll  < E. 

This follows by a standard technique. 
2. 3 h ~ 9 ;  with h*f = g o .  

Since ~ f n  supp (Go) = 0, by (9) there is an element I, E Yk with 
fl (t) = l/f(t) for t E supp (go). With h : = go * f, the following holds: h E 9; and 

3. 3 h, E 9; with supp (h,) compact and I l  h * f- ho * f I j  < E. 
(Proof as in step 1.) 

4. 3yi fR,  k i € R ,   EN, with jlho*f-CIZi~ytf < E. 
The translation operator Ly is continuous w.r.t. the 11 Ill,,-norm. There- 

fore, for 1 yl < 6 we have 

M ,  M : =  sup{w(x): xesupp(ho)). liL,f-fIl1,W < - I l  ho I1 1 

3 yl , . . ., yn E supp (h,) such that supp (h,) c J = U, ( y j ) ,  so 
n 

(A,) being the disjoint union of the U,(yi). Therefore, 

n 

G M 5 Iho (41 1 1  f- f Ill ,~dx < E ,  where Li = 1 ho(x)dx. 
i = l A i  Ai '- 

Steps 1-4 imply the result by the triangle inequality. H 
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More generally, for subsets 3 c 2'; the following holds true: 

(10) 4 is a closed translation invariant subspace of 9: iff $ = {f; f~ 9) 
is a closed ideal in di.  

The synthesis problem is the question whether 

(11) 9 = ( h ~ 9 ' : :  L(t) = 0, v~Ez() := 0 23). 
I€$ 

The inclusion " c " is trivially satisfied and is called the Tauberian condition; the 
inclusion " 1" is called the synthesis condition. 

A subset P c R is called perfect if P = P and if P has no isolated points. 
S c R is called scattered if S does not contain a perfect subset. Consider the 
weight function w, (x) : = (1 + Ixly. Then the following weakened synthesis 
condition holds. 

THEOREM 2. FOP CIE [O ,  1 )  and a closed ideal 3 c dhb the following holds: 
(a) 3 c { K E & , = :  6 ( t )  = 0 ,  v t ~ Z ( 4 ) ) ;  
(b) 9 7 { $ E & $ :  6(t) = 0, v t  EZ ($1, S U C ~  that a (26) n a (Z (a) is scat- 

tered).  

Proof  (cf. [27], pp. 28, 132, 133). The proof uses the following lemmas: 

LEMMA 1, If 3 c dh is a closed ideal, f~ Pi, w is a weight function, and 
x 4 2 ($), then there exists a neighbourhood U, (x) and 6 ~ 2  with 6l-j) = f(y), 
v Y E U& (4. 

LEMMA 2. If f E 9;. and f(xo) = 0 ,  then 3 (h,) c Y;=, E,, > 0, such that 

U Y )  = 1, VY e U&m(xO), lim tlifi,lldi = 0- 

This lemma needs the special weight function w,. 

LEMMA 3 (location lemma)- If $ c di is a closed ideaE, f ~ d k  belonging 
focally to  3 (i.e., Vx€R1: Y E ,  > 0: 3 &E$  with Lx(y) =f(y(y), V Y E  U,,(x)), 
then f ~ $ .  

Proof.  Since 3 c dh is closed and C, c 9; is dense, it is enough to 
consider f with compact support. There exist x,, .. ., x ,~supp( f )  such that I 

n 

SUPP (.TI c 'J U,, (xi). 
i =  1 

Furthermore, thered exist ki E 9; with 

1 for Ix - yl < ~,~/2, 
c i ( ~ )  = { 0 elsewhere. ' 

Defining 
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we obtain ~ d i  and and it is easy to verify that 

LEMMA 4. If 3 c di i s  a closed ideal, Tfd:, Z ( &  c ZX and 

~ ( f ,  J) := { x E R ~ :  WE, > 0, v ~ ~ ; , E ~ , ~ ~ E U , ~ ( X ) :  hXIy) #f(y)}, 

then P (3, $1 n d ( ~ f )  n 8 (z$) is a psrftect set. 

For the proof cf. [27], p. 28. 

Now the proof of Theorem 2 follows from the following steps: 
1. ' d x ~ ( Z f ) O  3 (znO, 36. > 0: V ~ E  UeX.(X), f(y) = 0; SO f belongs local- 

ly to and, therefore, by Lemma 3, 1~9. 
2. Vx E (~3 ) '  by Lemma 1 there exists E, > 0, hx € 3 ,  such that 

3. By 1 and 2 and Lemma 4, P(3 ,  fi is a perfect subset of d (zT) n 8 (23). 
Since, by our assumption, a(Zf)n d ( Z 3 )  is scattered, we conclude that 
P (f, 2) = 0 and, therefore, by the localization lemma, f E 4. I 

The special weight function w, is only used in Lemma 2. Therefore, 
as a consequence of the proof of Theorem 2, for any weight function w we 
obtain 

THEOREM 3. If 9 c d k  is a closed ideal, then 9 3 ( 6 ~ d h :  (26)" 3 
3 23). . 

