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EQUIVALENT CONDITICINS FOB THE CONSISTENCY 
OF NONPARAMETRIC SPLINE DENSITY ESTIMATORS 

GRZEGORZ KRZYKOWSKI (GDANSK) 

Abstract. We study the nonparametric spline density estimators of 
probability density. The equivalence of weak convergence for L,-con- 
sistency of one density and completely for L,-consistency of all 
densities is proved. It is equivalent also to suitable rates of convergence 
of window parameter. 

1. Introduction. For r 2 1, let N(" (x) = r [0, . . ., r; -x)'! '3, x E R ,  be 
the r-th order B-spline associated with the knots 0, . . ., r. Here, for f: R1 -, R 1 ,  
[so, . . ., s,; f] denotes the divided difference of f taken at the points so,  . . ., s,. 
The 3-spline N(') has the support [ O ,  r], it is a piecewise polynomial of degree 
r - 1, and it is of class Cr-2 for r 2 2. By translation and scaling of N") we can 
obtain a B-spline basis for any equally spaced set of knots on R. Let 
ti = (i+O)h for i € Z  = (0, f 1, T2, ...I, h € R +  = (0, +a), and O =  0 if r is 
even and 6 = 3 if r is odd. We set 

N$:i (x) = N1') ((x - ti),%) for x E R and i E 2. 

The spline operator considered in the note will be defined by the kernel 
Qr): R2 +R1, introduced by Ciesielski [I], where 

The kernels Qf' are local due to the following property: 

They are also bounded: 

We now assume that we are given a probability space (a, 9, Pr) 
and a simple sample of size n, i.e., a sequence X I ,  . . ., X, of i.i.d. real-valued 
random variables such that their common distribution has density f. 
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The spline density estimator is defined by 

The estimator f,,h is neither of kernel nor of series type, but it has some 
properties of estimators of both these types. In particular, it is local like kernel 
estimators (cf. (1.1)). We can see the relationship with the series type estimators 
if we write the definition formula in the following form: 

n 

(1.4) f,,, (x)  = a,hN$L (x), where a,,h = h- Ntk (4. 
s c z  j= 1 

In other words, in,h is a linear combination of B-splines. 
Asymptotic properties of a large family of such estimators in several 

variables are discussed in [3]. 
Another look at the linear combination of B-splines as the density 

estimators can be found in [7]. 

2. The Theorem. Before formulating the main result of our paper 
(Theorem A) let us introduce the following notation: 

Random variables J,, n E N ,  are said to be exponentially convergent to zero, 
in symbols J, 4 0  exponentially, if for each positive E > 0 there exist b > 0 and 
no such that for all n greater than no 

Pr {I J,I > E )  < exp { - bn) . 
THEOREM A. Let f,,h be the spline density estimator defined by (1.3). 

Moreover, let 3, = jlh,k-f 1, h = h,,  EN, be the sequence of Ll-distances 
between f and Then the following statements are equivalent: 

(i) hn+O and nhn+oo; 
(ii) for some density f, J,+O in probability; 
(iii) J ,  - t O  in probability, for a11 densities f ;  
(iv) J ,  -t 0 with probability one, for all f ;  
(v) J ,  + 0 exponentially, for all f. 

An analogue of Theorem A for kernel density estimators was obtained by 
Devroye [4]. 

We will try to extract the key facts used in the proof of Theorem A. They 
are collected in several lemmas, which are of independent interest. 

