PROBABILITY
AND
MATHEMATICAL STATISTICS
Vol. 14, Fast. 1 (1993), pp. 1-9

MOMENTS AND GENERALIZED CONVOLUTIONS. II

BY

K. URBANIK (Wroclaw)

Abstract

For any positive number q a q-equivalence of generalized convolutions is defined in terms of moments of order q. The aim of this paper is to prove that under some natural restrictions on the order q-equivalent generalized convolutions are identical.

This paper is a continuation of the author's earlier work [8]. We adopt the definitions and notation given in [4] and [8]. In particular, P will denote the space of all Bored probability measures defined on the half-line $[0, \infty)$. The space P is endowed with the topology of weak convergence. For any $a \in(0, \infty)$, T_{a} will denote the scale change $\left(T_{a} \mu\right)(E)=\mu\left(a^{-1} E\right)$ for $\mu \in P$. Further, δ_{c} will denote the probability measure concentrated at the point c. Two measures μ and v from P are said to be similar if $\mu=T_{a} v$ for a certain $a \in(0, \infty)$. A continuous commutative and associative P-valued binary operation \circ on P is called a generalized convolution if it is distributive with respect to the convex combinations of measures and the operations T_{a}, δ_{0} is its unit element and an analogue of the law of large numbers is fulfilled: $T_{c_{n}} \delta_{1}^{\circ n} \rightarrow \gamma \neq \delta_{0}$ for a choice of a norming sequence c_{n} of positive numbers. The power $\delta_{1}^{\circ n}$ is taken here in the sense of the operation o . The limit measure $\gamma=\gamma(\mathrm{o})$ is called a characteristic measure of the generalized convolution in question. It is clear that the characteristic measure is uniquely determined up to the similarity relation.

The set P with the operation \circ and the operations of convex combinations is called a generalized convolution algebra. Generalized convolution algebras admitting a non-constant continuous homomorphism into the algebra of real numbers with the operations of multiplication and convex combinations are called regular. All generalized convolution algebras under consideration in the sequel will tacitly be assumed to be regular. For regular convolution algebras by Proposition 4.5 in [6] there exists a positive constant $\varkappa=x(0)$ such that

$$
\begin{equation*}
T_{a} \gamma \circ T_{b} \gamma=T_{g(x, a, b)} \gamma \tag{1}
\end{equation*}
$$

for any pair $a, b \in(0, \infty)$, where $g(\varkappa, a, b)=\left(a^{x}+b^{x}\right)^{1 / x}$. The constant \varkappa does not depend upon the choice of a characteristic measure and is called the

K. Urbanik

characteristic exponent of 0 . Moreover, by Proposition 4.4 in [6], every solution γ of equation (1) for all $a, b \in(0, \infty)$ is a characteristic measure of o. Notice that, by Theorem 4.3 in [6], the pair $\chi(0), \gamma(0)$ determines the generalized convolution 0 .

We say that the generalized convolution o admits a characteristic function if there exists a one-to-one correspondence $\mu \rightarrow \hat{\mu}$ between measures μ from P and real-valued bounded continuous functions $\hat{\mu}$ defined on the half-line $[0, \infty)$ commuting with convex combinations and scale changes, i.e. $\left(T_{a} \mu\right)^{\wedge}(t)=\hat{\mu}(a t)$ for $a \in(0, \infty)$. Further, the key condition postulates $(\mu \circ v)^{\wedge}=\hat{\mu} \hat{v}$ and the convergence $\mu_{n \rightarrow} \rightarrow \mu$ is equivalent to the uniform convergence $\hat{\mu}_{n} \rightarrow \hat{\mu}$ on every compact subset of [0, ∞). It has been proved in [4] (Theorem 6) that a generalized convolution admits a characteristic function if and only if it is regular. By. Theorem 2.1 in [5] the characteristic function is unique up to a scale change and is represented by an integral transform

$$
\hat{\mu}(t)=\int_{0}^{\infty} \Omega(t x) \mu(d x)
$$

with a continuous kernel Ω fulfilling the conditions $|\Omega(t)| \leqslant 1$ for $t \in[0, \infty)$ and $\Omega(t)=1-t^{\alpha} L(t)$, where x is the characteristic exponent of o and the function L is slowly varying at the origin.

Many examples of generalized convolutions are to be found in various branches of probability theory ([10], [11]). We shall quote some of them. It is clear that every generalized convolution O is uniquely determined by the expressions $\delta_{a} \circ \delta_{b}$ with $a, b \in(0, \infty)$.

