PROBABILITY AND MATHEMATICAL STATISTICS Vol. 14, Fasc. 1 (1993), pp. 57–62

A GENERALIZATION OF KAWADA AND ITÔ'S THEOREM

PETER EISELE (EICHSTÄTT)

Abstract. For a locally compact group G, a continuous automorphism T, and a probability measure λ on G the sequence given by $\varrho_n := \lambda T(\lambda) \dots T^{n-1}(\lambda)$ is considered. Under the assumption that the set $\{T^{-n}: n \in N\}$ is equicontinuous it is shown that $(\varrho_n)_{n \in N}$ converges, and then necessarily to an idempotent probability measure, if and only if the support of λ is not contained in a proper coset $Hx = xT(H) \neq H$ of a compact subgroup H of G and the support of λ is contained in a compact T-invariant subgroup of G.

1. Introduction. The sequence $(\mu^n)_{n\in\mathbb{N}}$ of the *n*-th convolution powers of a probability measure μ on a compact group G converges, and then necessarily to an idempotent probability measure, if and only if the support of μ is not contained in a proper coset $Hx = xH \neq H$ of a compact subgroup H of G. This is the conclusion of a well-known theorem of Kawada and Itô [6]. Clearly, this result remains true for a not necessarily compact locally compact group G if the condition is completed by requiring that the support of μ generates a compact group. In the present paper we shall provide a necessary and sufficient condition (similar to that in Kawada and Itô's theorem) on the support of a regular probability measure λ on a locally compact group $G(\lambda \in \mathscr{P}(G))$ for the convergence of the sequence given by

$$\varrho_n := \varrho_n(\lambda, T) := \lambda T(\lambda) \dots T^{n-1}(\lambda).$$

Here T is an element of the group Aut (G) of continuous automorphisms of G. Clearly, for T = Id we are back in the situation of Kawada and Itô's theorem. We need the following

1.1. DEFINITION. For a locally compact group G, $\lambda \in \mathscr{P}(G)$, and $T \in \operatorname{Aut}(G)$ let us define

 $\mathscr{H}(\lambda, T) := \{ H < G : H \text{ is compact}, \}$

and there is a coset Hx of H such that $supp(\lambda) \subset Hx = xT(H)$.

If $\mathscr{H}(\lambda, T) \neq \emptyset$, let

 $H(\lambda, T) := \bigcap \{ H \subset G \colon H \in \mathscr{H}(\lambda, T) \}.$

Note that if $\mathscr{H}(\lambda, T) \neq \emptyset$, which is always true for compact $G, H(\lambda, T) \in \mathscr{H}(\lambda, T)$ is the smallest compact subgroup H of G such that $\operatorname{supp}(\lambda) \subset Hg = gT(H)$ for any $g \in \operatorname{supp}(\lambda)$.

1.2. LEMMA. If $\mathscr{H}(\lambda, T) \neq \emptyset$, then the following statements are equivalent: (1) $\operatorname{supp}(\lambda) \subset H(\lambda, T)$.

(2) The support of λ is not contained in a proper coset $Hx = xT(H) \neq H$ of a compact subgroup H of G.

Proof. Clearly, if (1) does not hold, then by definition

$$\operatorname{supp}(\lambda) \subset H(\lambda, T)g = gT(H(\lambda, T)) \neq H(\lambda, T)$$

for any $g \in \text{supp}(\lambda)$. Hence (2) does not hold. Conversely, if (2) does not hold, then there exists H < G such that

$$\operatorname{supp}(\lambda) \subset Hg = gT(H) \neq H.$$

Since $H(\lambda, T) \subset H$ and supp $(\lambda) \cap H = \emptyset$, this implies that (1) does not hold.

2. The compact case for inner T. As a first step we go back to the case of compact G. We want to point out a result due to Maurer [7] or Tortrat [8] which is a slight extension of Kawada and Itô's theorem and written down in a readable way in [5]. For $\mu \in \mathscr{P}(G)$ let $H(\mu)$ denote the smallest compact subgroup of G which contains $\operatorname{supp}(\mu)$ in a coset $H(\mu) y = yH(\mu)$. Then the sequence given by $\mu^n x^{-n}$ converges to an idempotent measure, namely the normed Haar measure $\omega_{H(\mu)}$ on $H(\mu)$ for all $x \in H(\mu)y$. For our purposes we need a little bit more.

2.1. LEMMA. Under the above assumptions $(\mu^n x^{-n})_{n \in \mathbb{N}}$ converges, and then necessarily to $\omega_{H(\mu)}$, if and only if $x \in H(\mu)y$.