A corollary to this theorem is the generalized Wiener theorem: 

THEOREM 4. (a) I f  9 c 9; is closed and translation invariant, then 

(b) If (fj)j,J c 9; and 9 = (I,,&: j E J, y E Rf) ,  then: 

0 Z& = 0 e 9 is 9:--complete - lin 9 is dense in 9;. 
jeJ 

2.2. The spectrum and the synthesis condition. Let S = S(R) denote the 
Schwartz space and let, for a distribution TE S', (z q) : = {T, @>, y E S ,  
denote the Fourier transform. Then a basic notion of harmonic analysis, the 
spectrum of T, is defined by S,(T): = supp(T*) (cf. [9], p. 27), where 
(T*, q) := {T ,  q*). There are several other definitions of the spectrum of 
9q-functions, which turn out to be equivalent to this one. Since S for 
p ~ C 1 ,  CCI] can be considered as a subspace of 9:- = n,"=, YE,, it follows 
that 

m 
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is a subspace of S t .  Therefore, for f ~ z : ,  the spectrum is defined. 

THEOREM 5. Let for f E pi, and 1 < q < cc the uniqueness condition (U,) 
be satisfied: 

(U,): (Vg E 9$N with Sp (gj c Zf * g = 0). 

Then 8 = {L, f: y ER'] is 2:--complete. N 

Proof.  For the proof we need the following representation. 

LEMMA 5.  If LJEY;;, then 
.. . . 

Sp(y) = (t€R1: V open U = U ( t ) ,  3f~LFh, 

with supp (f) c U (t) and {g , )) # 0) 

= n { K  c R1 closed: f*g*(O) = { g , f )  = 0 for all  ELF^, 
with supp(f) c Kc} ) .  

P r o o f  The inclusion " c " follows from a well-known construction 
method and the fact that f E Y ~ ,  iff ) is N-fold differentiable. 

(3) Suppose that for x there exists f E 9:, and an open neighbourhood 
I U = U (x) with supp ()) c U ;  w.1.g. supp ( f ) ,  supp (f) are compact and f E 9'". 

Therefore, f E 9' and, by Fourier's inversion theorem, 

1 
f (x) = - j" e""f(t) dt . 

2x 

Since supp (f) c U (x) is compact, there exists a relatively compact neighbour- 
hood 0 (x) and E > 0 with supp (f) c 0 (x) and 0 (x) + U, (0) c U ( x ) ,  U ,  (0) 
denoting the E-neighbourhood of zero. For a sequence E > &,LO define 
a sequence (h,,,),,~ by 

KO,, : = f 3  Lm,, : = ( M E n i 2 m 2  $1) A * &m- I),, 

where M,f (x )  = rf ( r x )  is the multiplication operator and 

sinxx 
$l(x) = (F) - 

Then imn has rn-th derivatives and 

SUPP (im,,) = SuPP (fi(m- I),) + UE/2rnz (0). 

For n E N we define 6, : = lim,, ,.hm,. Then k,, is infinitely often differen- 
tiable and . 
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where the summation in the subscript is over m = 1, 2, .. . Furthermore, 
lim $,, =f and ~ C E R  with l&(t)J < C, Vt, n. This implies, by dominated 
convergence, 

Also lh,l < (supp (f) + U ,  (0)) < oo and supp (A,) c supp (f ), n E N .  Suppose 
that, V a  E IV, (4, 8) = (h, ,  g )  = 0; then we obtain 

I 

I 

I 
I If * g* (011 = I [ f  (x) 8 (x) dxl C Gf If (XI- h. (x)l g (x) d x  +G If hn (x) g (x) dt(  
I 

I 

= 0 
! - - 

I n  I ,  I I I I  = I I I I  ( 1  J If(x)-h.(x)( wN(x)dx) 
supp(f 1 

a contradiction. Therefore, there exists an infinitely often differentiable element 
I Kn with supp (&) c U (x) and g* * h, (0) # 0, implying that x E Sp (g). 

The proof of Theorem 5 now follows from the following result which 
I extends Proposition 1.4.1 of Benedetto [I]. 