EXAMPLE 1. α-convolutions $*_{\alpha}(\alpha>0): \delta_{a} *_{\alpha} \delta_{b}=\delta_{g(\alpha, a, b)}$. These convolutions correspond to the operations $\left(X^{\alpha}+Y^{\alpha}\right)^{1 / \alpha}$ on independent random variables X and Y. For $\alpha=1$ we get the ordinary convolution. For any $\alpha>0$ we have $x\left(*_{\alpha}\right)=\alpha$ and $\gamma\left(*_{\alpha}\right)=\delta_{1}$.

Example 2. Kingman convolutions $*_{\alpha, \beta}(\alpha>0, \beta>1): \delta_{a} *_{\alpha, \beta} \delta_{b}$ is the probability measure with the density function equal to

$$
4^{-1} a^{-3} b^{-3} B(1 / 2, \beta / 2)^{-1}\left[x^{\alpha-1} x^{2 \alpha}\left(a^{2 \alpha}+b^{2 \alpha}\right)-\left(a^{2 \alpha}-b^{2 \alpha}\right)^{2}-x^{4 \alpha}\right]^{(\beta-3) / 2}
$$

in the interval $\left|a^{\alpha}-b^{\alpha}\right|^{1 / \alpha} \leqslant x \leqslant\left(a^{\alpha}+b^{\alpha}\right)^{1 / \alpha}$ and vanishing otherwise, where B is the beta-function. These convolutions have been introduced by Kingman in [3] for the study of spherically symmetric random walk in Euclidean spaces. Here we have $\chi\left(*_{\alpha, \beta}\right)=2 \alpha$ and

$$
\begin{equation*}
\gamma\left(*_{\alpha, \beta}\right)(d x)=\alpha 4^{1-\beta} \Gamma(\beta-1 / 2)^{-1} x^{2 \alpha \beta-\alpha-1} \exp \left(-x^{2 \alpha} / 4\right) d x \tag{2}
\end{equation*}
$$

Example 3. Convolutions $O_{\alpha, n}(\alpha>0, n=1,2, \ldots)$ for $0<a \leqslant b$,

$$
\begin{aligned}
\delta_{a} \circ_{\alpha, n} \delta_{b}(d x)= & \left(1-a^{\alpha} b^{-\alpha}\right) \delta_{b}(d x)+\sum_{k=1}^{n} \alpha(n+1)\binom{n}{k}\binom{n}{k-1} \\
& \times a^{\alpha(n+1-k)} b^{\alpha k}\left(x^{\alpha}-a^{\alpha}\right)^{k-1}\left(x^{\alpha}-b^{\alpha}\right)^{n-k} x^{-2 \alpha n-1} 1_{[b, \infty)}(x)(d x)
\end{aligned}
$$

where $1_{[b, \infty)}$ denotes the indicator of the half-line [b, ∞) ([5], Example 1.6). Here we have $x\left(\mathrm{o}_{\alpha, n}\right)=\alpha$ and

$$
\begin{equation*}
\gamma\left(\mathrm{O}_{\alpha, n}\right)(d x)=\alpha(n!)^{-1} x^{-1-\alpha(n+1)} \exp \left(-x^{-\alpha}\right) d x \tag{3}
\end{equation*}
$$

The case $\alpha=n=1$ is relevant to work [2] of D. G. Kendall on stationary random closed sets.

Given a number $q \in(0, \infty)$, for any $\mu \in P$ we put

$$
m_{q}(\mu)=\int_{0}^{\infty} x^{q} \mu(d x)
$$

Denote by P_{q} the subset of P consisting of all μ with $m_{q}(\mu)<\infty$. Further, denote by $Q_{q}(\circ)$ the subset of P_{q} consisting of all μ fulfilling the condition $\mu^{\circ n} \in P_{q}$ for $n=1,2, \ldots$ It is clear that both sets P_{q} and $Q_{q}(\circ)$ are invariant under the maps $T_{a}(a>0)$ and $\delta_{0} \in Q_{q}(0)$.

Two generalized convolutions O_{1} and O_{2} are said to be q-equivalent, in symbols $\circ_{1} \widetilde{q} \circ_{2}$, if $Q_{q}\left(\circ_{1}\right)=Q_{q}\left(\circ_{2}\right)$ and $m_{q}\left(\mu^{0_{11}}\right)=m_{q}\left(\mu^{0_{2} n}\right)$ for all $n=1,2, \ldots$ and $\mu \in Q_{q}\left(\circ_{1}\right)$. The aim of this paper is to study the q-equivalence of generalized convolutions. We begin with properties of the sets P_{q} and $Q_{q}(0)$.