Proof. Only the forward implication remains to prove. To do this let $x \in G$ and assume $(\mu^n x^{-n})_{n \in N}$ to be convergent. For $y \in \operatorname{supp}(\mu)$ the sequence $(y^n x^{-n})_{n \in N}$ has the limit point e. Indeed, as is well known the sequence of the *n*-th powers of an element of any compact group has the unit element as a limit point. In particular, the sequence $((y, x^{-1})^n)_{n \in N} \subset G \times G$ has the limit point (e, e), from which the assertion follows by continuity. Consequently, the sequence given by

$$\mu^n x^{-n} = \mu^n \gamma^{-n} x^n \gamma^{-n}$$

has $\omega_{H(u)}$ as a limit point. Hence $\mu^n x^{-n} \xrightarrow{n} \omega_{H(u)}$. Since

$$\mu \omega_{H(\mu)} x^{-1} = \mu \Big(\lim_{n \to \infty} \mu^n x^{-n} \Big) x^{-1} = \lim_{n \to \infty} \mu^{n+1} x^{-(n+1)} = \omega_{H(\mu)},$$

we obtain $yx^{-1} \in H(\mu)$ from the support formula, and hence $x \in H(\mu)y$ as required.

Now we are ready to prove our theorem for an inner automorphism $T \in \text{In}(G)$.

2.2. THEOREM. Let G be a compact group, $T \in \text{In}(G)$, $\lambda \in \mathscr{P}(G)$, and $\varrho_n := \lambda T(\lambda) \dots T^{n-1}(\lambda)$. Then the following statements are equivalent:

(1) $(\varrho_n)_{n\in\mathbb{N}}$ converges in $\mathscr{P}(G)$.

(2) $(\varrho_n)_{n \in \mathbb{N}}$ converges to $\omega_{H(\lambda,T)}$.

(3) The support of λ is not contained in a proper coset $Hx = xT(H) \neq H$ of a compact subgroup H of G.

Proof. Let $T = (x \to txt^{-1})$. Then we have $\varrho_n = (\lambda t)^n t^{-n}$. From Lemma 2.1 we infer for $y \in \text{supp}(\lambda)$ that $\lim_{n \to \infty} (\lambda t)^n (yt)^{-n} = \omega_{H(\lambda t)}$ and that the sequence $((\lambda t)^n x^{-n})_{n \in \mathbb{N}}$ converges if and only if $x \in H(\lambda t) yt$. Hence $(\varrho_n)_{n \in \mathbb{N}}$ converges if and only if $t \in H(\lambda t) yt$, which is equivalent to $y \in H(\lambda t)$. Since y was an arbitrary element of $\text{supp}(\lambda)$, $(\varrho_n)_{n \in \mathbb{N}}$ converges if and only if $\text{supp}(\lambda) \subset H(\lambda t)$. Moreover, in the case of convergence we have $\lim_{n \to \infty} \varrho_n = \omega_{H(\lambda t)}$. Since, by definition, $H(\lambda t)$ is minimal with $\text{supp}(\lambda t) \subset H(\lambda t) yt = ytH(\lambda t)$, which is equivalent to $\text{supp}(\lambda) \subset H(\lambda t) y = ytH(\lambda t)t^{-1} = yT(H(\lambda t))$, we have $H(\lambda t) = H(\lambda, T)$. Hence the assertion follows from Lemma 1.2.

The group Aut (G) is a topological group with respect to the natural topology. For any subgroup L of Aut (G) the semidirect product $G \rtimes L$ is a topological group with respect to the product topology. For these and related facts see [4].

2.3. COROLLARY. The conclusions of Theorem 2.2 remain true if " $T \in In(G)$ " is replaced by " $G \rtimes \langle T \rangle^-$ compact".

Proof. Put $F := G \rtimes \langle T \rangle^{-}$, $\iota: G \to F: x \to (x, \text{ Id})$, and $\pi: F \to G: (x, R) \to x$. Then $\mu := \iota(\lambda) \in \mathscr{P}(F)$, and $S: (x, R) \to (e, T)(x, R)(e, T)^{-1} = (Tx, R)$ from F into F defines an element of In(F). Observing that $H(\lambda, T) = \pi(H(\mu, S))$ and applying Theorem 2.2 to the sequence

$$\sigma_n := \mu S(\mu) \dots S^{n-1}(\mu) = \iota(\varrho_n)$$

we obtain

 $\varrho_n \operatorname{converges}(\operatorname{to} \omega_{H(\lambda,T)}) \Leftrightarrow \sigma_n \operatorname{converges}(\operatorname{to} \omega_{H(\mu,S)}) \Leftrightarrow \operatorname{supp}(\mu) \subset H(\mu, S)$ $\Leftrightarrow \operatorname{supp}(\lambda) = \pi \left(\operatorname{supp}(\mu)\right) \subset \pi \left(H(\mu, S)\right) = H(\lambda, T). \blacksquare$

3. The case of general G. At first we shall provide some facts about equicontinuous families of automorphisms of a topological group.