, THEOREM 6. For g ~ 9 5 ,  we have 

Sp(g) = { t ~ ~ l : f ( t )  = 0, v ~ E ~ L ,  with g**f=O). 

Proof .  (3) If to$Sp(g), then 3U = U(t,) c R open such that: g**f = 0, 
V f E 3;, with supp(f) c U. Furthermore, 3 n ~  N: Ul,, (to) c U. For f, (x) 
:= eito'Ml,n$N(x), 

$rv(x):= (((MI/N$A")~(o))-' ( ~ l , j v $ l ( x ) ) ~  

holds, fo E 9 L N  and to = 1 Z 0 imply 

to$( t :  f ( t )=O,  V f ~ 9 ; ,  with g**f =0) .  

(C ) 3N (A,) : = { f ~  d k N :  f * g* = 0) is a closed ideal in dkN with 

We prove that for all h E 4"kN with supp(h) c ( z ( ~ ~ ( A ~ ) ) F  it follows 
that h E $N (&fg). 

Indeed, $N (A,) is closed w.r.t. 11 ,,(;; so w.1.g. we suppose that supp (6') is 
compact. For all to E supp (fi), 3Ct, E (A,), E,, > 0 such that 

2. (t) + 0, Vt s 0 0 )  c (2 ( 9 N  (A,)))=. 

There exists k, E 9 h N  with P, (t) = (6;. (t))- for all t E UQ0 (to). If h, : = 
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: = kt, * k; * h, then &, E $N (A8) implies k,, s g* = 0 and also h,, * g* = 0. This 
implies that k(t) = 6, (t), Vt E Ue0 (to) for any to E supp (6). For to $ aupp (K) we 
have 6(t) = O E $ ~ ( A ~ )  in a small neighbourhood of to. Therefore, 6 belongs 
locally to 3, (AJ. By the location lemma, therefore, K E ~ ,  (Ag). With the 
closed set KO:= Z(3,(A,)) from Lemma 5 it follows that 

Sp (g) = n (K: K closed, f + g* = 0, Vf E Yk, with supp(f) c K'] 

c KO = z ( .#~(A~) ) .  H 

For w = 1, 1 < q d 2, the Fourier transform of g*, g E gq = 94,, is well 
defined, 

R 

g(t) = lim 1 e-"."g(x)dx, 
R + m  - R  

and the definition of the spectrum is equivalent to the usual definition. 

THEOREM 7. For g E Yq, 1 < q < 2, we have Sp(g) = supp($*). 

P r o  of. (c) For t, $ supp @*I, 3U, (to) such that i*(to) = 0, Vt E Ue (to). 
Defining h(x) : = errox (x), we obtain h(to) # 0, supp (fi) = U,  (t,), implying 
d*fi = 0, and so g** h = 0. 

(3) If to$Sp(g), then, for some ~ > 4  @*fi=(g**h)A =0, V ~ E Y '  
with supp (6) c U ,  (t ,) .  For h(x) = eitoX Me$,  (x) we have K(to) # 0, supp (fi) 
c U, (t,). Therefore, $ * h = 0 implies 8 * (to) = 0, Vt E U, (to), and so 
to $ suPP @*I. 

For q > 2 or w, = (1 + I x ~ ) ~ ,  g e 9$N the limit lim jfR_, e-" g (x)dx does 
not exist generally. But with kernel functions h, satisfying h, (x) + 1, a -+ 0, one 
can define the Fourier transform of the product g*h, (x). We use h,(x) = e-alxl, 
a > 0. Define for g E $a,, 

(12) Ug(a, t, O):= (g*e-al.l)A (t) = Seitxg(x)e-"lxldx. 

Then the following theorem extends results of Herz [12], Beurling [3] 
and Pollard [25] to the case of weight functions. We omit the somewhat 
lengthy proof. 

THEOREM 8. For g~Y4, , ,  f E 9 2 ,  the following holds: 
1. If Sp (g) c K, K closed, then lim,, , Ug (B, t, 0) = 0, Vt $ K. 
2. IS K c (Sp (9))' is compact, then U, (a, t, 0) 3 0 unfoormly on K. 
3. Sp(g) = ( t :  lirn,,, U,(a, t, 0) # 0). 

For the converse of Theorem 5 the following results hold: 

THEOREM 9. (a) For TE(C,(R))I, the set of bounded Radon measures on R, 
(p E Co (R), the following synthesis condition holds: 

supp(T) = sp(T*) c Zq => (T, cp) = 0. 
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(b) iff EL?' and $9 = (L,, f :  y gR1]  is 94-~~mple t e ,  1 G q G 2, then the 
condition (U,) holds : 

(Vg E 2Fq with Sp (g) c ~ 3 -  g = 0). 