Lemma 1. If $\mu \circ v \in P_{q}$, then $\mu \in P_{q}$.
Proof. For $q \geqslant x(0)$ we have, by Theorem 1 in [8], the inequality $m_{q}(\mu \circ v) \geqslant m_{q}(\mu)+m_{q}(v)$, which yields the assertion of Lemma 1. Suppose that $q<\chi(0)$. Then, by formula (15) in [8], we have for $\lambda \in P$

$$
\begin{equation*}
m_{q}(\lambda)=c_{q} \int_{0}^{\infty}(1-\hat{\lambda}(t)) t^{-q-1} d t \tag{4}
\end{equation*}
$$

where c_{q} is a positive constant. Consequently, to prove the relation $\mu \in P_{q}$ it suffices to show that the integral $\int_{0}^{\infty}(1-\hat{\mu}(t)) t^{-q-1} d t$ is finite. Since, by Lemma 4.3 in [6], $\hat{\mu}(0)=1$, we can find a positive number t_{0} such that $\hat{\mu}(t)>0$ for $t \in\left[0, t_{0}\right]$. Moreover, by Lemma 4.4 in [6], $|\hat{\mu}(t)| \leqslant 1$ for $t \in[0, \infty)$, which implies the inequalities

$$
\begin{equation*}
\int_{t_{0}}^{\infty}(1-\hat{\mu}(t)) t^{-q-1} t<\infty \tag{5}
\end{equation*}
$$

and

$$
1-(\mu \circ v)^{\hat{n}}(t)=1-\hat{\mu}(t)+\hat{\mu}(t)(1-\hat{v}(t)) \geqslant 1-\hat{\mu}(t)
$$

for $t \in\left[0, t_{0}\right]$. Hence and from (4) we get the inequality

$$
\int_{0}^{t_{0}}(1-\hat{\mu}(t)) t^{-q-1} d t \leqslant c_{q}^{-1} m_{q}(\mu \circ v)
$$

which together with (5) completes the proof.

As a consequence of equation (1) we get the following statement:
Proposition 1. $\gamma(\mathrm{o}) \in Q_{q}(\mathrm{o})$ if and only if $\gamma(\mathrm{o}) \in P_{q}$.
Proposition 2. If either $q<\chi(\mathrm{O})$ or $q>\chi(\mathrm{o})$ and $Q_{q}(\circ) \neq\left\{\delta_{0}\right\}$, then $\gamma(\mathrm{o}) \in Q_{q}(\mathrm{o})$.

Proof. It has been proved in [1] (Lemma) that $\gamma(\mathrm{o}) \in P_{q}$ for $q<\chi(\mathrm{o})$. Consequently, by Proposition $1, \gamma(0) \in Q_{q}(0)$. In the case $q>x(0)$ and $Q_{q}(\circ) \neq\left\{\delta_{0}\right\}$ we have, by Theorem 2 in [8], $\gamma(\mathrm{O}) \in P_{q}$ which, by Proposition 1, yields the assertion of the proposition.

By Corollary 1 in [8] the set P_{q} is closed under the convolution \circ for $q \leqslant \chi(\mathrm{o})$. This yields the following proposition:

Proposition 3. If $q \leqslant x(0)$, then $Q_{q}(0)=P_{q}$.
Proposition 4. If $(k-1) \chi(0)<q \leqslant k \chi(0)$ for a certain $k=2,3, \ldots$ and $Q_{q}(\circ) \neq\left\{\delta_{0}\right\}$, then $Q_{q}(\circ)=\left\{\mu: m_{q}\left(\mu^{\circ(k-1)}\right)<\infty\right\}$.

Proof. First consider the case $k=2$. Then, by Proposition 2, $\gamma(0) \in P_{q}$, which, by Theorem 3 in [8], shows that the set P_{q} is closed under the convolution o . This yields the equality $Q_{q}(\circ)=P_{q}$.

Now suppose that $k \geqslant 3$. The inclusion $Q_{q}(\circ) \subset\left\{\mu: m_{q}\left(\mu^{0(k-1)}\right)<\infty\right\}$ is evident. In order to prove the converse inclusion we assume that $\mu^{\circ(k-1)} \in P_{q}$. Hence in particular it follows that $\mu^{0(k-1)} \in P_{r}$, where $r=(k-1) \chi(0)$. Applying Theorem 4 from [8] we conclude that $\mu^{\circ k} \in P_{r}$ and, consequently, by Corollary 6 in [8], $\mu^{\circ k} \in P_{q}$. Applying Theorem 4 from [8] again we get the relation $\mu^{\circ n} \in P_{q}$ for $n=1,2, \ldots$ Thus $\mu \in Q_{q}(\circ)$, which completes the proof.

