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Abstract. The suggested ordering of estimators uses the separation 
measure between the population with true and estimated values of 
parameter. It allows us ta choose one estimator as better in the cases 
where variances are equal or where information contained in variances 
is not satisfactory. 

1. Iat~~dslcti~II. The purpose of this paper is to suggest a new method of 
comparing estimators. The general motivating idea may briefly be described as 
follows. Let 9 = (P , :OEO)  be a family of distributions of the observed 
random variable. If 8 is the true value of the parameter and our estimate is 8' 
(i.e. 0' is the observed value of the estimator, say @), then the relevant question 
should be "How close are the distributions P, and P,,?" rather than "How 
close are 0 and W?'Now, closeness between distributions can be expressed in 
a number of ways. We propose to regard distributions as "close" if they are 
a c u l t  to discriminate. Thus we can take as the measure of closeness any 
index of discrimination or separability. In this paper we investigate the 
possibilities of taking the index ar(F, G) based on the Gini Index of 
discrimination. If 6 is an estimator of 0, then the performance of i? can be 
judged by the properties of the random variable AR,(~),  defined for a sample 
point x as ar(P;(,,, P,). 

While from the point of view of the general statistical t h e ~ r y  this approach 
consists simply of taking ar(P;(,), Po) as a loss function ~ ( 8 ( x ) ,  0), the nature of 
index ar  allows for more than the usual approach based on the concept of risk 
E{AR,(B)) and the corresponding notion of admissibility. One namely can 
order estimators by requiring that the random variables AR, (~ )  be stochas- 
tically ordered for each 0. Such an ordering is stronger than that based on 
domination of risk functions. 

What is perhaps more important, in some cases the distribution of A&(@) 
does not depend on 8. This opens up an interesting possibility of comparing 
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estimators of different parameters in unrelated families on one universal scale 
of performance of estimators. 

2. The Loaenz order. Let 2 be the class of all non-negative random 
variables with positive finite expectations. For any random variable X in 9 the 
Lorenz curve L, is defined by 

0 

where p is the mean value of X and the inverse distribution function F i l  is 
given by 

The Lorenz partial order 6, on 2' is defined as follows: 

Let X,, X,, . . . be i.i.d. random variabIes from 9' and let Xn,  n = 1 ,  2, . . . , 
and Xi,,, i = 1 ,  .. . , n, denote the corresponding sample mean and the i-th 
order statistic. Arnold and Villasefior [2] showed that for any n we have 

(i) Xn <=Xnd1; 
(ii) if the common density of the Xi's is symmetric on the interval [0, 01, 

then Xn+,:zn+, G , x n + ~ : , n + ~ ;  
(iii) in certain cases the sample median is Lorenz ordered with respect to 

the sample mean. 
Since sample means, and also medians, are estimators of the population 

mean, Arnold and Villaseiior attempt to use the corresponding Lorenz curves 
to evaluate and compare variability of these estimators. The ordering proposed 
in the present paper, although different from < ,, refers in a way to <, and to 
the summary measure of inequality called the Gini Index [I, p. 35). We shall 
analyze properties of this ordering for estimators of location parameters. In 
particular, we obtain some results concerning ordering of sample means and 
medians which are analogous to the results given by Arnold and Villaseiior in 
the case of <, for sample means and medians. 

3. A separation measure aaalogous to the Gini Index. The degree of 
separation between two distributions can be defied and then estimated in 
various ways. For instance, Kowalczyk [5] used a decision theoretic approach 
to this problem, treating it as a discrimination between two classes. This idea 
will be shortly presented in the sequel. Let I be the classified variable, Z be the 
observed random variable, and let d be the support of 2. Furthermore, letx 
and Fi denote the density (with respect to some measure v) and cdf of random 
variable Zi defined as Z 1 I = i ( i  = 1, 2). We shall consider randomized decision 
rules 6 = (a,, a,), where ai(z) is the probability that the classified object is 
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allocated to class i when z is observed, so that 6 , + 6 ,  = 1. Let aij(6) 
= Jsfi(z)6j(z)dv(z)  be the probability that an object from class i is classified as 
belonging to class j. A natural ordering of decision rules is given by 

(2) 6 < 6 ' e a i j ( 6 )  2 aij(Sr) for i # j ( i , j  = 1, 2). 

