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Abstract. Using integral geometry a symmetric a stable system is 
constructed as a stable analogue of fivy's multiparameter Brownian 
motion. M,-process is the spherical mean process of this stable system. 
In tho case of odd dimension, a concrete example of canonical 
representation of M,-process is obtained through this construction. 

Hida-Cramkr theory of canonical representations provides us useful tools 
to analyze Gaussian (or 2nd order) processes. It seems that their Gaussian 
theory highly depends on the tools from the theory of Hilbert spaces. IS it 
impossible to extend their theory of canonical representations to the processes 
without 2nd moment? 

In the Gaussian case, the theory of canonical representations started from 
Lkvy's investigations of representations of Gaussian M,-processes. In this 
paper, using integral geometry we construct a stable analogue of multi- 
parameter Lkvy's Brownian motion. Next we define a stable version of 
M,-process and obtain its canonical representation. This representation comes 
from this integral geometric construction in a natural manner. We hope our 
example will play a similar role in the representation theory of stable processes 
as LCvy's M,-process plays in Hida-CramCr theory. 

1. MULTIPARAMETER SaS LEVY MOTION 

In the Gaussian case the M,-process is defined as spherical means of the 
multiparameter Brownian motion. Let us start with the definition of multi- 
parameter LCvy motion which is a stable analogue of multiparameter Brow- 
nian motion. 
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DEFINITION 1. A set of random variables (X(A);  AEA) is called an 
SaS-system (Symmetric oc Stable system), 0 < cr d 2, if any finite linear com- 
bination L = Caix(lli) is subject to the symmetric a stable law, that is, 
~ [ e ~ " ~ ]  = e-CIzIu with a non-negative constant c = c(ai, A$, Z G R .  

DEFINITION 2. An SaS-system Ya = (Ya(B);  3.~98, p(B) < 4, for 
0 < o: < 2, is called an SaS random measure controlled by a measure space 
(E, a, P) if 

(1) ECexp {izya(B))l  = exp (-~(B)k'l"}~ 
(2) the random variables Ya(B,) ,  . . . , YQ(B,) are mutually independent for 

any disjoint family (3, : i = 1 ,  . . . , N } ,  
a 

(3) Y*(U; B,) = Ya(Bi)  a.e. for any disjoint family {B ,  E &I) which 
satisfies p ( U  3,) < m. 

Let 

(1.1) Sn = {a hyperplane of co-dimension 1 in Rn) - (S"-l  x R1)/- , 

where - means the projective equivalence relation. The group of Euclidean 
solid motions M(n) = SO(n) x R" acts on rt*, in the natural manner and the 
measure d p  = dqdp ( q ~  SnL1, p 2 0 )  on the topological a-field W = &(XR) is 
invariant under the action of M(n), where dq is the normalized uniform 
measure on Sn-l. 

Set 

(1.2) St = ( h  E &n; h separates the origin O and t )  , t  E RR. 

THEOREM 1 (Chentsov [2]). Let q2 be the Gaussian random measure with 
control measure space ( S R ,  9, p). Then the Gaussian system {B( t ) ;  t € R n }  de- 
fined by 

satisfies 
( 1 )  B(O) = 0 ,  and 
(2) E [exp { i (B(t)  -B(s ) ) z ) ]  = exp {- c ]It-slj . 1zI2), where 1 1 . 1 1  means the 

EucIidean norm and 

P. LCvy calls the above system (B( t ) ;  t € R R ]  the Rn-parameter Brownian 
motion with respect to the metric function 2c I [ . / ( .  It is natural to define the 
following S a S-analogue: 

Here = (r) is the SaS random measure with control measure space 
(-%I g. P I .  
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Then 

PROPOSITION 1. The above family of raadom variables {X i ( t ) )  becomes an 
SaS-system and satisfies 

(1) X i ( 0 )  = 0; 
(2) {XE*g(t) = X;(gt ) -  X i ( g 0 ) )  and ( X i ( t ) )  share the same finite dimen- 

sional laws for any g~ M(n); 
(3) for any e, and el E Wn,  the restriction of the process {X,"(t)) an the line 

I = {e, + te , ;  t E R1) 

is a 1-parameter SaS-process with stationary independent increments, that is, an 
Sols LBvy motion or, equivalently, a I-parameter G v y  process of index a in the 
restricted sense. 

Note that from (2) and (3) we have 

(1.5) E[exp { i ( ~ i ( t ) -  X:(s))z)] = exp { -c  Ilt-sl( . ] zJa } .  

In the case of 0 < cl < 2, Mori [ll] proved the uniqueness of the process 
which satisfies (IH3), so it is natural to call this Sols-system ( X i ( t ) ;  t~ Rn) the 
Rn-parameter S a S LCvy motion. 

For convenience, let us rewrite the definition (1.4) in the following integral 
form : 

(1.6) XXt) = 1 r(d!zd~), 
O < P < < ~ , P >  

where (., -) means the inner product in Rn. 