Theorem 1. If $x\left(\mathrm{o}_{1}\right)=x\left(\mathrm{O}_{2}\right)=q$, then $\mathrm{O}_{1} \widetilde{q} \mathrm{O}_{2}$.
Proof. Observe that, by Proposition 3, $Q_{q}\left(\circ_{1}\right)=Q_{q}\left(\mathrm{O}_{2}\right)=P_{q}$ and, by Theorem 1 in [8], $m_{q}\left(\mu \circ_{j} v\right)=m_{q}(\mu)+m_{q}(v)$ for $j=1,2$, which yields the assertion of the theorem.

Theorem 2. If $q>\chi\left(\mathrm{O}_{j}\right)$ and $\gamma\left(\mathrm{o}_{j}\right) \notin P_{q}$ for $j=1,2$, then $\circ_{1} \widetilde{q} \circ_{2}$.
Proof. By Proposition 2 we have the equality $Q_{q}\left(\circ_{1}\right)=Q_{q}\left(\mathrm{O}_{2}\right)=\left\{\delta_{0}\right\}$, which yields the assertion of the theorem.

Example 4. From (3) we get the formula $m_{q}\left(\circ_{\alpha, n}\right)=\infty$ if $q \geqslant \alpha(n+1)$. Since $\chi\left(\mathrm{O}_{\alpha, n}\right)=\alpha$, the above theorem yields the relation $\mathrm{O}_{\alpha, n} \widetilde{q} \mathrm{O}_{\beta, m}$ whenever $q \geqslant \max (\alpha(n+1), \beta(m+1))$.

Theorem 3. If $q=2 \chi\left(\mathrm{O}_{1}\right)=2 \varkappa\left(\mathrm{O}_{2}\right), \gamma\left(\mathrm{O}_{1}\right), \gamma\left(\mathrm{O}_{2}\right) \in P_{q}$ and

$$
\begin{equation*}
m_{q}\left(\gamma\left(\mathrm{O}_{1}\right)\right) m_{q / 2}^{-2}\left(\gamma\left(\mathrm{O}_{1}\right)\right)=m_{q}\left(\gamma\left(\mathrm{O}_{2}\right)\right) m_{q / 2}^{-2}\left(\gamma\left(\mathrm{O}_{2}\right)\right), \tag{6}
\end{equation*}
$$

then $\mathrm{O}_{1} \widetilde{q}^{O_{2}}$.

Proof. As an immediate consequence of Propositions 1, 3 and 4 we get the equality $Q_{q}\left(\circ_{1}\right)=Q_{q}\left(\circ_{2}\right)=P_{q}$. Denoting by a_{q} the expression (6) we have, by Lemma 2 and Theorem 1 in [8], the formulae

$$
m_{q}\left(\mu \circ_{j} v\right)=m_{q}(\mu)+m_{q}(v)+a_{q} m_{q / 2}(\mu) m_{q / 2}(v)
$$

and

$$
m_{q / 2}\left(\mu \circ_{j} v\right)=m_{q / 2}(\mu)+m_{q / 2}(v)
$$

for $j=1,2$, which yield the recurrence formula

$$
m_{q}\left(\mu^{\left.\circ{ }^{j n}\right)}\right)=m_{q}\left(\mu^{\circ \mathrm{o}(n-1)}\right)+m_{q}(\mu)+m_{q}(\mu)+a_{q}(n-1) m_{q / 2}^{2}(\mu)
$$

for $j=1,2, n=1,2, \ldots$ and $\mu \in P_{q}$. Using the above formula we obtain the equality $m_{q}\left(\mu^{0_{1 n}}\right)=m_{q}\left(\mu^{0_{2} n}\right)$ for all $n=1,2, \ldots$, which completes the proof.

Example 5. From Examples 2 and 3 we get the formula $x\left(*_{\alpha, n-1 / 2}\right)$ $=x\left(\mathrm{O}_{2 \alpha, n}\right)=2 \alpha$. Setting $q=4 \alpha$ and $n \geqslant 2$ we get from (2) and (3), by a standard calculation,

$$
\begin{aligned}
& m_{q}\left(*_{\alpha, n-1 / 2}\right)=16 n(n-1), \quad m_{q / 2}\left(*_{\alpha, n-1 / 2}\right)=4(n-1), \\
& m_{q}\left(\circ_{2 \alpha, n}\right)=1 /\left(n^{2}-n\right), \quad m_{q / 2}\left(O_{2 \alpha, n}\right)=1 / n .
\end{aligned}
$$

It is easy to show that condition (6) is fulfilled. Consequently, by Theorem 3 we have the relation $*_{\alpha, n-1 / 2} \underset{q}{ } O_{2 \alpha, n}$ for $\alpha>0$ and $n \geqslant 2$.