A rule 6 will be called a threshold rule with respect to a function h : b + R 
if for some s E [0, I] and q it takes the form 

1 

1 i f h ( z ) < q ,  4 

s i fh(z)=q,  
I 

O i fh(z)>q.  I I 

The most important case is where h is the likelihood ratio ! 
' I 

It has been shown (see [3]) that the class A of threshold rules with respect to 
h is the minimal class of rules admissible with respect to the ordering (2). Now, 
for any set U of decision rules S = (dl, 6,)  we can consider the subset of unit 
squares consisting of all possible pairs of error rates (a2,(6), alz(6)),  d~ U. If 
U is the set of all threshold rules with respect to some function h, the error rates 
will form a curve in unit square, joining points (0, 1) and (1, 0). In particular, if 
U = A, then this curve, denoted by C F I , F 2 ,  is called a divergence curue (see [4]). 
Specifically, 

(3 )  c , , , ~ ,  = (~h,(z)+s(~;(z+)-~"Z(z)), ~ - F ~ , ( z ) - s ( F ~ ( ~ + ) - F A ~ ( Z ) ) ) ,  

where Z E  3, SE(O, I ) ,  and Ff is the cdf of h(Z)I I  = i ( i  = 1, 2). pairs of 
distributions can be ordered in the following way: 

The latter inequality means that for any pair (x* ,  y*) E CF:,% there exists y such 
that y 2 y* and (x*, y ) ~  CFIIF2. 

If h(Z)II = i for i = 1, 2 are continuous random variables with the same 
support, then CF, ,P2 is equal to the Lorenz curve for h ( Z ) ) I  = 1 and the 
ordering (4) is equal to the Lorenz order for h ( Z ) ( I  = 1 and h*(Z*)(I = 1. It is 
also natural to consider an analogue of the Gini Index, denoted by ar and 
defined as twice the area between the divergence curve and the segment joining 
the points (0 ,  1) and (1, 0). If Fh,, F! are continuous, then 

1 

(5) ar(Fl ,  F , )  = 1 - 2 j  F:((F;)-l(t))dt,  
0 

where ( ~ h , ) -  ' (t) = SUP {X : Fh, ( x )  < E ) .  Without danger of confusion, we shall 
use an alternative notation C,,, for the divergence curve of distributions of 
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X and Y; similarly, we shall write ar (X ,  Y) instead of ar(F,, F,) if it is clear 
that F, is the cdf of X and F,  is the cdf of Y. It can be shown that 

(i) 0 d ar(F, ,  F2)  d 1 with ar(F,, F,)  = 0 iff F ,  = F2 and ar(F,, F,) = I 
if int(x:  F,(x) = 1) < sup(x: F,(x) = 0); 

(ii) if (F,, F,) Gc(F:, Ff), then ar(F,, F,)  d ar(FT, Fq); 
(iii) for any increasing function p we have CZlrZ2 = Cq(ZL),q(ZZ17 hence also 

4z17 Z z )  = ar(so(Z,), (22)). 

4. Evaluating the estimators by the separability index ar. Let 9 = {Po; 
O E  O )  be a family of univariate distributions and let Fo be the cdf of Pe. Let 
B(X("]) be an estimator of 8, X(") being the random sample of size n. For any 
B E  O and any observed sample x("), ar can be used to measure how much the 
distribution function Firzcn), differs from F,. Thus, we deal with a random 
variable defined as 

The distribution of A R , ( ~ )  serves to evaIuate the quality of $ in (Po; B E  8). 
Generally, the smaller are the values of ar(Fi(,(.,,, F,), the closer are the 
distributions Pe and Pg(,{,,,, hence the better is the estimator &X(")) of 8. 

Accordingly, ar(F;(,(,,), Fo) may play the role of the loss function, and the 
analogue of the risk funcZion is 

where G~,,(u) = pB{o  < u). The expectation exists, since 0 Q A R , ( ~ )  < 1 .  
The estimators of B within the family 9 can now be partially ordered by 

the relation Gar  defined as follows: 

DEFINI~ON 4.1. We say that 8, is AR-dominated by 8, (to be denoted as 
4 < ,, 8,) iff for all 0 E O we have 

where X < ,, Y means that Y is stochastically larger than X. We say that 0, and 
@, are AR-equivalent (to be denoted as g,  -,, 8,) if 8, <, 8, and d2 <,, 6, .  If 
dl but not 0, <,, 8,, we write 0, <,,O2. 

We may now introduce the concept of ~kadmiss ib i l i t~ :  

DEFINITION 4.2. The estimator $is AR-admissible if there is no estimator g* 
such that @* <<,, 8. 

