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Abstract. We pve necessary and suflicient conditions for 
j, IX(t)lPv(dt) < oo a.s. where p > 0, { X ( t ) ,  t~ T} is an a-stable pro- 
cess, 0 < a < 2, and v is a n-finite measure. We establish the tail 
behavior of the distribution of the above integral, and we prove 
a Fubini-type theorem which justifies a change of order of ordinary 
integration and stochastic integration with respect to a stable random 
measure. 

I. Introduction. Let v be a a-finite Borel measure on a separable metric space 
I T, and let {X(t), t E Tj be a measurable a-stable process, 0 < LY < 2. Sample path 

I integrals of the type J,IX(t)lPv(dt), p > 0, arise in many situations, e.g., in 

j multiple stochastic stable integration [23], in inversion formulae for the Fourier 

! 
transform of stable noise [5], in integral transformations between stationary and 
stationary increments stable processes [q, and others. It is important, therefore, 

i 
I 

to know exactly when the above integral is finite. Although much is known about 
this question, certain things appear to have been unknown in the case p < 1 and 
even the known results are scattered in the literature and have never been put 

I 1  together, mainly because different cases have been handled using very different 

I tools, varying from p-th order analysis to geometry of certain Banach spaces. As 
a result, researchers working with stable processes have had to justify in each 

1 case the existence of sample path integrals (see [7] for a recent example). It is our 
purpose in this paper, therefore, to give necessary and suficient conditions for 

! sample path integrability of stable processes in the case which has been open, and 
to present them together with known results in a form easy to use. In each case 
we will attempt to describe fully what part of the result has been known and to 
give due credit to the people to whom it belongs. In many cases we reprove 
known results, partially for completeness, mostly because in many cases our 
argument covers both known cases and open ones. Also, a large part of our 
argument is completely elementary. 

* Research supported by the ONR grant N00014-90-5-12873 and the Air Force Office of 
Scientific Research Contract No. F49620 85C 0144. 
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In the next section we start with some preliminary information on sample 
path integrability, on stable processes, and we also give a "tiny" bit of 
information on geometry of Banach spaces which we will need in the present 
study. Necessary and sufficient conditions for integrability of sample paths of 
stable processes are given in Section 3. 

In Section 4 we prove a Fubini-type theorem which justifies interchanging 
the order of Lebesgue and stable stochastic integration, and, finally, in Sec- 
tion 5 we derive the asyrnptotics of the distribution of the integral ST IX(t)lPv(dt) 
in the case where it is finite. 

I 2. Preliminaries. A (real) stochastic process {X(t), t E Tj is called a-stable, 
I 0 < a  <2, if for any A ,  B 3 0, 

(AX,(t)+BX,(t), t~ T )  5 ( (A"+Ba) l~aX( t )+D( t ) ,  t~ T ) ,  

where {X , ( t ) ,  t E T), i = 1, 2, are i.i.d. copies of {X(t), t E T), and D: T + R  is 
a nonrandom function. An a-stable process is called strictly a-stable if D(t) = 0 

for all t E T, and it is called symmetric a-stable (SaS) if { -X(t), t E T )  {X(t), 
t E T) . A 2-stable process is, of course, Gaussian, and an S2S process is 
zero-mean Gaussian. 

Suppose now that the time space T is a separable metric space, and let 
v be a G-finite Bore1 measure on T. Let { X ( t ) ,  t~ T )  be a measurable zero mean 
Gaussian process and p 2 1. Then (see C191) 

and 

12-21 P ( S  (X(t)(Pv(dt) < a) = 1 iff j E IX(t)[Pv(dt) < rn , 
T T 

which expresses a very simple idea: the integral I,IX(t)(Pv(dt) is finite if and 
only if its expectation is finite. This idea has some applicability in the a-stable 
case proper (i.e. where 0 < a < 2), but is understandingly limited by poor 
integrability properties of stable random variables. 