Theorem 4. If $\circ_{1} \underset{q}{ } \mathrm{O}_{1}$ and $\gamma\left(\mathrm{o}_{1}\right) \in P_{q}$, then $\chi\left(\mathrm{O}_{1}\right)=\chi\left(\mathrm{O}_{2}\right)$.
Proof. Setting, for simplicity of the notation, $\gamma=\gamma\left(\mathrm{O}_{1}\right)$ and $r=\chi\left(\mathrm{O}_{1}\right)$ we have, by Proposition 1, $\gamma \in Q_{q}\left(\circ_{1}\right)$ and, by (1),

$$
m_{q}\left(\gamma^{\circ^{1 r}}\right)=n^{q / r} m_{q}(\gamma) \quad(n=1,2, \ldots) .
$$

Consequently,

$$
\begin{equation*}
m_{q}\left(\gamma^{\circ} 2 n\right)=n^{q / r} m_{q}(\gamma) \quad(n=1,2, \ldots) \tag{7}
\end{equation*}
$$

Further, denoting by $m^{*}(\mu)$ the greatest median of μ we have the inequality

$$
m_{q}(\mu) \geqslant \int_{m^{*}(\mu)}^{\infty} x^{q} \mu(d x) \geqslant 2^{-1}\left(m^{*}(\mu)\right)^{q},
$$

which, by (7), yields $n^{-1 / r} m^{*}\left(\gamma^{\circ_{2 n}}\right) \leqslant 2^{1 / q}\left(m_{q}(\gamma)\right)^{1 / q}$ for all $n=1,2, \ldots$ Applying the theorem from [7] on limit behaviour of medians we get the inequality

$$
\begin{equation*}
x\left(\mathrm{O}_{1}\right)=r \leqslant \chi\left(\mathrm{O}_{2}\right) . \tag{8}
\end{equation*}
$$

Since $\gamma \in Q_{q}\left(\mathrm{O}_{2}\right)$, we conclude, by Proposition 2, that $\gamma\left(\mathrm{O}_{2}\right) \in P_{q}$ for $q \neq x\left(\mathrm{O}_{2}\right)$. Consequently, by the first part of the proof, replacing O_{1} by O_{2} we have the inequality $x\left(\mathrm{O}_{2}\right) \leqslant \varkappa\left(\mathrm{O}_{1}\right)$ for $q \neq x\left(\mathrm{O}_{2}\right)$, which together with (8) yields the assertion of the theorem in the case $q \neq x\left(\mathrm{O}_{2}\right)$. In the remaining case $q=x\left(\mathrm{O}_{2}\right)$
we have, by Theorem 1 in [8], $m_{q}\left(\gamma^{\mathrm{o}^{2 n}}\right)=n m_{q}(\gamma)$ for $n=1,2, \ldots$, which, by (7), implies the formula $q=r=x\left(\mathrm{O}_{1}\right)$. The theorem is thus proved.

Lemma 2. If $\mu_{1} \circ_{1} \mu_{2} \circ_{1} \ldots \circ_{1} \mu_{k} \in Q_{q}\left(\circ_{1}\right)$ and $\circ_{1} \widetilde{q} \circ_{2}$, then

$$
m_{q}\left(\dot{\mu}_{1} \circ_{1} \mu_{2} \circ_{1} \ldots \circ_{1} \mu_{k}\right)=m_{q}\left(\mu_{1} \circ_{2} \mu_{2} \circ_{2} \ldots \circ_{2} \mu_{k}\right)
$$

Proof. By the assumption we have the relation

$$
\mu_{1}^{o_{1} n} \circ_{1} \mu_{2}^{o_{1}^{1 n}} \circ_{1} \ldots \circ_{1} \mu_{k}^{o_{1} n} \in P_{q}
$$

for every $n=1,2, \ldots$ Consequently, by Lemma 1 ,

$$
\begin{equation*}
\mu_{1}^{o_{1} r_{1}} \circ_{1} \mu_{2}^{0, r_{2}} \circ_{1} \ldots \circ_{1} \mu_{k}^{0,1 r_{k}} \in P_{q} \tag{9}
\end{equation*}
$$

for every k-tuple $r_{1}, r_{2}, \ldots, r_{k}$ of non-negative integers. Given an arbitrary k-tuple $a_{1}, a_{2}, \ldots, a_{k}$ of non-negative real numbers fulfilling the condition $\sum_{s=1}^{k} a_{s}=1$ we put $\lambda=\sum_{s=1}^{k} a_{s} \mu_{s}$. Since