Proof.  (a) The proof can be given as for Theorem 1.3.2 of Benedetto [I], 
pp. 50-51. 

(b) If  EL??^, Sp (9) c ~ f ,  then G*E dpP. So (b) follows from (a). 
A different argument is the foIlowing: Sp (g) = supp (i *) c ~ f *  @*f= 0 

* y * *  f = 0, which by Lfq-completeness of 9 implies that g* = 0, 
i.e. ~g = 0. 

For q > 2 the synthesis condition does not hold generally, but there are 
some results of Kinukawa [17]-[19], Herz [ll] and Pollard [24]. 

THEOREM 10 (a) (cf. [19]). i f f €  LZ1, 1 < p < 2, and ( f(sc)lP < ~(1x1) for some 
v E 2' ([0, co)), v J, then for g G Pq n Ym with Sp (g) c ~f it follows that 
g* + f = 0 (synthesis condition), 

(b) (Herz [ll]). If f E ul, PE Pip  (I), g E Zq, q 2 2, Sp (g) c ZL then 
f * g *  = 0. 

(c) If f~2" ,  f ~ Y i p ( ~ )  fur some E > O  and 9 = { L y f :  y ~ ~ l )  is 
Sq-complete, q 8 2 ,  then the condition (U,) holds: (Vg~2i f '~ n Pq with 
Sp (g) c zf* g = 0). 

(d) (Pollard [24] for E = I). I f f  E LZ1, E > 0, l I f(x)l (xledx < co and if 9 is 
9,-complete, then for g E Y q  with Sp (g) c ~f it follows that g = 0. 

Remark .  (d) follows from (c) by using the inequality: 

, - itx - ,- it'x 

I t  -tlEj ltx-t~xlc 1x1' If (~11 < M It- trla j] f(x)l IxIBdx 

2.3. 9:-closedness t.Y$--completeness. The first result extends a. theorem 
of Beurling [4], who considered the case w = 1. 

THEOREM 11. If f E 9: and F = {L,f: y E R1) is L?LP4,--complete, 
1 < q < co, then 9 is 9%--complete for q' < q.  

Proof.  If q' < q and g€.Y$-, g f 0 satisfies g* * f = 0, then define 

h(x):= j g*(y)dy. 
l x l <  Iyl< lx+ll 

By Holder's inequality it is not hard to show that h E 9; - , considering the 
cases q < and q = co separately. 
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If q = m, then 

ess supp )h (x) w- ' (x)l = ess supp I J g* (x + y) w - ' (xldyl 
" I r l  < 1 

g sup ( j lg* (x + y)l" w - ~ '  (x) dy)lIP' 
lyl -= 1 

< sup w (g)  sup ( lg* (x + Y)lqz (w (x + YI) -" dY)l"' 
Ivl < 1 , I v l < l  

If q < m, then for ~ * E Y $ -  we have 

Since ax a 0, there exists a constant K such that for any X E R , ,  x > K ,  

1 Ig* (y)lq# (W (Y))-~ '  d y  G a[., +a,,+ I] 
1x1 < lul < I ~ + Y [  

This implies 

< sup (w (y))q( 1 (w (x + y))-" lg* (xfyll'' dy)"' dx 
Ivl.< 1 1x1 > K  l u l<  1 

< sup ( ~ ( y ) ) ~  1 (w(x+~))-"lg* (x+y)lq'dydx 
IYP 1 1x1 > K Iy l  < 1 

A similar inequality holds for the integral on {lxl < K). 
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Furthermore, 

f*h(8)=Jf (x)h(B-~)dx=j (  [ g * ( y + O - ~ ) d y ) d ~  
ly l=  1 

= Jg*(y+O-x)f(x)dx= J f * g C ( y i -  O)dy=O. pl 

F Y I  < 1 Ivl -= 1 
The following generalized version of Theorem 1 1  holds: 

THEOREM 12. I f f j ~ $ p L ,  j~ J, and if 9 = (L,&: y f R 1 ,  ~ E J )  is 2?%--com- 
plete, 1 < q < co, then 9 is 3$--complete for qf < q. rn 

Theorems 11 and 12 allow to introduce the closure-exponent y 3 0 
defined by 

(131 y : = inf { p :  9 is 9; closed for all p > y) 

= inf (2: 9 is 9'&- complete for a11 q < (z - l ) / z ) .  

For w = 1 cf. Beurling [4]. 

The following theorem is a modification of Wiener's original L~-theorem; 
for a related version cf. [30]. 