A usual and very convenient representation of a-stable processes is the 
integral representation 

(2.3) {X(t), t e  TI {jL(x)M(dx), tE T ) ,  
E 

where M is an (independently scattered) a-stable random measure on (E, 8) 
with a (possibly non-g-finite) control measure m and skewness intensity B, and 

~ , E E ( E ,  8, m) (also 1 (f,(x) ~oglft(x)lB(x)lm(dx) < if 'a = 11, t~ T. 
E 

We refer the reader to [lo] and [24] for more information on integrals with 
respect to a-stable random measures. In particular, every SclS process can 
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be represented in the integral form (2.31, and the random measure A4 can be 
taken, in this case, to be S U S  (i.e. to have skewness intensity P = 0) (see [3] and 
C251)- 

A stochastic process (X(t), t E T }  is said to satisfy condition S if the linear 
space 

generated by the process is separable in the metric of convergence in 
probability. An SaS process satisfying condition S can be represented in 
a more special form than (2.3), namely 

where M is an SaS random measure on ([0, 11, 9l) with Lebesgue control 
measure and f t  E E[O, 11, t E T (see [12]), and a strictly a-stable process 
satisfying condition S, with a # 1, can also be represented in the form (2.41, but 
this time M is a totally skewed to the right or-stable random measure on 
([O, 11, a) with Lebesgue control measure (i.e. the skewness intensity P = 1). 

Let { X ( t ) ,  t~ T )  be an a-stable process with an integral representation 
(2.3), and suppose that the control measure m is actually a probability measure. 
In that case 

where (4, &, ...) is a sequence of arrival times of a Poisson process with 
unit arrival rate, 

is a sequence of i.i.d. E x ( - 1, 1)-valued random vectors such that 6 has 
distribution rn on E, and 

the sequences 

are independent, ai : T -, R, j = 1, 2, . . . , is a sequence of nonrandom functions 
(which can be taken equal identically to 0 in the SaS case as well as in the 

2 - PAMS 13.2 
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case 0 < cr < I), and 

See [14] .  To save space we will not display the functions aj  explicitly; we only 
mention that they can be chosen to be measurable if the kernelS,(x) is jointly 
measurable, T  x E + R. Note also that the series on the right-hand side of (2.5) 
converges with probability 1 for every t E T,  and we define it to be equal to zero 
if it does not converge. 

i 
The following is an extension of Proposition 6.1 of Rosinski and 

Woyczynski [23] to the strictly stable case. 
PROPOSITION 2.1. A strictly a-stable process {X(t), t~ T f ,  cw # 1 (or an S1S 

process) has a measurable rnod$cation and only if it admits an integral 
representation (2.4) with M being a totally skewed to the right a-stable random 
measure with Lebesgue control measure, andf,(x) ,  T x E 4 R jointly measurable. 
Moreover, if { X ( t ) ,  t E T )  admits an integral representation as above, then it has 
a measurable mod$cation even if or = 1,  and one such measurable modijkation is 
given by the right-hand side of (2.5). 

Pro of. Suppose { X t t ) ,  t E TI has the required integral representation. Let 
(Y(t), t E T )  be the version of { X ( t ) ,  t E T )  defined by the right-hand side of 
(2.5). Then {Y(t), t E T )  is measurable as the limit of a sequence of measurable 
functions. Conversely, if { X ( t ] ,  t E T )  has a measurable version with a # 1, then 
{ X , ( t ) - X , ( t ) ,  t~ T) has a measurable version as well ( X I  and X, are i.i.d. 
copies of X), the latter process is SaS, and our conclusion follows from 
Proposition 6.1 of [23]. 

Remark. In the sequel we will deal with measurable a-stable processes 
represented in the general form (2.3) rather than (2.4). One should keep in mind 
that in this case according to Proposition 2.1 the closed subspace of E(E, 8, m) 
spanned by {A,  t~ T )  must be separable. 