$$
\begin{equation*}
\lambda^{\circ j n}=\sum_{r_{1}+r_{2}+\ldots+r_{k}=n} n!\left(r_{1}!r_{2}!\ldots r_{k}!\right)^{-1} a_{1}^{r_{1}} a_{2}^{r_{2}} \ldots \tag{10}
\end{equation*}
$$

$$
\ldots a_{k}^{r_{k}} \mu_{1}^{o_{i}^{j} r_{1}} \circ_{j} \mu_{2}^{0_{j}^{j} r_{2}} \circ_{j} \ldots \circ_{j} \mu_{k}^{\rho_{k}^{j} r_{k}}
$$

for $j=1,2$ and $n=1,2, \ldots$, we conclude, by (9), that $\lambda^{0_{1}} \in P_{q}$ for every $n=1,2, \ldots$ or, equivalently, $\lambda \in Q_{q}\left(\circ_{1}\right)$. Thus we have the equality $m_{q}\left(\lambda^{{ }^{1_{1}} k}\right)=m_{q}\left(\lambda^{o^{2 k}}\right)$, which, by the arbitrariness of $a_{1}, a_{2}, \ldots, a_{k}$ and formula (10), yields
for any k-tuple $r_{1}, r_{2}, \ldots, r_{k}$ of non-negative integers fulfilling the condition $r_{1}+r_{2}+\ldots+r_{k}=k$. Taking $r_{1}=r_{2}=\ldots=r_{k}=1$ we get the assertion of the theorem.

For $\mu_{1}, \mu_{2}, \ldots, \mu_{k} \in P$ with $\mu_{1} \circ \mu_{2} \circ \ldots \circ \mu_{k} \in P_{q}$ we introduce the notation

$$
M_{q, k}\left(\circ, \mu_{1}, \mu_{2}, \ldots, \mu_{k}\right)=\sum_{r=1}^{k}(-1)^{r} \sum_{i_{1}, i_{2}, \ldots, i_{r}} m_{q}\left(\mu_{i_{1}} \circ \mu_{i_{2}} \circ \ldots \circ \mu_{i_{r}}\right)
$$

where the summation $\sum_{i_{1}, i_{2}, \ldots, i_{r}}$ runs over all r-element subsets $\left\{i_{1}, i_{2}, \ldots, i_{r}\right\}$ of the set of indices $\{1,2, \ldots, k\}$.

As a simple consequence of Lemma 2 we get the following statement:
Lemma 3. If $v_{1} \circ_{1} v_{2} \circ_{1} \ldots \circ_{1} v_{s} \circ_{1} \mu_{2} \circ_{1} \ldots \circ_{1} \mu_{k} \in Q_{q}\left(\circ_{1}\right)$ and $\circ_{1} \widetilde{q}^{\circ} \circ_{2}$, then
$M_{q, k}\left(\circ_{1}, v_{1} \circ_{1} \ldots \circ_{1} v_{s}, \mu_{2}, \ldots, \mu_{k}\right)=M_{q, k}\left(\circ_{2}, v_{1} \circ_{2} \ldots \circ_{2} v_{s}, \mu_{2}, \ldots, \mu_{k}\right)$.
Now we are in a position to prove a rather unexpected result:
Theorem 5. If $q \neq n \chi\left(\mathrm{O}_{1}\right)$ for $n=1,2, \ldots, \gamma\left(\mathrm{O}_{1}\right) \in P_{q}$ and $\circ_{1} \underset{q}{ } \circ_{2}$, then $\mathrm{O}_{1}=\mathrm{O}_{2}$ 。

Proof. Notice that, by Theorem 4, $x\left(\mathrm{O}_{1}\right)=x\left(\mathrm{O}_{2}\right)=x$. For simplicity of the notation we put $\gamma=\gamma\left(\mathrm{O}_{1}\right)$. Further, denote by k the positive integer fulfilling the condition $(k-1) x<k \varkappa$. Given $a, b \in(0, \infty)$ we put $c=g(\varkappa, a, b)$ and $\lambda_{2}=\lambda_{3}=\ldots=\lambda_{k}=\gamma$. By formula (1) we have

$$
T_{a} \gamma \circ_{1} T_{a} \gamma \circ_{1} T_{b} \gamma \circ_{1} T_{b} \gamma=T_{a} \gamma \circ_{1} T_{b} \gamma \circ_{1} T_{c} \gamma=T_{c} \gamma \circ_{1} T_{c} \gamma .
$$