THEOREM 13. (a) If q 6 2, f E 2Z1 and A (2') = 0, then d is 2q-comple~e. 
(b) If q 2 2, f E 9' n 5fP, p: = q/(q - 1), 9 i s  Tq-complete, then 

a(@) = o. 
P r o  of. (a) If g E 29,  g* * f = 0, then Q *f = (g* * f )  A = 0 and, therefore, 

Q* = 0 [A] .  Since Q * E B ~ ,  {Q* = 0) is closed, i.e., Q* = 0, and so g = 0. 
(b) Since 9 is Yg-compIete, it is also 9P-closed. For h, E BP with 6,,, = 1 

on U, (0) and compact support there exist ym,, , . . ., y ,,., , a,, . . ., a ,,,,,, E C 
with 

+ j Ixa,,jexp (ity,,j)f(t)lqdt + 0 for n -+ co 
23 

Remark.  Using Theorem 12 one can reduce Theorem 13 to the 
well-known case q = 2, i.e. 

(a) 9 is B~complete,  q 2 2 == F is Y2-complete * A (Zf) = 0. 
(b) If q < 2, 2 ( ~ f )  = 0 =+ 9 is Y2-complete * 9 is $pq-complete. 
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The following result is well known. 

THEOREM 14. If f E dip1, then 9 is d ~ ~ - c u r n ~ l e t e ~ ( ~ f ) "  = 0. 

P r o of. (*) If (Zf)" # 0, then U, (x,) c ~f for some E > 0 and x, . We can 
construct l e ~  9' with 6 f 0, supp (l;) c U, {x,) (e.g., h = exp[ix,(.)] M,i2$l). 
This implies that (f * h(t))" =f(t)G(t) = 0, a contradiction. 

(e) If ( Z ~ Y  = 0, then ( ~ f l ) ~  is dense in R1. If ~ E Y ' ,  f * h = 0, then 
fh = 0. Therefore, k(t) = 0, b't E (z~Y. Since 6s dl is continuous, we have 
I; = 0 and, therefore, h = 0. 

,- . 
For q ~ ( 2 ,  m) the following result is due to Herz [ll] for a = 0. For the 

proof it is shown that the uniqueness condition (U,) holds. 

THEOREM 15 (Herz [ I l l ,  Theorem 4). If q 3 2, f E 2';. and i j ,  for each 
E c ~f compact, 

R(E+u,(o))  = 0 ( ~ l - ~ / 4 + ~ =  1, 
then 9 is 2%;-complete. 

' Proof.  For the proof it is enough to establish the uniqueness condition 
for elements g with compact spectrum. 

LEMMA 6. Let f E 9'k.; if for all g E 9%, with Sp (g) compact, Sp (g) c ZT 
implies g = 0, then (U,) holds. 

P r o  of. Define, for g E 94,, with Sp(g) c 2 '  g, : = Mn$[alz + ll * g; then 
g, E 9%; and Sp (g,) c Supp ( (M,  + 1,) A 8) c Supp (8) is compact, i.e., 
Sp(g,) c Sp (g) c ~ f .  Therefore, g, = 0, Vn. Since g, -t g, also g E 0. 

Now for g € 9 5 ,  with Sp(g) c Z! compact the following holds: 

f l IB@=(~ ,  t, 0)I2dt = O(a2~g-1-2a 1, 
where I,(a, t, y): = Se-""e-"lXfyI g ( 4  dx. 

Indeed, 

j l lg~,(c, t, 0)I2dt = jlJ e-jtX 20-I MGiz$,(x)g(x) dxlzdt 

By the Cauchy-Schwarz inequality we obtain 
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by our assumption. For the first inequality we use the relation 

valid for g ,  h E 9%. Now we obtain 

= lirn (1/2x) ]Jei tx1,$,(a,  t ,  0)dtJ < lim (1/2n)j IIBILm (Q, t ,  O)I dt = 0 .  
a -+ 0 6 - 0 

As a corollary we obtain 

COROLLARY 1. If  f€5?kb and ~f is countable discrete, then 9 is 
A?$,-complete for all q < l /a .  

P r o  of. Each compact set E c Z? is finite. Therefore, 

A(E+ U,(O)) = O (h) = o ( h 1 - 2 / ~ t 2 a  ) = o ( l )  for q < l / a .  B 

In particular, if u. = 0, f~ 9', and if ZT is countable discrete, then .F is 
L?q-cornplete for a11 q < a. 

The following result is due to Newman [21]. 

THEOREM 16. Let p E ( 1 ,  21, a : = 2 (p - 1)/p = : 2/q, f E 3'. If Z! has the 
strong a-measure 0,  then 9 is LP-complete. 