A weaker partial order in the class of estimators may be based on the risk 
function. 

D E ~ T I O N  4.3. We say that 8, is risk-dominated by 9, iff 

for all 0 E O. In this case we write 8, < , 4. 
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Clearly, <,, is stronger than GR, that is: if oz then d, <, 8,. 
The relation <, and the risk-admissibility are defined in the usual way. 
An important special case, illustrated by examples in this paper, occurs 

when the distribution of A R , ( ~ )  does not depend on 0, so that we may write 
H&) = P,  {AR,(@) < u). In this case, o2 < ,, d, if Hh,(u) 2 H; (u) for every u, 
and o2 6, o1 if E,[AR,(~~)] < E,[AR,(~,)], where in the last inequality both 
sides are independent of 0. 

Suppose now that we have two families of distributions, 9 = {Po : 0 E 0) 
and 9 = {Qc : C E B), and let t? and f be estimators of 8 and C in the families 
P and 9, respectively. Assume that the distribution of A R , ( ~ )  does not depend 
on 8, and the distribution of A R < ( ~ )  does not depend on 5.  This situation 
makes it possible to compare (according to the relation SR, and possibly also 
according to the relation so,) the estimators 6 and t, even ~f 9 and 2 concern 
two different sample spaces. Thus we have an intriguing possibility of 
comparing the quality of estimators of unrelated parameters on an absolute 
scale. 

5, Evaluating and comparing the estimators of location and scale. In this 
section we consider families of continuous univariate random variables indexed 
by a one-dimensional parameter 0 such that for any x and for some density 
function f 

and 

(7) f (x - O')/f(x - 8) is a non-decreasing function of x for 6 < 8'. 

If (6) holds, then 6 is called a location parameter; if both (6)  and (7) hold, 
then we say that the family has a monotone likelihood ratio with respect to the 
location parameter 0. Condition (7) is satisfied iff -log f ( x )  is a convex 
function in some open interval (a, b) such that - CQ d a < b < + oo and 
1; f(x)dx = 1. We shall prove the following theorem: 

THEOREM 5.1. Let 9 = {P , ,  ~ E O )  be a family with a monotone likelihood 
ratio with respect to location parameter 0. Let 4 be any estimator of 8. Then the 
following conditions hold: 

(i) A R , ( ~ )  is an increasing function of 16-81. 
(ii) I f  0 is a weakly (strongly) consistent estimator of 8, then A R , ( ~ )  

converges weakly (strongly) to 0. 
(iii) If for any c we have 

then the distribution of AR,(@) does not depend on 6. 
(iv) g2 <,, 0, #for any 8 we haue (g2 - 81 d 14 - 61. 
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P r o  of. Let F denote the distribution function corresponding to density f: 
Conditions (6) and (7) imply that for any a,, 8, EO 

1 

(9) ar(Fo,, F,,) = 1-2 ~ F ( F - l ( t ) - l e ,  -0,J)dt. 
0 

Indeed, observe first that since h is monotone by (71, we may use (5) with 
h omitted. If 0 ,  < 0,, then we take F,(x) = F(x-8,) and F , ( x )  = F(x-0,); 
hence F; ( t )  = F - (t) + 8,. Therefore 

1 

ar(F1, F,) = 1 - 2 j  F(F-1( t ) t81-02)d t .  
0 

A similar formula is obtained when 0, < 0,, which proves (9). It follows that 
for any estimator d 

1 

(lo> AR,(O) = I - 2 J ~ ( ~ - ~ ( t ) - l O - 6 ( ) d t  
0 

and properties (i) and (ii) follow easily. Property (iii) follows from the fact that 
the density of 6 is of the form z,(u) = z(u - 0) for some density function z, while 
(iv) follows from the fact that the same increasing function serves to define 
A R , ( ~ ~ )  and AR,(&,). m 

If the carrier of the distribution is bounded by 8, we have the following 
theorem: 

THEOREM 5.2. Let 9' be a family of uniuariate continuous distributions 
indexed b y  a real parameter 8 E (a, b), where - co < a < b < a. Let r be 
a strictly positiue function dejined on [a ,  b] sueh that C r(x)dx < co. 