2. Mz(t)-PROCESS AND ITS CANONICAL REPRESENTATION 

Let us recall the Gaussian case. P. Lkvy introduced a Gaussian process 
Mn(t),  t > 0, as the spherical mean of multipararneter Brownian motion B(t), 
t E Rn, 

And he noticed that this Gaussian process can be represented in several 
non-equivalent forms as 

where B(u) is a standard (1-parameter) Brownian motion (see [4], [8], [!I]). 
The theory of canonical representations clarifies the above fact. 
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DEFINITION 3. The representation of Gaussian process 

is called proper canonical if 

(2.4) d ( A ( s ) ; s < t ) = & ( B ( s ) ; s $ t )  for any t > 0 ,  

where means the closed linear hull in I,z-sense. 

THEOREM 2 (Karhunen [dl). There exists a unique proper canonicaI 
representation for any separable, mean continuous and purely nun-deterministic 
stationary Gaussian processes. 

We can apply this theorem to the process M,(t) by time change and 
normalization. We see that one of Uvy's examples of the representations of the 
form (2.2) is proper canonical. 

In this section we consider an SaS-analogue of Ad,(t)-process and obtain 
its proper canonical representation. 

2.1. Sols M,"{t)-processes. Let us introduce the following metric space: 

(2.5) am) = { f:  a measurable function on ( E ,  p); f (f r d p  < a} 
E 

with metric (j, 1 f I " ~ , U ) ' ~ ~ " ) "  I. Then the Sols Wiener integral I a ( f )  of the element 
f of P) is defined as the limit in probability of the sequence of SaS random 
variables (Cia? Ya(B1), n = 1 ,  2 ,  . . .I, where {f, = a q ~ ~ ; )  is a sequence of 
simple functions which converges to f in PI. Using this relation let us induce 
a metric from P) in the space of SaS random variables of the form Ia( f), f~ PI, 
and identify these two spaces (see 151, [15], 1191). 

Consider the spherical mean of the multiparameter G v y  motion: 

where the right-hand side means the limit of Riemannian sum in Za) 

In the case of pa = 1, 

Mpl ( t)  = +(x: (t)  + x; ( - t)) - 
For n 2 2, set 
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then 

where 

For n = 1 we have F;, F ( t ,  p) = i. 
Now we can rewrite the definition of ME as 

where 

(2.1 1) ZU(p)  = T(SL - X [ O ,  p ] ) .  

The Sols-process Za has stationary independent increments, that is, 2" is an 
SaS Levy motion. 

2.2. Main result. 

THEDREM 3 (for the Gaussian case, see [lo] and [18]). If n is odd and 
0 < o! $ 2, then the representation 

where 

(2.131 

(2.14) ~ " ( M ~ ( s ) ; s d t ) = ~ " ( Z a ( s ) ; s < t )  for any t > 0 ,  

where A" means the closed linear hull in L(". 

The representation (2.12) which satisfies (2.14) is unique in Hida's sense 
(for the Gaussian case see [4], in general [7]). Because of the above equality, we 
may call a representation of the form (2.12) which satisfies the relation (2.14) 
proper canonical. For even n, see Section 3.2 of this paper. 

Proof.  If n = 1, the theorem is trivial. In the case of n = 3, consider 
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and take the difference 
t r t h  

(t+Iz)M?(t+h)-tM",(t = $3(jhdZg(p)+ j ( t fh-p)dZU(p)) .  
0  t 

Then we have 
r  t + h  

h-l(( t+ h ) ~ " , t  t $1- t~: ( t ) )  = $(j d z U l p ) +  J o( i )dza(p) ) .  
0 t 

Thus, the integrand converges in I?) as h - 0 .  So tM",t) is differentiable in 
and we have 

d 1 
- tM;( t )=-Zu( t )  in I?". 
dt 2 

For n 3 5, we can reduce the proof to the case of n = 3 by the next lemma. 

LEMMA. Set 

then we can apply this operator to Mf( t )  in Lj") and we obtain 

D,M:(t) = (n-2)M;-,(t) in law 

as stochastic processes. 

P r o of. Set N(t )  = t" -'M;(t). Then 
t 1 t t 

N ( t )  = c", tt" - 2  j (1  - x ~ ) ( ~ -  3)/2 dxdZa@) = cg J (t2 - x2)("- 3)12 dxdZalp). 
0 Pit 0 P 

The difference is 

h - l ( ~ ( t + h ) - ~ ( t ) )  
t + h  r + h  t 

= & J h - l (  1 ( ( t + h ) 2 - ~ 2 ) ( n - 3 ) 1 2 d ~ -  ~ ~ ~ , ~ , ( p ) j  ( t2 - X ~ ) ( " - ~ ) / ~ ~ X )  dZa(p). 
0 P P 

The IF-metric of the above integral is 

t+h t+h  

< [h-" 1 I ((t + h)' - x ~ ) ( ~ -  ' ) I 2  d ~ l ' l d p ] ( ~ ~ ~ )  A 

f P 
t t  

+ [$-a 1 ((t + h)2 - xZ)(n- 3112 - (tZ - X2)(n-3)/2 dX 
O P  

t+h 
+ J ((t + h)2 - x2) (~-  3 ) / 2  dxladp](l/x) A 1 

t 
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The process N(t) is differentiable in ZU', and we have 

c"o 
= (n-3jF tn-3M;-,(t) in law. 