3.1. DEFINITION. Let G be a topological group, $\mathscr{G} \subset \operatorname{Aut}(G)$. \mathscr{G} is called *equicontinuous* if every neighbourhood U of e admits a neighbourhood V of e such that $V \subset T^{-1}(U)$ for all $T \in \mathscr{G}$.

3.2. LEMMA. Let $\mathscr{G} \subset \operatorname{Aut}(G)$. Then the following statements are equivalent: (1) \mathscr{G} is equicontinuous.

(2) If U is a neighbourhood of e, then $\bigcap_{T \in \mathscr{S}} T^{-1}(U)$ is a neighbourhood of e.

P. Eisele

If $\mathscr{S} = \{T^z \colon z \in \mathbb{Z}\}$, then (1) is equivalent to

(3) e has a neighbourhood basis of T-invariant sets.

The proof is clear.

3.3. LEMMA. Let G be a compact group and $T \in Aut(G)$. Then the following statements are equivalent:

- (1) $\{T^{-n}: n \in N\}$ is equicontinuous.
- (2) $\{T^z: z \in \mathbb{Z}\}$ is equicontinuous.
- (3) $\langle T \rangle$ is relatively compact in Aut(G).
- (4) $G \rtimes \langle T \rangle^{-}$ is compact.

Proof. By the theorem of Arzela-Ascoli [9] a subset of Aut(G) is equicontinuous if and only if it is relatively compact with respect to the compact open topology. By [3] the compact open topology and the natural topology on Aut(G) coincide if G is compact. Since Aut(G) endowed with the natural topology is a topological group, the inversion is continuous, which implies that either all or none of the sets $\{T^{-n}: n \in N\}$, $\{T^n: n \in N\}$, and $\{T^z: z \in \mathbb{Z}\}$ are relatively compact in Aut(G).

3.4. LEMMA. Let G be a locally compact group, $T \in \text{Aut}(G)$, $\lambda \in \mathscr{P}(G)$, and assume $\{T^{-n}: n \in N\}$ is equicontinuous. If $(\varrho_n)_{n \in \mathbb{N}}$ converges to $v \in \mathscr{P}(G)$, then $v = v^2$, and for G' := supp(v) we have

$$T(G') = G'$$
 and $\operatorname{supp}(\lambda) \subset G'$.

Proof. Putting $v_{k,n} := T^k(\lambda) \dots T^{n-1}(\lambda)$ for k < n we obtain $v_{k,n} \xrightarrow{n} T^k(v)$ for all $k \in N$ and $v_{k,n}v_{n,m} = v_{k,m}$ for k < n < m. Consequently, $v_{k,n}T^n(v) = T^k(v)$. Moreover, we conclude from Theorem 1.2.21 in [5] that the sequence $T^n(v)$ is relatively compact. For any limit point ϱ of $T^n(v)$ we obtain $T^k(v)\varrho = T^k(v)$ and $\varrho^2 = \varrho$. For any further limit point ϱ' of $T^n(v)$ we get $\varrho' \varrho = \varrho'$ and $\varrho \varrho' = \varrho$. Since ϱ' as well as ϱ is idempotent, the support formula implies $\varrho = \varrho'$. So we have $T^k(v) \xrightarrow{k} \varrho^2 = \varrho = T(\varrho)$ and $v\varrho = v$. We show that $\varrho = v$. Let U be a neighbourhood of e. By Lemma 3.2, $V := \bigcap_{n \in N} T^n(U)$ is again a neighbourhood of e, and for all $k \in N$ we have $T^{-k}(V) \subset U$. Hence for $H := \operatorname{supp}(\varrho) = \operatorname{supp}(T(\varrho))$ = T(H) we get

$$1 \ge v(UH) \ge v(T^{-k}(V)H) = v(T^{-k}(VH)) = T^k(v)(VH).$$

Since $T^{k}(v)$ converges to $\varrho = \omega_{H}$, we obtain $\liminf_{k \to \infty} T^{k}(v)(VH) \ge \varrho(H) = 1$. Thus we have v(UH) = 1 for all neighbourhoods U of e, which implies v(H) = 1 and, in particular, $\operatorname{supp}(v) \subset H$. From this we conclude that $v = v\varrho = \varrho$. It remains to show that $\operatorname{supp}(\lambda) \subset H = G'$. But this follows from the equalities $\omega_{H} = \lim_{n \to \infty} \varrho_{n} = \lim_{n \to \infty} \lambda T(\varrho_{n}) = \lambda T(\omega_{H}) = \lambda \omega_{H}$.