LEMMA 1. Let !P be the family of disjoint intervals in R1. Suppose that, for 
given m > 0 and for aII 3 E Y, 1B( = m > 0, where IBJ denotes the Lebesgue 
measure ofthe set B. Let p, be the empirical probability measure for the sample 
XI, . . ., X,, and let p be the probability measure of density J: For every E > 0 
there exist positive A,, 1, and 1, such that for aEI n & N  
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Proof .  Denote by S,+, the closed interval [x - R ,  x + R],  where x f R, 
R E  W,, and by Sir, its complement in R1. Choose an R > 0 such that 
p(SZsR) < E. Divide !P into two subfamilies: 

~ , = ( B E Y :  B n S D , ~  #0) and Y , = { B E Y :  B n S , , , = 0 ) .  i ! 
Note that 'Y, is fd te .  Now, i 

I 

Let us estimate the second term: 

I Hence 

I The elementary inequality ln(1 + x) 2 2x/(2 + x) for x > 0 implies the modifica- 
tion of Hoeffding's inequality [5, Theorem 31: If t l ,  5,, . . . , 5, are independent, 
E t i = 0 ,  < , , < b ,  E(?=rrZ ( i = 1 , 2  ,..., n), then for O < E < ~  

By this inequality for Bernoulli random variables we have 

Let !PI {B,):, Since 1Uf= lIil < 2R + 2m, we have k < 2R/m+ 2. For 
i E (I, . . . , k )  we denote by I.'i the number of elements of the sample XI, . . ., X, 
contained in the set B,. It is easy to see that 

From the equality 

where A is the set of all subsets of the set (1, . .., k), we obtain 
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The random variable CisA  5 has the binomial (n, p,) distribution, where 
pA = Pr (XI E U B ~ ) .  Then, again, by inequality (2.1) for the Bernoulli 
random variable we have 

Since k < 2R/m + 2, we come to the statement 

(2.3) PI{ C IP.(B)-P(B)I > E )  < ex~(-n&,+c,),  
B e y l  

where = ~ ~ / 2  (1 + E )  and e2 = (2R/m + 3)ln (2). Combining (2.2) and (2.3) we 
get the desired conclusion. 

The next two lemmas concern the behavior of the spline operator 
Qtl: L, +el given by the formula 

LEMMA 2 (Ciesielski [2]). Let Qf) be the above spline operator. Then 

where w z , ~ ( f ,  h) = sup l ,~ ,~  11 d ? f  (1, and A: is the 2-nd order progressive 
difference with step t. 

LEMMA 3 (nonexistence of unbiased spline density estimators). Let 
f EL' (R), f # 4 and let QX') be the spEine operator given by formula (2.4) with 
r Z 2 .  T h e n l J Q r ) ( f ) - f l  > O f o r e a c h h ~ R + , a n d $ { h , :   EN) isasequenceof 
positive numbers, then 

lim JlQE(f)-f 1 = 0 implies h , - + O .  
n+ m 

Proof.  Suppose to the contrary that 11 ~ p (  f )  -f 11 = 0 for some h E R ,  
and probability density f. Thus, for almost all x E R1, 

By the stability inequality (see [6]) we have { a , , ;  s EZ) E l1 (Z). Let us compare 
et) cs) to f : 

where g , ~ - , , ~  = h-I ( N ~ L ,  depends on s'-s and h, only. Since the 
sequence of splines {N$j,),,, forms a basis in the space of splines of order r with 
simple knots {t,; s E Z } ,  we get for all S'EZ 
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Let us introduce, for t ER', 

(t) = C as,k exp {isr).  
862  

By (2.5) we obtain 

where G(t )  = g,,, exp (itu) . Then for each t E R' we get T, (t)(l - G (t)) 
= 0. Since G is a nontrivial trigonometric polynomial and G(t) # 1 for almost 
all t ~ R l ,  it follows that T, = 0 and, consequently, that f = 0, which is 
impossible. 

For the second statement of Lemma 3 suppose that 11 Qrl (f) -f li 
converges to zero as n+ a. In the case where h, tends to infinity as n-+ m, 
using Fatou's lernma and (1.2) we have 

liminf IQtl(f)-.flll 3 I I  liminfIQfi(f)-f 1 1 1 1  = Ilf 1 1  = 1. 
A + a 3  n + m  

If {la,:  EN) has a subsequence convergent to a finite limit, for simplicity, let 
h,+6 > 0 ;  then 

and the proof is complete. 