From now on, unless stated otherwise, {Xf t j ,  t~ T )  will always be 
a measurable modification of an a-stable process with an integral represen- 
tation (2.3), m a 0-finite measure, and f,(x), T x E -t R jointly measurable. It 
follows from the zero-one law of Dudley and Kanter [9] that, for any p > 0, 
(2.1) is still true, and we want to know when the probability in (2.1) is equal 
to 1. The case p 2 1 (at least for an SaS {X(t), t E T)) is known, and the results 
can be found in [15]. 

Historically, the case 1 d p < a is due to Cambanis and Miller [8 ] and Linde 
et al. [16], while the case p > max (a, 1) is due to Marcus and Woyczynski [I81 
and Linde et al. [16]. The most complicated case p = a 2 1 was solved by 
Rosinski and Woyczyriski [23] .  Most of the above results were obtained by 
invoking the correspondence principle between stable processes with sample 
path in LP-spaces and stable measures on these spaces (see 1261 and also [17]), 
and then using the theory of stable measures on separable Banach spaces. 
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Less seems to be known about the case 0 < p < 1, mainly because much 
less is known about probability measures on such metric spaces than in the 
Banach space case. Luckily, the case p = or ~ ( 0 ,  1) has been solved (implicitly) 
by Kwapieli and Woyczynski 1131; see also in this connection 123). The 
sufficiency of the integrability conditions in the case 0 < a < p < 1 can be 
deduced from 1181 and [23]. 

We conclude this section with a small piece of information on geometry of 
Banach spaces and with a lemma. 

Let Yo, Y,, . . . be a sequence of i.i.d, random vectors taking values in 
a separable Banach space B, and suppose that the series 

converges as., where c l ,  E ~ , .  . . is an i.i.d. sequence of random signs and r,, 
r,, . . . is a sequence of arrival times of a unit rate Poisson process on R + ,  and 
all three sequences are independent. Then the series (2.7) converges to ScrS 
random vector on B and E I Y, 11" < m (see [20]) and, moreover, if the space B is 
of Rademacher type q > a, then E 11 Yl 11" < c~ implies that the series (2.7) 
converges a.s. [I 51. 

Finally, a simple Iemma which can be easily proved by using the 
Borell-Cantelli lemma (see also L-211). 

LEMMA 2.2. Let XI, X,,. . . be a sequence of i.i.d, random variables and 
p > 0. Then 

EIX1[P < ig lim n-'IPXn = 0 as . ,  
n-t m 

3. Necessary and sufficient conditions for integrability of sample paths of 
stable processes. We start with the following lemma, which is crucial in our line 
of argument. 

LEMMA 3.1. Let Xn = 1, f,(x)M(dx), n = 1, 2, . . . , be a sequence of jointly 
a-stable random variables, 0 < or < 2, where M is an a-stable random measure 
with control measure m.' If X ,  - 0 as . ,  then 

n+m 

(3.1) f,(x) - n+ m 0 for rn-almost every x E E 

and 

(3.2) j sup IL(x)lrnm(dx) < a - 
En31 

Moreover, if 0 < a < 1 and (3.1) and (3.2) hold, then Xn ---, 0 a.s. 
n-t m 



196 G. Samorodnitsky 

Proof.  This is well known; see, e.g., Corollary 5.2 in [20], and also [18] 
and [24]. 

The following proposition goes a long way towards our goal. 