The constant (n-3)(c",/~",~) is equal to 

Thus 

3. GENIERAILIZATIQN OF PARAMETER SPACE AND REMARKS 

In the Gaussian case it seems that McKean already knew the idea we 
employ in this paper - the relation between Chentsov's construction of 
multiparameter Brownian motion and the canonical representation of 
M,-process (see [lo]). In this paper we clarified this idea and show that this 
relation holds also in the stable case. In this section we show one direct 
generalization of the results of Section 2 and two further investigations. 

3.1. Generalization of parameter space. The results of this paper are easy to 
extend to the spaces of constant curvature (for the Gaussian case see [18]). We 
present here the required definitions and our results. We omit the proofs to 
avoid unnecessary duplications, they can be obtained in almost the same 
manner as in Section 2. 

Let R, be Sn, R" or the n-dimensional hyperbolic space Hn, respectively, as 
K = 1,0, -1 and let 

(3.1) St = {a totally geodesic submanifold of R, of co-dimension 1). 

The group G,, SO(n + I), M(n) or the hyperbolic group L,, respectively, acts on 
the space R,. Let g$ be the Sols random measure controlled by the invariant 
measure p: on X:. 

Set 

(3.2) Sf = {an element of S; which separates the origin 0 and t ] .  

Then the SaS-system 

(3.3) XXt) = T,(Sf) 



236 K. K o j o  and S. Takenaka 

satisfies 
(1) XE(0j = 0, 
(2) {X2B( f )  = XEIgt) -X:(gO)] and {XE(t)} share the same finite dimen- 

sional laws for any g E G,, 
(3) E[exp(izx$(i))] = exp(- c,d,(t, 0) 1 ~ ( ~ ) ,  c, is a positive constant and 

d,  is the geodesic metric of R,. 
Thus we can call the above process the R,-parameter Ldvy motion. 
Take the spherical mean of X", then we obtain an analogue of 

Ma(t)-process: 

where d,  is the Gx-invariant geodesic metric in R,. Using the same idea as we 
use in Section 2 we have 

THEOREM 4. 1 f n  is odd, then the representation of the SuS-process M;(t),  

t 

(3.51 ~ : ( t )  = c: J ~ ( t ,  p ) d ~ , ( ~ ) ,  is a constant, 
0 

is proper canonical in the meaning of Theorem 3. Here the representation kernel 
F ( t ,  p) is the same one as (2.13) and the process &(p) is an independent increment 
S a S-process which sati$es 

3.2. Further results on even n and on weighted means. The first-named 
author obtained the following results in his master thesis (Kojo [7]): 

(i) The case of even n, where the representations (2.10) and (3.5) are also 
proper canonical, includes the Gaussian case (for the Gaussian case, see [lo]). 

(ii) Let us consider the generalized MI-processes which are defied as 
weighted means of SaS-motion on spheres with higher order spherical 
harmonics as the weight. We can apply the idea of Section 2 to obtain their 
representations. If u # 2, the non-Gaussian case, some of representations of 
generalized ME-processes are not proper canonical but non-linearly canonical. 

Here we have to distinguish two canonicalities. One is proper canonical 
which we introduce in Section 2, the other is non-linearly canonical, that is, two 
a-fields (of the process in question and of the process with independent 
increments which appears in the integral) are equaI to each other. In the 
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Gaussian case two notions of canonicality are equivalent. The result (ii) means 
that in the SaS case there exist concrete examples of representations which are 
not proper canonical but non-linearly canonical. 

3.3. Remarkable properties of a class of SaS-processes. As we saw the 
multiparameter S u S-motion is constructed by an integral geometric idea. In 
general, non-Gaussian SclS random fields defined by integral geometry have 
remarkable properties : 

(i) Their finite dimensional distributions have a pure point spectrum for 
I 

any dimension (see [I21 and 1131). 
(ii) They follow strong determinisms. For instance, we have a class of 

n-parameter SaS random fields which are determined by their (n+ 1)ldimen- I 
I 

sional marginals. Especially, a 1-parameter Sols-process which belongs to such I 
a class is, like a Gaussian process, determined by its 2-dimensional marginal 

I 

distributions. We have also an example of a 1-parameter SaS-process which is 
determined by its 4-dimensional marginals but not 3-dimensional marginals 1 
(see [13] and [14]). 
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