Remind that S c R1 closed has strong a-measure zero if 

lim nila- rnm = 0 for all m, - 
n +  m 

where rnm is the Lebesgue measure of the complement in [ - m y  m] of the union 
of the n largest intervals in S n 1-rn, rn]. 

The proof of Theorem 16 can be given in the following way: 

1. For all h ~ 9 '  n LYP there exists ki€ g P ,  Yip(l), such that 
Ilki* h-hJI,+O and &(t)  = 0 for all t with 6 ( t )  = 0, i 2 i,. 

The construction uses the condition on the strong a-measure of ZR 
2. Step 1 allows us to apply Theorem 10 (b) of Herz. 

Beurling proved the following result in terms of the Hausdorff dimension 
of Z$ Our proof is based on the idea of Beurling but makes some arguments 
a bit more explicit. 

THEOREM 17 (Beurling [4]). (a) If q 2 2 and d i m ( z f )  < 2/q7 then F is 
Y4-complete. 

(b) If 23 is countable, then dim (2') = 0. 

P r o  of. (a) If g E g q ,  g f 0 satisfies f * g* = 0, then Sp (g)  c 2f, .and 
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By an approximation argument used before w.1.g. Sp(g) is compact and 
g € g m .  

If q = 2, then 

If q > 2, then 

Therefore, with Qjl - B  {x )  : = lxla-' the spectral measure S+,  - , (Sp (g)) is positive, 
and S41 - a  (Sp(g)) = K g ,  (Sp (g)) > 0 (cf. [3J, thCorGme l), where the capacity K ,  
is defined for A c R by 

p a probability measure with p ( A )  = I])-'. 

So there exists a probability measure y E M ' ( s ~ ( ~ ) )  with 

I This implies the existence of E c Sp (g) such that dim (E) > a. For the proof 
choose E c Sp (g) and K E N  with p (E) > 0 and 

SIX- y(-"p(y) < K < oo for all X E E .  
E 

Let pE be the restriction on E, K' : = K - l  p,  ( E )  and U U,(xi)  a covering of 

I E with balls of radius ai < a. Then 

I 
I implying that . 

Therefore, dim(E) 2 j3 and a contradiction follows from the inequalities 

(14) dim ( ~ f )  2- dim (Sp (g)) 2 dim ( E )  2 P ,  a. 

(b) is well known. -a 
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Remarks.  (a) As a consequence of the results of this section we have the 
following classes of 9'-functions: 

1, 23 = 0 +S 9 is Yq-complete for all q E [I, a]; 
2. 23 is countable 9 is Pq-complete for all q < a (but not q = a); 
3. A ( ~ f )  = 0 P is Y2-complete; 
4. ( ~ f ) "  = 0 +- d is 2''-complete; 
5. ( ~ f ) "  # 0 is not 2Yq-complete for any q ;  
6. there are some further specific criteria for 94-completeness in terms of 

the "dimension" of z!. 
By a result d Pollard [25] and Sasvari [29] for any A c R' closed there 

exists f~ 9' with ~ f =  A. If O$ A, then f can be chosen as a probability 
density. If A is symmetric, 0 4  A, then f can be chosen in A$-. 

(b) Segal [30] explicitly constructs f E 2" u YP for any p ~ ( 1 ,  2) with 
A ( z ~ )  = 0 but F not 9q-complete, l /p+ l/q = 1, i.e., 9 is z2-complete but 
not Pq-complete. 23 is chosen as a Cantor set (cf. aIso [28] and [21J for an 
explicit construction). 

(c) With A E W1 closed, ill (A) > 0, but A nowhere dense, we find f E 2' 
with ~ f =  A such that 9 is 2''-complete but d is not 92-complete. 

We now consider the question of (g)-completeness of F ,  i.e. 

(15) V g  with ]g (x)lq L, f ( x )  dx < CQ , V y and f  * g* = 0 implies g = 0. 

In contrast to (15) the completeness condition investigated so far was 
concerned instead dP4 or 9 -  with weight functions w. Since 
9 m = 2 ' a ( F ) c 9  ( 9 ) for all q~ [l, a], the condition 2f= 0 is necessary 
for gq (9)-completeness. The question now is to find additional conditions on 
f to ensure that ~ f =  0 is sufficient for 9q(9)-completeness. Define, for any 
h: R1+ R1 measurable as in (6), 

LEMMA 7 .  For h, 1 :  R1+R', c  > 0, the following holds: 
(i) ]h(x)l < c Il (x)l, V x  s 9; c 9 ; ,  Vq E [I, a]. 

(ii) h E - ' ~ 9 ~ ,  l Jp+l /q  = 1 ==Y: c 9;. 