PROPOSITION 3.2. Let ( X ( t ) ,  t~ T) be a measurable or-stable process, 0 < a 
< 2, with an integral representation (2.3). If 

then 

Proof .  We may assume without loss of generality that both mea- 
sures rn and v are probability measures. Let (a, 9, P) be the probability 
space on which the process (X(t), t E T )  lives, and let U,, U,, . . . be a se- 
quence of i.i.d. T-valued random variables with common law v living 
on a different probability space (IR, , PI, PI). Then, for P-almost every o E i2, 
EIX(U,, o)lP < oo, and thus Lemma 2.2 implies that n-l/PX(Un, w)-0 

n- m 

PI-a.s., so that by Fubini's theorem, for PI-almost every choice of U,, U,, . . . , 

Invoking Lemma 3.1, we conclude that for PI-almost every choice of 
UI, u,, . - *  

Let now Z , ,  Z , , .  . . be a sequence of ii.d. E-valued random variables with 
common law m living on a still different probability space (LIZ, 9,, P,). Then 
(3.9, Lemma 2.2 and Fubini's theorem imply that 

(3.6) sup sup n-'lpj-lla( fun(Zj)l < oo PI x P2-a.s. 
n 3 1  j31 

This is the crucial relation. To derive now, say, (3.4), use (3.6) and Fubini's 
theorem to conclude that for P,-almost every choice of Z,, Z , ,  . . . 
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Therefore, for every such Z , ,  Z , ,  . .. , by Lemma 2.2, 

2 sup j-Plu j lJ;(zj)lP~ldtj. 
j 3  1 T 

Applying once again Lemma 2.2 we obtain 

proving (3.4). The proof of (3.3) is identical. E 

Remark.  It turns out that both expressions in (3.3) and (3.4) play an 
important role in the distribution of the integral ST IX(t)(Pv(dt) when the latter 
is finite. We will return to this point in the sequel. 

The following is the main result of this section, and it gives necessary and 
suficient conditions for an a-stable process {X(t), t E T) to have sample paths 
in LP(T,v) for all p >0, O < a < 2 .  

THEOREM 3.3. Let ( X ( t ) ,  t E T }  be a measurable or-stabk process with an 
integral representation (2.3), 0 < u < 2. If a = 1 ,  we assume that the process is 
symmetric. Let p > 0. Then 

5 IX(t)lPv(dt) < co a.s. 
T 

if and only if 

(3.7) ~ ( ~ ~ ~ ( x ) l ~ r n ( d x ) ) ~ ' " ~ ( d r ) < m  when O<p<or ,  
T E  

when p = a, 

(3.9) {(I ~f.(x)l~u(dt))~"m(dr) < m when p > a. 
E T 

Proof.  Suppose first that {X(t), t~ T )  is SaS. As the (most complicated) 
case p = a has been covered by Rosiriski and Woyczyiiski [23] and Kwapieli 
and Woyczyliski [13], it remains to consider the other two cases. 

Case  1. 0 < p < a .  The necessity of (3.7) follows from Proposition 3.2. On 
the other hand, (3.7) implies that 

where C , ,  is a positive constant depending only on a and p. Thus, 
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Case  2. p %- u. The necessity of (3.9) follows once again from Proposi- 
tion 3.2. On the other hand, suppose that (3.9) holds. Thenf(x)€LP(T, v) for 
almost every X E E  and (assuming once again that rn is a probability measure) 

where Z is an E-valued random variable with law m. Let Z , ,  Z , ,  . .. be i.i.d. 
copies of Z.  Then the series C$"Z?-, E ~ ~ ; ~ ~ ~ J ( z ~ )  converges a.s. in LP(T, v) 
because the Banach space Lp(T, vj is of Radernacher type p~ 2 > a when 
p 3 1, whereas the case p < 1 is obvious {use the triangle inequality). This 
series gives us a modification of {X(t), t~ TI which is in LP(T, v), thus 
completing the proof of the theorem in the symmetric case. 

In the general case, let fX,(t), t~ T )  and (X,(t), t~ T )  be two indepen- 
dent copies of {X(t), t~ T ) .  Then Y(t) = 2-11"(X1(t)-X,(t)), ~ E T ,  is SuS with 
an integral representation (2.3), but this time the random measure M is 
symmetric and has the same control measure nz as before. Now our claim 
follows from the easily checkable fact that 

j lX(t)lPv(dt> < GO as. iff 1 1 ~(t) l~v(dt)  < oo a.s. 
T T 

The proof of the theorem is now complete. EI 

Remark. It is interesting to note that our argument shows that, actually, 
1, (X(t)lPv(dt) < co a.s. if and only if (3.6) holds. 