Since, by (1) and Proposition 1, $T_{a_{1}} \gamma \circ_{1} \ldots \circ_{1} T_{a_{s}} \gamma \circ_{1} \lambda_{2} \circ_{1} \ldots \circ_{1} \lambda_{k} \in Q_{q}\left(\circ_{1}\right)$ for any $a_{1}, \ldots, a_{s} \in(0, \infty)$, we conclude, by Lemma 3 , that

$$
\begin{align*}
& M_{q, k}\left(\circ_{2}, T_{c} \gamma \circ_{2} T_{c} \gamma, \lambda_{2}, \ldots, \lambda_{k}\right)-2 M_{q, k}\left(\circ_{2}, T_{a} \gamma O_{2} T_{b} \gamma \circ_{2} T_{c} \gamma, \lambda_{2}, \ldots, \lambda_{k}\right) \tag{11}\\
& +M_{q, k}\left(\circ_{2}, T_{a} \gamma \circ_{2} T_{a} \gamma \circ_{2} T_{b} \gamma \circ_{2} T_{b} \gamma, \lambda_{2}, \ldots, \lambda_{k}\right) \\
& =M_{q, k}\left(\circ_{1}, T_{c} \gamma \circ_{1} T_{c} \gamma, \lambda_{2}, \ldots, \lambda_{k}\right)-2 M_{q, k}\left(\circ_{1}, T_{a} \gamma \circ_{1} T_{b} \gamma \circ_{1} T_{c} \gamma, \lambda_{2}, \ldots, \lambda_{k}\right) \\
& +M_{q, k}\left(\circ_{1}, T_{a} \gamma \circ_{1} T_{a} \gamma \circ_{1} T_{b} \gamma \circ_{1} T_{b} \lambda, \lambda_{2}, \ldots, \lambda_{k}\right)=0 .
\end{align*}
$$

Let $\mu \rightarrow \hat{\mu}$ be the characteristic function of the convolution O_{2}. Applying Lemma 2 and formulae (15) and (17) from [8] we have

$$
M_{q, k}\left(O_{2}, \mu_{1}, \mu_{2}, \ldots, \mu_{k}\right)=x \Gamma(-q / x)^{-1} m_{q}\left(\gamma\left(\mathrm{O}_{2}\right)\right) \int_{0}^{\infty} t^{-q-1} \prod_{j=1}^{k}\left(1-\hat{\mu}_{j}(t)\right) d t
$$

whenever $\mu_{1} \circ_{2} \mu_{2} \circ_{2} \ldots \circ_{2} \mu_{k} \in P_{q}$. Comparing the above formula with (11) we infer that

$$
\int_{0}^{\infty}(\hat{\gamma}(c t)-\hat{\gamma}(a t) \hat{\gamma}(b t))^{2}(1-\hat{\gamma}(t))^{k-1} t^{-q-1} d t=0
$$

Since, by Lemma 4.4 in [6], $|\hat{\gamma}(t)| \leqslant 1$ and, by Lemma 2.1 in $[9], \hat{\gamma}(t) \neq 1$ for almost every $t \in[0, \infty)$, the integrand is non-negative almost everywhere. This implies the equality $\hat{\gamma}(a t) \hat{\gamma}(b t)=\hat{\gamma}(c t)$ for almost every $t \in[0, \infty)$. By the continuity of the characteristic function the above equality holds for all $t \in\left[0,{ }^{\prime} \infty\right)$. Consequently, $T_{a} \gamma \circ_{2} T_{b} \gamma=T_{c} \gamma$, which together with the equality $x\left(\mathrm{O}_{1}\right)=x\left(\mathrm{O}_{2}\right)=x$ shows that the probability measures γ and $\gamma\left(\mathrm{O}_{2}\right)$ are similar. Now applying Theorem 4.3 from [6] we conclude that $o_{1}=o_{2}$. The theorem is thus proved.

Notice that, by Theorem 1 and Examples 4 and 5, the assumptions $q \neq x\left(\mathrm{O}_{1}\right), q \neq 2 x\left(\mathrm{O}_{1}\right)$ and $\gamma\left(\mathrm{O}_{1}\right) \in P_{q}$ of the above theorem are essential. The problem whether the assumption $q \neq n x\left(\mathrm{O}_{1}\right)$ for $n \geqslant 3$ may be omitted is still open. For α-convolutions the following theorem gives an answer to this question:

THEOREM 6. If $q \neq \alpha$ and $\circ \widetilde{q}^{*} *_{\alpha}$, then $O=*_{\alpha}$.