P r o  of. (i) is trivial. 
(ii) If g~ $P;, then by Holder's inequality we obtain 

l l ~ 1 1 1 , h  = l l g ( x ) l ( x ) i - ' ( x ) h ( x ) l d x  Ilglllq l I h E - l I 1 p  < ar 

LEMMA 8. If w  is a weight function, q ,  q' E [ I ,  a]. Then: 

2% C Y;l/p. 0 2% - C 9 4 '  (9). 
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Proof.  (k) follows from z q ' ( 9 )  c dp'j'I,g,. 

I=.) If g E 9 $ ,  then w (x) w ( y) 2 w (x + y) implies 

We obtain the following necessary conditions for 8q{F)-completeness. 

THEOREM 18. For any weight function w the folEowing holds: 
(i) If 1 f < CW-I and if F is 2'q(F)-cowpIete, then 9 is 9%--cow- 

plete. 
(ii) If ( f w ) -  E Yp, then 9' (F)-completeness of 9 implies 2;- -com- 

pleteness. 

Proof.  (i) By Lemma 7, 8 %  c $P;l,g; SO, by Lemma 8, 2;- c $P4(F). 
Therefore, 2'4(F)-completeness of 9 implies 9:--completeness. 

(ii) By Lemma 7, 9%- c S';, and so, by Lemma 8, 9%- c LF1(G). So ' 
94,--completeness is a consequence of 91(P)-completeness. s 

THEOREM 19. (i) If 9 is 34, --complete and c 1 f 1'14 2 w-l, then 9 is 
LY4 (9)-complete. 

(ii) If 9 is 9;--complete and (f 'Iq w)-l E 9 5  then 9 is 899)-complete. 

Proof.  ti) By Lemma 1 with h :=  w - l  and I : = f  we have g q ( 9 )  c 
c 9g.1,~ c 84,-, which implies (i). 

(ii) For h : =  w-I  and 1 = f liq from Lemmas 7 and 8 it follows that 
h/1= (f '14 w)-' E 9 p ,  and so 9 4 ( F )  c 3;l,q c 9;- .  Therefore, 9;--corn- 
pleteness of F implies Yq (9)-completeness. H 

COROLLARY 1. If fi E 9 and 
(a) Cl f 1''' 2 w - I  or 
(b) f - 1 / 4 ~ - 1  E gP, l/p + l/q = 1, 

then: 9 is g4 (9)-complete * Z{ = 0. 
Proof.  We have 

9 is 94,--complete, V ~ E  [l, oo] (by Theorem 11) 

I 
I 

=- 9 is 9q(9)-complete (by Theorem 19) 

COROLLARY 2. If 9 = (Lyf i :  y E R1, j E J )  and f j w  E 9' for all j E 3, and if 
I for some j, E J 

I 1  - PAMS 13.2 
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(a) lfjol lwlq 2 c > 0 or 
(b) f ; ~ / q w - ~ ~ S f ~ ,  

then: 9 is ~ q ( S ) - c o m p l e t e e  njEJzf", = 0. 

Proof .  By the results of Section 2, 9 is 94,--complete fbr all q g 1 if 
r )  jEJ Z& = 0. If Y;:, c 9'. - , then 

The same relation holds for Tq,,, c 2':-. This implies Corollary 2. rn 
f ~ o  

4. EXAMPLES 

4.1. Uniform distribution. For r > 0 let 

Then 

f ( t )  = (sin tr)/tr, 

i i.e., ~f is countable. This implies that 9 is not 2'm-complete, 9 is 
I 
I 9q-complete for 1 < q < co. Therefore, 9 is not (5)-complete for any 

q ~ C 1 ,  031. 
4.2.. Eaplace distribution. For c > 0 let 

f (x) = (24  - l e-lxl/". 

Then 

Therefore, 9 is 9q-complete, 1 < q < co. For 1 < q < co define w,(x) = elxllqa; 
then there exists C = Cq with If llJqw, 2 C and wq f E 9'. By Theorem 1 9 , P  is 
Yq (9)-complete. For the case q = 1 the (9-1-completeness has been shown 
by a different method by Oosterhoff and Schriever [23]. 

4.3. Normal distribution. Let 

Then 

Therefore, 9 is LZq-complete for all q E [I, co]. By our method with 'weight 
functions we cannot decide the 9q(F)-completeness, since f is rapidly 
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decreasing. The Yq(9)-completeness for q ~  [ l ,  m] here follows from the 
uniqueness of Laplace transforms. Related completeness results can also be 
proved for other densities based on analyticity properties as in the generalized 
Miintz-Szasz theorem (cf. [ 5 ] ,  [16]). 