(9 If 

k(0)r(x) for B < x < b ,  
otherwise, 

where k(8) = l/l:r(u)du, then 

AR,($) = 1 - min Ck(4, k(831 
max [k(B), k(8)1' 

(ii) If 

for a G x Q 8 ,  
otherwise, 

where k'(8) = i / f r ( u ) d u ,  t h m  

AR,(B) = 
min [k* (O), k* (41 
max [k* (8) , k* (811 ' 
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Proof.  (i) The proof follows from the fact that for any 8, < 0, the 
function h(x)  takes the form 

for 6, < x < U , ,  
h(x) = 

k(O,)/k(O,) for ~ 3 0 , .  

Consequently, F! is concentrated at two points, 0 and k(O,)/k(t),), and its 
cdf is 

/ 

{: 
for x < 0, 

F:(x) = k(8,)~:: r(u)du for 0 < x s k(O,j/k(B,), 
for x > k(8 , ) /k(Bl) .  

On the other hand, F i  is concentrated at one point, k(O2)/k(8,). 
The divergence curve (3) consists of two segments: one vertical segment 

joining points (0, 1) and (0, 1 -k(~,)~::r(u)du), and a linear segment joining 
the latter point with (1, 0). Observe that 

Or 

1 - k ( ~ , )  I r(u)hu = k(8,)/k(02). 
ek 

The index ar is twice the area between the divergence curve and the line 
connecting (0, 1) and (1 ,  O), hence equals 1 - k(B,)/k(B,) (see Fig. I ) .  

Fig. 1. The divergence curve for (F,,  , Fn2) 

In general, therefore, 

and taking 8 = O,, 4 = 0, we obtain the proof of (i). 
The proof of (ii) is analogous. 
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Let a,  b~ R" and let aIlr, . . . , a[,, and bill, . . . , bInl be the coordinates of 
a and b arranged in a non-increasing order. We say that b majorizes a, to be 
written as a <,by if 

C " i i l <  C b I i l f o r k = l , . . . , n - l  and C a I i l = C b I i l .  

THEOREM 5.3. Let XI, X,, . . . be i.i.d. random uariables with density function 
f,. If the family (f,; 8.5 O )  has a monotone likelihood ratio with respect to the 
location parameter 8, and for any x we haue 

then for n = 2 ,  3, ... 
(i) for any a, 6~62" such that a,, bi 3 0, i = 1, ..., n, a~ld  s <,b  

in particular, Xn ,< ,, 8,- 
(ii) X n + 2 : ~ n + 3  <arXn+l:~n+l. r 

Proof.  Part (i) is a corollary to Theorem 5.1 (iv) and to the following 
theorem (see [6]) :  If XI,  . . . , X, are i.i.d, random variables with density 
function $ symmetric about 0 and such that -log$(x) is convex, then for any 
a, PER" such that a <,p and a,, pi 2 0, i = 1, ..., n, we have 

in particular, 

and so Xn Q,, Xn - . 
To prove (ii), we first check by straightforward calculations that the graphs 

of the density functions of X,+ :,,+ and X,+ ,:,,. are symmetric about 8 and 
have two intersection points: 

x1 = F; l($-JP ( N - 4 ) / ~ ) ,  x 2 = ~ i 1 ( $ + J - ) ,  

where N = (4a + 6)/(n + 1). Then 

IXn+2:2n+3-@I GstIXn+~:~n+~-el ,  

and (ii) follows from Theorem 5.1 (iv). 

We shall now give some examples when one can obtain useful com- 
parisons of unbiased estimators (with the same variance) by using the index 
AR, even in the case where the estimators are not stochastically ordered. 
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These pairs of estimators are such that one of them is inadmissible (as 
based on a statistic which is not sufficient). It turns out, in the second example, 
that the inadmissible estimator is better according to the new criterion (for 
some sample sizes). This shows that the order according to the suggested 
criterion differs from the order according to the usual risk function. 

EXAMPLE 5.1. Let us consider the family of distributions with the density 

exp[-(x-8)] for x 2 6 ,  
for x < 0. 

Then for any estimator 8 of 6 we have, using Theorem 5.2 (i): 

Let B , { X , ,  ..., X,) = XI:,-l/n and d2(x,, ..., X,) = 8,-1.  Then 

X l n G ( l 7 1 / n )  and 8,-G(m,l/m,O), 

where the density function of G(a, b ,  c)  is given by 

(x - c ) ~  - 
f(x) = expC-(x-c)/bl, b" T (a) n > O , b > O , x p e .  

I It follows that ~ ( 8 , )  = ~(8,) = 8; ~ a r ( 0 , )  = l/n2, ~ a r ( 8 , )  = l/m. Thus, 
~ a r ( 0 , )  for sample size n is the same as var(Q2) for sample size n2. 