Proof. Since $\psi\left(*_{\alpha}\right)=\alpha, \gamma\left(*_{\alpha}\right)=\delta_{1}$ and, consequently, $\gamma\left(*_{\alpha}\right) \in P_{q}$, it suffices, by Theorem 5, to consider the case $q=k \alpha$ for integers $k \geqslant 2$. It is clear that

$$
\begin{equation*}
Q_{k \alpha}(0)=Q_{k \alpha}\left(*_{\alpha}\right)=P_{k \alpha}, \tag{12}
\end{equation*}
$$

$$
\delta_{1}^{*_{\alpha} n}=T_{n^{1 / \alpha}} \delta_{1} \quad(n=1,2, \ldots) \quad \text { and } \quad M_{k \alpha, k}\left(*_{\alpha}, \delta_{1}, \delta_{1}, \ldots, \delta_{1}\right)=(-1)^{k} k!
$$

Applying Lemma 3 for $s=1, v_{1}=\mu_{2}=\ldots=\mu_{k}=\delta_{1}$ we get the formula

$$
\begin{equation*}
M_{k, \alpha, k}\left(\circ, \delta_{1}, \delta_{1}, \ldots, \delta_{1}\right)=(-1)^{k} k! \tag{13}
\end{equation*}
$$

Further, by Theorem 4, $\varkappa(0)=\alpha$ and, by Proposition $2, \gamma(0) \in Q_{k \alpha}(0)$, which, by (12) and Lemma 2 in [8], yields the formula

$$
(-1)^{k} k!m_{a}(\gamma(\mathrm{o}))^{-k} m_{k a}(\gamma(\mathrm{o}))=M_{k a, k}\left(\mathrm{O}, \delta_{1}, \delta_{1}, \ldots, \delta_{1}\right)
$$

Hence and from (13) we get the equality

$$
\begin{equation*}
m_{k \alpha}(\gamma(0))=m_{\alpha}^{k}(\gamma(0)) . \tag{14}
\end{equation*}
$$

Taking into account the assumption $k \geqslant 2$ we have the inequalities

$$
m_{k \alpha}(\gamma(0))^{1 /(k \alpha)} \geqslant m_{2 \alpha}(\gamma(0))^{1 /(2 \alpha)} \geqslant m_{\alpha}(\gamma(0))^{1 / \alpha}
$$

which together with (14) yield $m_{2 \alpha}(\gamma(0))=m_{a}^{2}(\gamma(0))$. Thus

$$
\int_{0}^{\infty}\left(x^{\alpha}-m_{\alpha}(\gamma(\mathrm{o}))\right)^{2} \gamma(0)(d x)=0
$$

which shows that the characteristic measure $\gamma(0)$ is concentrated at the point $m_{\alpha}(\gamma(0))^{1 / \alpha}$. Since $\gamma(0) \neq \delta_{0}$, we conclude that the characteristic measures $\gamma(0)$ and $\gamma\left(*_{a}\right)$ are similar. Applying Theorem 4.3 from [6] we get the assertion of the theorem.

REFERENCES

[1] N. H. Bingham, On a theorem of Klosowska, Colloq. Math. 48 (1983), pp. 117-124.
[2] D. G. Kendall, Foundation of a theory of random sets, in: Stochastic Geometry (Eds. E. F. Harding and D. G. Kendall), Wiley, 1974, pp. 322-376.
[3] J. F. Kingman, Random walks with spherical symmetry, in: Colloquium on Combinatorial Methods in Probability Theory, Aarhus 1962, pp. 40-46.
[4] K. Urbanik, Generalized convolutions, Studia Math. 23 (1964), pp. 217-245.
[5] - Generalized convolutions III, ibidem 80 (1984), pp. 167-189.
[6] - Generalized convolutions IV, ibidem 83 (1986), pp. 57-95.
[7] - Limit behaviour of medians, Bull. Polish Acad. Sci. Math. 33 (1985), pp. 413-419.
[8] - Moments and generalized convolutions, Probab. Math. Statist. 6 (1985), pp. 173-185.
[9] - Domains of attraction and moments, ibidem 8 (1987), pp. 89-101.
[10] - Analytical methods in probability theory, in: Transactions of the Tenth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes, Prague 1988, pp. 151-163.
[11] V. E. Vol'kovich, Multidimensional B-stable distributions and realizations of generalized convolutions, in: Problems of Stability of Stochastic Models, Moscow 1984, pp. 40-54 (in Russian).

Institute of Mathematics
Wroclaw University
pl. Grunwaldzki $2 / 4$
50-384 Wrocław, Poland
\square

