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Abstract. We yield new laws of large numbers for weighted 
rmms of random elements taking values in Banach space with the 
help of the Heinkel's and Pisier's weak I ,  exponential inequali- 
ties [6] .  

I 

Exponential bounds (see the table given in [a) are an important 
I tool in proving limit theorems. We use the weak I ,  exponential bounds in the 

I 
proof of the laws of large numbers (LLN) for weighted sums of random 
elements taking values in Banach spaces. With the help of Pisier's inequality 
( [6] ,  Proposition 1.1, and [13], Lemma 2.7) we examine the Strong LLN for 
certain random elements with values in an arbitrary Banach space and with 
the help of HeinkeI's inequality ( [6 ] ,  Theorem 3.1) we prove the LLN with 
respect to complete convergence in Banach spaces of type p. 

Some results of this paper were announced in [lq. 
Let E be a separable real Banach space. In the sequel we shall distinguish 

the notions of random element (taking values in a Banach space) and random 
variable (assuming values in R). A random variable E is said to be a Bernoulli 
random variable if P { E  = 1) = P ( E  = - 1) = 1/2. Let (X,),,, be independent 
random elements and a = (a,(n): 1 < k d n,  EN) be a triangular array 
of real numbers which in the sequel will be called a weight. We call 
T, = ~ ~ , , a , ( n ) X ,  a weighted sum of random elements and S, = zL=,X, 
the unweighted partial sum of random elements. If (XklkGn are independent 
copies of the random element X, then we use the notation T,(X) and S,(X), 
respectively. 

In the sequel we shall require the following condition on our weight a: 

(A) There exist A > 0 and p < 2 such that 

max 1 a, (n)l d An - lip 
k<n 

I for all sufficiently large n E N. 
I 



Let 1 < s < co be given and let (bk), ,  , be a sequence of real numbers. 
Let us set 

where ,, is the non-increasing rearrangement of (IbkllkSn. For a random 
variable { let us put 

To facilitate the formulation of the first theorem we introduce the random 
element X = C z  r i x i  (in which the series converges almost surely), where (xi)  
is a non-random sequence of elements in E and (qi )  is a sequence of 
independent random variables. Note that we do not require that the sequence 
(qi) be identically distributed. We should mention that Matsak [l l] proved the 
central limit theorem for such random elements. 

Denote by 8, the symmetric random variable for which the absolute value 
has the Weibull distribution with parameter q > 0, that is, P{lflqg,l > t )  
= exp(-P) and let (/3q,i)i31 be the independent copies of 8,. 

THEOREM 1. Let X = C;, g,xi and assume that the weight re satisfies the 
condition (A). If there exists s, 2 > s > p, such that 

(1) W = z,"=, Pq,;xi converges a s .  for l/q + l/s = 1, 
(2) As(su~i> i IriI) < a, 

then T , ( X )  -t 0 a.s. as n + oo. 

We need some lemmas in order to prove out first theorem. In the sequel 
we shall use the same notation as in the formulation of the theorem. 

LEMMA 1. If W = f 1 4 , i ~ i  converges a.s., then it converges in Lp(E). 

Proof.  It is sufficient to show that W E  L,(E) ([14], the Corollary to 
Theorem V.3.2). It suffices to prove the following inequality for all t > 0 
(see [14], Theorem V.5.1): 

t - - .  

where the constant C does not depend on t. In the particular case of 8, being 
a Weibull random variable this inequality can be rewritten as 

m 

1 e x p ( - ~ ~ } ~ ~ - ~ d u  < CtPexp{-tq). 
t 

Even a more precise estimation, i.e., 
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holds since 

( 7;' -.) tP- 'exp{ - tq ]  < t P - l [ e ~ p { - t Q ) ]  q-t- -t 

and p < 2 < q. The terms of this inequality are the derivatives of the 
corresponding terms of (1) with the opposite sign. Hence (I) follows from (2) 
after the integration of (2) on the half-line jt, cn). 