Now we are ready to present our main result.

60

3.5. THEOREM. Let G be a locally compact group, $\lambda \in \mathscr{P}(G)$, $T \in \operatorname{Aut}(G)$, and assume that $\{T^{-n}: n \in N\}$ is equicontinuous. Then the following statements are equivalent:

(1) $(\varrho_n)_{n\in\mathbb{N}}$ converges in $\mathscr{P}(G)$.

(2) $(\varrho_n)_{n\in\mathbb{N}}$ converges to an idempotent measure in $\mathscr{P}(G)$.

(3) $\mathscr{H}(\lambda, T) \neq \emptyset$ and supp $(\lambda) \subset H(\lambda, T)$.

(4) The support of λ is contained in a compact T-invariant subgroup of G but it is not contained in a proper coset $Hx = xT(H) \neq H$ of a compact subgroup H of G.

Proof. All statements (1)-(4) do immediately lead to the case where the underlying group is compact, namely (1) and (2) by Lemma 3.4, (3) by the fact that $\operatorname{supp}(\lambda) \subset H(\lambda, T)$ implies $T(H(\lambda, T)) = H(\lambda, T)$, and (4) trivially. Hence the required equivalences follow from Corollary 2.3 together with Lemmas 3.3 and 1.2.

4. Remarks. Without any conditions on the automorphism T Theorem 3.5 is false. Consider, for example, $G = \mathbf{R}$ and $T: \mathbf{R} \to \mathbf{R}: x \to \alpha x$, $|\alpha| < 1$. For $\lambda \in \mathscr{P}(\mathbf{R})$ the measure ϱ_n is just the distribution of the random variable $Z_n := \sum_{i=0}^{n-1} \alpha^i X_i$, where $(X_i)_{i \in N_0}$ is an i.i.d. sequence with distribution λ . By [10], Z_n converges in distribution if and only if $\mathbb{E} \log(|X_0|+1) < \infty$, while $\mathscr{H}(\lambda, T) = \emptyset$ except for $\lambda = \varepsilon_0$.

Theorem 3.5 remains valid if " $\{T^{-n}: n \in N\}$ is equicontinuous" is replaced by " $G \rtimes \langle T \rangle^{-}$ is a Tortrat group" in the sense of [2]. This is, for example, true if $G \rtimes \langle T \rangle^{-}$ is a SIN-group, a MAP-group, or an almost connected nilpotent group. For these and more subtle conditions see [1].

REFERENCES

- [1] P. Eisele, Zur Konvergenz transformierter Faltungspotenzen eines Wahrscheinlichkeitsmaßes auf einer topologischen Gruppe, Dissertation, Tübingen 1990.
- [2] Tortrat groups groups with a nice behaviour for sequences of shifted convolution powers, J. Theoret. Probab. (to appear).
- [3] S. GIOSSEI, O. LOOS and M. MOSKOWITZ, Über Automorphismengruppen lokal-kompakter Gruppen und Derivationen von Lie-Gruppen, Math. Z. 114 (1970), pp. 321-339.
- [4] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis. I, II, Springer-Verlag, Berlin 1963, 1970.
- [5] H. Heyer, Probability Measures on Locally Compact Groups, Springer-Verlag, Berlin 1977.
- [6] Y. Kawada and K. Itô, On the probability distribution on a compact group. I, Proc. Phys.-Math. Soc. Japan 22 (1940), pp. 977-998.
- [7] J. Maurer, Bemerkungen über Faltungspotenzen eines Wahrscheinlichkeitsmaßes auf kompakten Gruppen, Arch. Math. (Basel) 27 (1976), pp. 549–550.
- [8] A. Tortrat, Lois tendues et convolutions dénombrables dans un groupe topologique X, Ann. Inst. H. Poincaré Sect. B 2 (1966), pp. 279-298.
- [9] S. Willard, General Topology, Addison-Wesley, 1970.

P. Eisele

 [10] O. K. Zakusilo, On classes of limit distributions in a summation scheme, Theory Probab. Math. Statist. 12 (1976), pp. 44-48.

Received on 23.11.1992

Mathematisch-Geographisches Fakultät der Universität Eichstätt Ostenstrasse 26–28 D-85072 Eichstätt Germany

62