4. Change of order of integration. Let (X(t), t E T) be a measurabIe a-stable 
process with an integral representation (2.3) such that f, IX(t)lv(dt) < cx, a.s. 
We expect the distribution of the path integral j, X(t)v(dt) to be &-stable as 
well, and in many applications one is interested in the parameters of this 
distribution. Those are easy to find if one may interchange the order of 
ordinary integration and stochastic integration in (2.3). The following theorem 
justifies such a change of order of integration. In the (symmetric) case 1 < rx < 2 
it is due to Rosinski 1201. See also the Appendix of [5].  

THEOREM 4.1. Let 

be a measurable a-stable process, where M is an a-stable random measure, 
0 < a < 2, and f,(x): T x E -, R is jointly measurable. If o: = 1, we assume that 
M (and thus X) are symmetric. If j,IX(t)lv(dt) < cx, a.s., then 

and thus, in particular, I&-)v(dt) E E(E,  8, m). 
P r o  of. When a 2 1, our results can be proved in the same way as Lem- 

ma 7.1 of [20). Consider, therefore, the case 0 < a < 1. We use the "randomi- 
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zation" Lemma 1.1 of Ell] to conclude (assuming, as usual, that the control 
measure rn is a probability measure) that there are two independeut sequences 

, , . and t), (;:I, * . .  

as in (2.5) (note that aj = 0 since 0 <a < 1) such that 

and 

Therefore, by (4.31, 

Note that 

because 0 i ct c 1 and because by Theorem 3.3 we have ~(f,~f,(v~)(v(dt)Y < a. 
Now (4.4), (4.5) and Fubini's theorem complete the proof. 81 

Re mark .  A similar argument yields in the nonsymmetric case, a = 1, that 
the left-hand side of (4.2) is again l-stable and that 

j x (t) v (dt) - 1 (J f, (x) v (d t ) )  A4 (dx) = const a.s. 
T E T 

We conjecture that the constant above is, actually, equal to 0. 

5. The distribution of the LP -norm of an a-stable process. Let {X(t), t E T) 
be a measurable a-stable process with an integral representation (2.3). Suppose 
that for a p > 0 

It follows from the theory of stable measures on Banach spaces that, for p 2 1, 
the limit lim,,, AaP(J > I) exists, and can be identified in terms of the kernel 
J(x) in (2.3); see [I] and Corollary 6.20 in [2]. Nevertheless, in the case 
0 < p < 1, it is not, apparently, even known that the above limit exists. Our 
next theorem proves the existence of the limit and identifies it for all p > 0. 
Unfortunately, we need to make an assumption slightly stronger than (5.1). We 
conjecture that the statement is true under (5.1) as well. 
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Note that our theorem is true also in the nonsymmetric case a = 1 

THEOREM 5.1. Let ( X ( t ) ,  t E Tj be a measerrable a-stabIe process with an 
integral representation (2.3), 0 < cc < 2,  and let p > 0. Asserme that the control 
measure m isJnite and tha tx f ;  La+e(E, 8, m), t~ T,for sow s > 0. Let M' be an 
(a+&)-stuble rartdarn measure on (E,  8) with the same control measure and 
skewness intensity cas M. Let X'(t) = j, f,(x)ll/l'(dx), t E T ,  and assume that 
~, lX'( t) lPv(dt)  < co. Then (5.1) holds, and 

where C, is given b y  (2.6). 