4.4. Cauchy distribution. Let 

Then 

f ( t )  = e-Bltl, i.e,, ZT = 0 

and, therefore, F is Yq-complete for q E [1, a]. For w, jx) = (1 + l ~ 1 ) ~ 1 ~  we 
have 1 f1'Iqwq 2 C, > 0, J i v q ~ L f l  for q ~ ( 2 ,  m]. This implies that 5 is 
Yq (F)-complete for all q > 2. 

4.5. Gamma distribution. For A ,  13 > 0, let 

Then 

j{t) = (1 + it/@]- A ,  

Since the complex zeros off are ~ , f  = { - O/i}, ~f = 0 and 9 is dPq-complete 
for q E [ l ,  m]. By our method we cannot decide the Yq (9)-completeness. 

4.6. Logarithmic decrease (Fourier transforms from 1231). Let 

1 
f (x) = -In (1 + l/x2). 

23T 

Then 

So Zf = 0; i.e., 9 is Yq-complete for q E [I, a]. For q  > 2, ctg = 2 (q - l)/q, 
and w, (x) = (1 + IXI)~-"~  we have 

1 1 
f(x) w,(x) = -ln(l+ 1/x2)(1 + 1 ~ 1 ) ~  E 3' and f ' I q  (x) lw, (x)l 2 C. 

2n (1 + lxlP 

C C 

Therefore, for 2 < q  d a, 5 is LZQ(P)-complete. 

4.7. Exponential decrease. Let 

1 
f (x) = 1x1 - l'"- 1'1. 
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which implies Yq-completeness for q E [I, co]. For q E (1, a) define 

L 1 

then 
1 

f (x) wq (x) = - ( x ] - ~ / ~  exp [ i ( q  - 1) 1x11 E Lt', 
2J;; 

If (x) Iw, (x)l-" = (2 & ) ~ / 4  IxlPl2q (exp [*(l/q- 1) 1x1 J ) ~  E Y 

and, consequently, 9 is 9'q (9)-complete. 

4.8. Several densities. 
(a) Let 

then 

which implies 2f1 n ~ f ,  = 0. For q > 2 and a, = 2/q and w, (x) = (1 + lxlp 
we have 

and for j, = 2 we obtain 

for some constants C,, C,, C > 0. By Corollary 2 , F  = {L,J: y E R1,  i = 1, 2) 
is 9q(F)-complete for q > 2. 

(b) Let 

fl (x) = 1 ~ 1 ~ 1 ~  e-IxI, 

then 

Il ( t )  = l,n cos -arc tan I ~ I  , f2 t = $ c o  a r c  tan - . 
( l + t )  G 1 e 111, 
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Therefore ~3~ n zf2 = $3. For w (x) : = e2131xl we have 

For q > 312 we get p/2q < 1, l /q - 2/3 < 0, and for j, = 2 we obtain 

By Corollary 2, 9 = { L J :  y E R1, i = 1, 2) is Yq (6)-complete for q > 3/2. 

5. SOME FINAL REMARKS ON ESTIMATION THEORY 

Some basic characterization results for UMV-estimators in location 
families are proved in Bondesson [6] ,  which are based on the Tauberian 
conditions g* * f = 0 3 Sp (g) c 2'' (cf. Theorem 6 and 161, Lemma 2.1) as well 
as on some synthesis conditions. Bondesson considers also estimators satisfying 
some weight conditions. A basic synthesis result used by Bondesson is the 
following extension of a result due to Hormander [I41 for N = 0: 

If f ~ 9 ; ~ + - ,  g~z;:, u >,andifSp(g) c nr=o~('f[k)) , then f:l:g8 = 0. 
Furthermore, Bondesson proves that for distributions with an entire 

analytic characteristic function a nonperiodic UMV-estimator in 9cG can exist 
only for normal distributions or Dirac distributions. 

Bounded completeness in connection with the Wiener closure theorem was 
used by Ghosh and Singh [ l o ] .  The following result refines their Theorem 2.1. 

THEOREM 20. If the density f E 9;, for some N E N ,  ~f = 0 and 

Proof.  If  ED*,^-, then for y, 8€R1 

S(g(x+~)-g(x) -~) f (x-e)dx  = E ~ + ~ g - E e g - y  = 0. 

Sink 9 = {LJ 8 E R1) is 9%-complete, we obtain Log = g + 8, 8 E R1 a.s. 
Therefore, g ( x )  = x + k for all x and some k E R1. But g E 9 g G  e N > 0; so we 
obtain one inclusion. The other inclusion is obvious. B 
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