PISIBR'S INEQUALITY ( [ 6 ] ,  Remark after Proposition 1.1; [23], Lemma 2.7). 
Let 1 < s < 2, kt g be the conjugate of s, l / q +  l / s  = I, (bk)kcn c R, and let 
( E ~ ) , ,  be independent Bernoulli random variables. Then, for k, = q(q - 2112, 

. . f l  

The next Iemma is only a reformulation of Pisier's inequality. 

LEMMA 2- Let r = s=, blel- f!d9v~ Il(bk)k<nllr,m &. where (bklk,. c R, 
and let (ck) be a sequence of independent Bernoulli random variables. Then, for 
any t > 0, 

P(I.tl > t) 4 2P{kslvl > t ) .  
I 

Let (qk,,),, , be independent copies of the sequence (y,). w e -  iitroduce the 

I ~ ( i ,  s~ n, = I l ( ~ k , i ) k  <s l ls,m. 

LEMMA 3. Let qi be a sequence of symmetric random variables, let 

Then the inequality 
I 

holds. 
Proof. First consider the case qk,i = ~ ~ , ~ b ~ , ~ ,  where bk,i E R and qSi are 

independent Bernoulli random variables. Write 

It follows from Lemma 2 that P{lril ; t )  < 2P{k,Jvil > t )  for all  EN. Using 
Theorem V.4.5 of [14] we conclude that 



28 A. I. Volodin 

The general case follows from this by a standard procedure. Replace the 
symmetric random variables v i  by the random variables q i ~ ,  which have the 
same distributions. Here E~ are independent Bernoulli random variables which 
are independent of qi. The left-hand side of the inequality from Lemma 3 is 
averaged by E~ for fixed qi. Finally, by applying Fubini's theorem we obtain the 
conclusion (see, e.g., the proof of Lemma V.2.1 in [14]). rn 

Note, moreover, 

KWAPIE#S INEQUALITY ([14], Lemma V.4.1 (a)). Let (Xk),,, be independent 
symmetric random elements and (bklkGn c R. Then for any t > 0 

Proof of Theorem 1. Consider at first the case of symmetric qi. Let 
X, = xz, q k , ~  xi be independent copies of X. Applying Kwapieri's inequality 
we see that 

by the condition (A). Hence it is sufficient to prove that S,(X)/nl'P + 0 a.s, as 
n 4 a. Let Zm = x:=, r ix i  and Zk,m = zy=l &,iXi  be independent copies 
of 2,. By Lemma 3 and Hohann-Jorgensen's inequality ([14], Section V.4, 
exercise 1 (a)) we obtain 

Note that from Lemma 1 we obtain 

Furthermore 

by the Marcus-Pisier result ([6], Proposition 2.2; 1131, Lemma 4.11). Since 
s > p, we have 

whence sup,E IIS,(X-ZJ/nl/PIIP -+ 0 as m + oo. 
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Note that the random vector Z ,  takes values in the finite-dimensional 
space Span(x, , . . . , x,), which has the type p (see the definition below) and 
A,(llZ,(/) < rn since A,(supi, (qil) < co and s p. Then s,(z,J/~'~P + 0 in 
probability as n + oo (see [lo], Theorem 3.1). From Lemma 3.6 of [12] we may 
conclude that S,(X)/n1IP + 0 in probability as n + co. 

If X is an arbitrary, not necessarily symmetric centered random element 
which satisfies the hypotheses of Theorem 1, then its symmetrization X8 also 
satisfies the hypotheses of Theorem 1. Consequently, by Lemma V.3.4 (a) 
of [14] we obtain 

It  remains to refer to the above-mentioned result of Norvaisa ([127, Lem- 
ma 3.6). So, Sn(X)/n1Ip + 0 in probability as n co. 

Note that, by [2], Theorem 111.2.14, and our Lemma 1, 

where 

C = 8PE(sylqil)p(EIf11)-p and E(~up(g,()~ < c ~ .  
1 i 

Consequently, by [3] we have s,(x)/~'I* + 0 a.s. EN 

Now we shall return to the study of LLN with respect to complete 
convergence. 