The densities of AR,(~,) and AR,(&) are: 

and 

As may be seen from Figs. 2a, b which show the densities and the 
corresponding cdfs for sample sizes giving the same variances (5 and 25, 
respectively), the estimators 8, (solid line) and 6, (dotted line) are not 
stochastically ordered, However, one could argue that 0, is better than 8, 
because, below a certain threshold, smaller values of AR, hence less differen- 
tiation between distributions corresponding to a true and estimated parameter 
are more likely under 0, than under 02. 
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Fig. 2 
a - densities of AR,(&) (solid line) and AR,(&) (dotted line) for sample sizes 5 and 25, respectively 
b - cumulative distributions of AR,(&) (solid line) and AR,(&) (dotted line) for sample sizes 5 

and 25, respectively 

Table 1 gives some numerical comparisons of 8, and 8, with 
respect to the relation 4, defined through AR-risks E,{AR,(~)). Sample sizes 

sample standard sample 
mean mean standard 

size n deviation size n2 deviation 

T a b l e  1. Comparison of means and standard deviations of A&(&), i = 1 , 2  

ARO(B,) ARO(B,) 
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are adjusted so that variances of estimators 0, and g2 are equal in each 
row. 

As may be seen, the minimum of five observations (adjusted to remove 
bias) is a better estimate (in the sense of average AR) than the mean of twenty 
five observations (adjusted to remove bias). 

EXAMPLE 5.2. Let 

for O G x  G 8, 
fD(X) = (i" otherwise. 

Consider two unbiased estimators of 8, namely 

so that f14 is the double median for sample size 2m + 1. Elementary calculations 
give here 

I 

~ar (0 , )  = B"/n(n + 2)] and var(04) = O2/(2m + 3), 

so that variances are equal if 

Now, we have A R , ( ~ )  = 1 -min(B, t?)/max(9, 81, which leads to the following 
densities of AR,(~,) and AR,(&): 

and 

Figs. 3a, b show the graphs of the above densities and the corresponding 
cdfs. As may be seen, the estimators & (solid line) and & (dotted line) for n = 5 
and rn = 33 adjusted so as to equalize the variances are not stochastically 
ordered. This time, however, it is hard to decide which estimator has smaller 
mean of AR. Numerical comparison of g3 and 8, for various sample sizes is 
given in the following table. 

4 - PAMS 13.2 
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Fig. 3 
a - densities of A R , ( ~ ~ )  (solid line) and A R , ( ~ , )  (dotted line) for sample sizes 5 and 33, respectively 
b - cumulative distributions of AR,(&) (solid line) and AR,(B,) (dotted line) for sample sizes 5 and 

33, respectively 

sample standard 
mean size n deviation 

3 0.1917 0.1454 
5 0.1259 0.1020 
7 0.0939 0.0784 
9 0.0749 0.0636 

Table 2. Comparison of means and standard deviations of AR,(~,)  
and AR,(&) 

sample size 
mean standard 

n(n+2)-2 deviation 

13 0.1853 0.1296 
33 0.1245 0.0890 
6 1 0.0943 0.0682 
97 0.0760 0.0554 

ARe (4) 

This time the order of relation 4, becomes reversed with increase of 
sample size. The maximum of 5 observations (adjusted for unbiasedness) 

ARe (64) 
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is inferior to double median of sample of 33. However, adjusted maximum of 
7 observations is already better than double sample median from sample of 
size 61. 

To conclude, let us remark that the preceding considerations concerning 
location parameters are easily transferable to the case of scale parameters. We 
say that p is a scale parameter if for any x 

for some density function g; the family (gB :PEB) has a monotone likelihood 
ratio with respect to /? if 

(14) g(x/P)/g(x/P) is a non-decreasing function of x for #l < /?'. 

Then for any f! we have 

where G is the distribution function corresponding to g. If X is continuous and 
non-negative with gs satisfying (13) and (141, then the family of distributions of 
Y = 1nX satisfies (6) and (7) for the location parameter a = Inb. Let oi be any 
estimator of cx E A = {E; GC = In P;  B E  B) such that d is valued in A. Let /? be the 
estimator of p, defined by 

fi(xl, . . . , X,) = cxp [&(Yl, . . . , K)] . 
Then the distributions of AR,(~~(x, ,  . . . , X,)) and of AR,(~(Y, ,  . . . , K)) are 
equal, which means that and oi are in this sense equivalent estimators of P and 
a, respectively. 
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