3. Proof of Theorem A. The proof will be established by proving two 
lemmas. The first states the implication (i) - (v), the second one the implication 
(ii) * (i). The remaining implications are clear. 

LEMMA 4. Let {h,: ~ E N )  be a sequence such that 

l i m h , , + ( n h , ) - l = O  . 
It' 30 

and let fn,h be given by formula (1.3). Suppose that the simple sample has 
a density f. Then J ,  = I l f n , h n  -f 1 1  tends to zero exponentially. 

Proof  of Lemma 4. For given E > 0 find finite positive constants 
v ,  a,, .. ., a ,  and v disjoint finite intervals A, ,  . .., A, in LO, r] of equal length 
such that the function IT(') = CY=, a i X ~ i  satisfies 

For x E R and h € R + ,  we introduce the following notation: 

n 

x , h  = n- ' Qr) (x, Xj) and Qt) (f) ( y )  = S.f(x) Qf) (x , y) d x ,  
j =  1 

7 - PAMS 13.2 
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where 

Ql;) (x  , y) = h - N(r) (x/h - s) . P r l  ( y/h - s) for (x  , y) E RZ 
S E Z  

Now, 

(3-1) 11 fn.h, -f 11 1 < Ilfn,h. - x , h ,  11 1 f l I x , h .  - QX'I ( f  )(I 1 

+ llQi?(fj-Q~L(f)lll+ llQf2Ul-f Ill- 

Let Fn be the empirical distribution of the simple sample XI ,  ..., X.. 
Then 

(3-2) 11f....-~.h.l11 G l~l;:' (x, y)- Qf; (x, y)l dx) d ~ , ,  ( Y )  

+ Ej., (x - s) IN") (y/hn - 3 -nG) (ylh,, - s)l dx] dFn (y) 

In the same way, replacing the empirical distribution Fn by the distribution 
function of the sample F, we obtain 

(3-3) llQf)(f)-Q!)(f) 111 2.5- 

Let us estimate IlfSl,h - Qf)( f)ll 

(3.4) Ilf.,h(x)-~f)'l(fl/ll~Izh-1N(r)(x/h-s)l~N(r)(~/h-s)d~Fn(~)-F(~)lldx 
S € Z  

where p,, and p are the measures having distributions F,  and F, respectively. 
Combining inequalities (3.1H3.4) and Lemma 2 we have 

where a* = max (a,, . . ., a,). 

By Lemma 1 there exist positive b,, b,, b, and  EN such that 
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for n > no. Lemma 4 is thus proved. 1 
LEMMA 5 .  Let fnSh be given by formula (1.3) .  Suppose that {h,: n EN) is I 

la sequence such that 1 1  fn.h,-,f 1 + 0 in probability as n + ao. Then h, -+ 0 
~ n d  nhn+ m. 

Proof.  Since J, < 2 for all n, we have lim,, , E ( J , )  = 0. By Jensen's 
inequality we obtain 

( J n ,  2 1 1  Efn,hn -f 1 1  1 = 11 Qri ( f  -f 11 1 

So l ~ ~ E ( f ) - , f  I l l  + O  as n+ c~ and, by Lemma 3, h,+O. From the in- 
equality 

E ( J 3  2 ~lIfn,h,-Q!i?(f)II1- IIf-QtlCf)il~ 
t 

and Lemma 2 we have 

Let, for given x E R, A, = (w:  kfi E (1, . . ., n), Xi 4 Sx,hr). Hence 

! It is clear that f n , h ( ~ ) . ~ A x  = 0 for all X E R ~  and for each w E Q. Thus 

I j ( f n , h ( ~ ) * x ~ , ) d x  = 

To estimate the first term we note that if p is the probability measure with 
density f, then 

If liminf,, , nh, = s < co, then by Fatou's lemma we have 

which contradicts (3.6). 
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