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OF INDEPENDENT RANDOM VARIABLES TO A STABLE LAW 

A. KRAJBA AND Z. RYCHLIK (LUBLIN) 

Abstract. In this paper we present uniform and nonuniform rates 
of convergence d sums of independent random variables to a stable 
law. The results obtained extend to the case of nonidentically 
distributed random variables considered by Hall [I]. 

1. IPltrduction. Let (X,, n >, 1) be a sequence of independent random 
variables whose distribution functions {&, n 2 1) belong to the domain of 
attraction of a stable law of exponent a, 0 < a < 2. Then, under some 
additional assumptions, there exist constants {z,, n 2 1) and (s,, n 2 1) such 
that z;=, (XI-rj)/sn converges to a stable law, as a +m. 

In this paper we present uniform and nonuniform convergence rates in 
this limit theorem. The former have been treated by many authors, mainly in 
the case of independent and identically distributed (i.i.d.) random variables (see, 
e.g., the work of Hall [I] and the reference therein). However, the nonuniform 
rates have not been so extensively studied even in the i.i.d. case. The presented 
paper, by our opinion, fills in this gap. 

At first we extend Hall's [I] upper bounds to the nonidentically 
distributed random variables. The extension obtained is described in Theo- 
rem 1. Secondly, we derive the nonuniform rate of convergence of sums of 
independent nonidentically distributed random variables to a stable law with 
1 < a < 2. These results are given in Theorem 2. As far as the authors know, 
Theorem 2 even in the i.i.d. case gives a new result. 

We close this section with some notation. Let {4,, n 2 1) be a sequence of 
the characteristic functions of (X,, n 2 1) and let { c ~ , ~ ,  j 2 1), i = 1 ,  2, be 
sequences of nonnegative numbers such that c ~ , ~  + C Z , ~  > 0, j 2 1. Write 
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Here and in what follows, x v y = max {x, y )  and x A y = min {x, y} .  Let us 
Put 

ec-"(cos u)du if a ~ ( 0 ,  I), 
m 

1 sin (tx)dd,(x) for a ~ ( 0 ,  l),  

bz, = {o; 
t J (I -cos(tx))dj(x)dx for R E  [ I ,  21, 

j -  1 

T. = { pi+ a2,i10g(sj/sj-1)+az,jlogsj if o: = 1, 
J i =  1  

0 
otherwise j 2 1, 

lt 

y = lim ( j - I  -1n n) (Euler's constant), 
n+m j = 1  - .  

Throughout the paper, we assume that for some real number 1 

(2) A = lirn (Cl,n- C2,n)eZ/(Cl,n + C2,Jel, . lim s,, = + m 
A+ m R' m 

and, for j 1, EXj = 0 Xf it exists. 
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Let G,,I.) denote the stable law with the characteristic function 

13) 
exp ( - I tla (1 + iA sign t)) if a ! #  1, 

exp (- Itl(l+M(signt)lnltl)) if u = 1. 

Let us define 
A 

An(x) = IP [S, < xs,] - G,,,(x)l, where S, = C (4- zj). 
j= 1 

In what follows, C denotes a positive constant which may only be 
dependent on a and 1. 

2. The rates of convergence to a stabIe law. The following theorem presents 
the uniform rate of convergence of sums of independent nonidentically 
distributed random variables to a stable law. 

.-* 
, .$ THEOREM 1. Let (X,, n 3 1) be a sequence of independent random uariebles, 

and let {en, n 3 1) be a sequence of positive numbers such that, for every 
O < t g v  and n 2 1 ,  

where is some positive number. Assume 

9(x) = sup{~,(x)vDn(x)}s~" = o(x-') as x+oo 

(6) 
n 

and supxa9(x)<m, 
X 

and, in addition, if a =  1, then 
, 

(7) ma~Ib~,~( t ) l l ln t l<co  for O < t < q .  . .  
1Qj  

(a) If (h,, n 2 1) and {d,, n 2 1) are sequences of uniformly ultimately 
monotone functions on LO, a) and 0 < a < 1, then 

(8) sup An(x) < C{si2 1 xIHn(x)Idx + s i l  1 IDn(x)Idx 
X 0 0 

5 - PAMS 14.1 
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(b) If J'$ S(x)dx < a, then for a = 1 . 

m 

+ s, S CIH,(x)l+ P.(.)ll + 6. + sh l (log snl2) - 
Sn 

(c) If (b) holds and {h,, n 2 1) is a sequence of unfofbrrnly ultimately 
monotone functions on [0, co), then for a = 1 

An Sn 

(10) sup AJx) d C{S; 1 xIH,(x)ldx + s; j x2 ID,(x)Idx 
X 0 0 

m m 

+ 1 ~-~IH,(x)ldx+s; '  1 I ~ , ( x ) l d x + ~ , + s , ~ { l o g s , ) ~ ) .  
Sn Sn 