The sequence of random elements (Y,) converges completely to zero if for 
all E > 0 the series z,"=, P{ (1 Y,(( > E) converges. 

This definition was introduced by Hsu and Robbins 171, where it was 
shown that the sequence of arithmetic means of independent and identically 
distributed random variables converges completely to the expected value of the 
sums whenever their variance is finite. The converse was proved by Erdos [4]. 
This result was generalized in various ways and we can refer to papers of Adler 
El], Gut [5] and Klesov [9] for further information. The Banach space 
situation was examined by T.-C. Hu et al. [a]. 

R e d  (see 1131) that a Banach space E is said to be of Rademacher type 
p (I < p < 2) if for any sequence (x,) c E the convergence of the -series z,"=, Jlx,llP implies the a.s. convergence of series x,"=, ~,x,, where E, are i.i.d. 
Bernoulli random variables. Analogously, a Banach space E is said to be of 
stable type p (1 < p < 2) if for any sequence (x,J c E the convergence of the 
series x,"=, )Ixk(/* implies the as. convergence of series C,"=, ykxk, where y, are 
i.i.d. p-stable random variables with characteristic function exp(-ltlP). 

For a Banach space E let us set p(E)  = sup(p: E is of stable type p). Two 
facts are well known (see [13]): 

(I) the interval of stable types is opened, that is, if E is of stable type p < 2, 
then ~ ( q  > p; 
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(2) the interval of Rademacher types is closed, that is, E is of Rademacher 
trpe P (El. 

We shall say that the sequence of random variables (X,) is stochastically 
dominated by a positive random variable {, and we write (X,) < t, if for 
any t > 0 

supP(IIX,II > t )  G P{S: > t ) .  
k 

For the proof of the next theorem we need 

HEINKEL'S INEQUALITY (see [6], Theorem 3.1). Let (X,) be independent 
symmetric randona elements with values in the Banach space E with p(E) > 1, 
1 < s < p(E). Let q be the conjugate of s, i.e., 1/q+ 1/s = 1 .  Then there exist 
positiue constants L = L(s) and M = M(s ,  p(E)) such that, for all t > O and 
E > 0,  

P{IISnII > 8 )  p(l\(~Ixkll)k<nlls,m > t )  + M e x ~ ( - ~ ( & / ~ ) ~ ) -  

At this time we introduce the class of random variables A, = {t: 
Elt-1' < 11. 

Now we can formulate the law of large numbers with respect to uniform 
variant of complete convergence. 

THEOREM 2. Let E be a Banach space of stable type p (1 < p < 21, of 
independent symmetric random elements (X,) < and weight a satisfying the 
condition (A). Then, for all r > 2pp(E)/Cp(E) - l ]  and E > 0, 

Proof. Fix u such that r > u > 2pp(E)/[p(E)- 11. Let v = 2/u. Note that 
r > 2/v and v2< l / p -  l ip@).  Fix some s so that p < s c p(E) satisfying 
v < l / p  - l / s  < l ip-  l /p(E),  that is, l ip-  l / s  - v > 0. 

Note that, by Kwapieri's inequality, 

Hence it is sufficient to prove that - .  

Set Xk,. = XkI{llXkll < nu) and Un = (z;=, x;,,) /~ ' IP.  Since 

{IISnll/nllP > c ( 1 1  Unll > 8 )  u {Sn/nllP # Un)  
it follows that 
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We estimate each of the sums z: and xi separately. First note that by 
Heinkel's inequality with C = nv+l/s-ljJ' we have 

P{II Unll > 8) < P(II(Xk,,/nliP)ks,ll,,~ > nUt'ls-l/P I 

Note that the first term on the right-hand side of the last inequality is equal to 
zero if 

So P{IIU,ll > E) < M e x p { - L E ~ ~ " ) ,  where w = q(l/p-l/s-v) > 0. Then 
91 

X ; < M  ~ e x p { - L ~ q n " } + O  for N j m .  
4 = N  

Next observe that 

whenever r > 2/v. 
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