Proof. We may and will assume that the measures na and v are 
probability measures. The fact that (5.1) holds follows from Theorem 3.3 (see 
also (3.6)). Let (x(t), t f ;  T )  be defined by the right-hand side of (2.5). Then 

because the distribution of the integral of an integrable process is obviously 
determined by the finite-dimensional distribution of the latter. Let 

(5.4) W, = Cic(l l y l r ; l i a ~ ( ~ l ) - a l ( t ) l p v ( d t ) ) l i p ,  
T 

It follows from Theorem 3.3 that Wl < co as., and thus W, < oo a.s. as well. 
We have 

If we prove that 

then our theorem will follow from (5.3), (5.6) and (5.7). Let 
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be two independent copies of the random variables determining W2 and let 

It is clearly enough to prove that E I(WJ1))p-(Wj2))p~ a l p  < m if O < p < 1 and 

We shall treat the case p 2 1. The case 0 < p < 1 is identical. Let E,, E,, . . . be 
a sequence of i.i.d. random signs independent of the rest of random variables 
involved. Choose a positive integer m so big that a/pm < 1. Then, by the 
so-called Khintchine inequality (see, e.g., Proposition 3.5.1 of [I  5 3 ,  we obtain 

where const is a finite positive number which is allowed to change from line 
to line. 

Now, let (X : ( t ) ,  t E T), i = 1, 2 ,  be independent copies of {X' ( t ) ,  t E T ) ;  
then 

Y(t )=2 -1N"+d(~ ( t ) -X; ( t ) ) ,  ~ E T ,  

is a measurable S(a+&)S process with an integral representation (2.3), where 
the random measure M has the same control measure rn as before, but this time 
M is S(a+c)S. Clearly, J , t ~ ( t ) l ~ v ( d t )  < ao a.s. By Lemma 3.1, 

(5.10) J sup (n-'lpl fun(~)I)PL+Ern(d~) < co 
E">1 
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for almost every choice of i.i.d. T-valued random variables U, , U, , . . . with 
common law v. Fix now U,, U , ,  . .. for which (5.10) holds. Then 

Eg(Vl)bf'<m, where g(x)=~upn-~~~lf , , (X)I ,  X E E ,  
n 2  1 

and Vl is as above. Therefore, letting once again E , ,  E,, .. . and TI, r,, . . . be 
independent sequences of i.i.d. random signs and Poisson arrivals accordingly, 
independent of the i.i.d. sequence Vl , V2, . . . as above, we conclude that 

LC 

El ~ ~ r y ~ ' ~ ~ ( q ) j ) l ~  < CXl. 

j= 2 

Applying once again Khintchine's inequality, we obtain 

We conclude by Lemma 2.2 that 

sup i-,/" sup n-'" rf)-21a fun(&('))' < m a-s., 
i $ l  n 3  l j = 2  

where {ry), F(i), j = 1, 2, .. .), i = 1, 2, . . ., are i.i.d. copies of {r,, I$, 
j = 1, 2 ,  . . .), independent of the sequence U,, U2, . . . By Fubini's theorem, for 
almost every choice of {ry), F(", j = 1, 2, . . .), i = 1, 2, . . ., . 

sup nPZtP sup i-'1" C qi)-21a fun(y(i))2) < m a.s., 
n 3  1 ( i i  I j=Z 

and thus, by Lemma 2.2, 
m CO 

m > E, (sup i- '1" rf)-'@ fun(~i))2)p'2 $ sup i-" l( rjl'-2"f; (~(i))2)p'2v(d1). 
i > l  j=2 1 j=2  

Applying once again   ern ma 2.2, we conclude that 

which, together with (5.91, proves (5.81, and thus the proof of the theorem is 
now complete. w 

Re mark .  As promised, we can now identify the role of the expressions 
(3.3) and (3.4) in the distribution of J = (IT ~~(t)l~v(dt))'" when { X ( t ) ,  t E T )  is 
syinmetric. The expression in (3.3), 
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is equal to const -EJP (when p < a, of course), while the expression in (3.41, 

determines the limit lim,, , l r P ( J  > A) (at least, under the assumptions of 
Theorem 5.1). 
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