(d) I f  (hn, n 2 1 )  is a sequence of unqornaly ultimately monotone functions, 
then for 1 < a < 2  

sv Sn 

(11) SUP A,(x) < C ( s i 2  J x I H , ( X ) ~ ~ X  + SR 1 x2 IDn(~)I d~ 
X 0 0 

m m 
- + x 'IH,(x)ldx+s;' j ~ ~ , , ( x ) l d x + c , + ~ - ~ ] .  

sn S n  

(e) FOP 1 < a < 2 

m 

+ s i l  J C I ~ n ~ x ) l + I D n ( x ) l l ~ x + ~ n + ~ - 2 ) .  
Sn 

Let us observe that the condition (4) plays the same role as Feller's 
condition in the central limit theorem. On the other hand, let us observe that if 
( X , ,  n 2- 1) is a sequence of i.i.d. random variables, then we easily get the 
upper bounds of Hall [lj. 

The nonuniform bounds are the following: 
" 

THEOREM 2. Let {X,, n 2 1) be a sequence of independent random variables 
satisfying the assumptions (4H7) of Theorem 1. If for every n 2 1 the functions 
If,(x) and Dn(x) are ultimately monotone on 10, co) and 1 < o: < 2, then for euery 
X E R  
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3. Auxiliary lemmas and proofs, In the proofs of Theorems 1 and 2 we need 
five lemmas, Lemmas 1-3 are extensions (to nonidentically distributed' random 
variables) of the corresponding ones given in [I]. Thus we omit the proofs. 

LEMMA 1. Let (X,, n 2 1 )  be a sequence of independent random variables. 
Then for every j 3 1 

and for 1 < a < 2 

where 

exp {-Itlu(al,j+ i ~ z , j  sign t)) $ a # l Y  
$j(t) = 

alPj+ iaz,j (sign t)ln(tJ)) if a = 1,  

' sin u 
r,,,(t)=l-(cost)-t"f-du=O(t2) as t -0 ,  

0 ua 

' cos u 
-(sint)+PJ -du = O(t) 

0 ua 

as t + 0, and 

LEMMA 2. Let (X,, n 2 1) be a sequence of independent random variables 
and let 
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If  ~ < t < s , ( + n q ) ,  then for or # 1 

and for a = 1 
n 

I fi t$,(t/s,J exp { -it& + a2,, ln s,)/s.) - n $j(t/sn) ~ X P  ( - i t a~ , j ( lh  sn)/sn)l 
j =  1 j=  1 

< I(n1 t ) ,  

where 

If 1 < a < 2 and O 6 t < sn(& A q),  then 

where Bj,,(u) = C:=, lbj , i (~)I ,  j = 1 ,  21  n 2 1 ,  U E R .  

Proof. By Taylor's formulae for the function "log" and under the 
assumptions of Theorem 1, we have 

Moreover, by (4), 
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so that from Lemma 1 we obtain 

Thus the inequalities lei" - 11 < 1x1, lex- I I < 1x1 elxl, x E Rl complete the proof of 
the first part of Lemma 2 in the case or # 1. The proof for u = 1 runs similarly. 
By the inequalities 

n 

max In $i(t/sn)l < e-31fl"14, 
l < k L n  

i # k  

G ( ~ ~ , , ( t / s ~ )  + ~ z , ,  tt/sn) + I R , ( ~ / ~ , ) I }  ~ X P  ( - 3 1tla/4 + ~ ~ , , ( t / s , ) +  I R , ( ~ / ~ , ) I I ,  

we obtain the second part of Lemma 2. 

z{ - ' ~ 9 j ( ~ ) - ~ b ~ , j ( ~ ) - ( ~ l , j + ~ ~ , j ) ~ ~ , ~ ( ~ ) - ~ ( ~ l , j - ~ ~ , j ) ~ ~ , ~ ( ~ ) } ~ u = t ~ s n  I 

LEMMA 3. Let the assumptions (4)-(7) of Theorem 1 be satisJied. 
( i )  If 0 < a < 1 and D,(-) and Hn(-) are ultimately monotone on [ O ,  co), then 

for any c > 0 

G 1  

and, as in the proof of the first part, 
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and 

where 
m 

(15) B,,,(t) = - J ( 1  -cos ( t x ) ) d ~ , ( x ) .  
0 

(ii) If 1 6 a < 2 and Hnc)  is ultimately monotone on [O, co) and B1,,C) is 
defined by (15), then (14) holds. If 1 6 ct < 2 and BIT,(-)  is de$ned b y  the second 
formula in (11, then for every c > 0 and any E > 0 

w ESn W 

J t-' I B ~ , n ( t / s ~ ) l e - ~ ~ d t  h C ( s i 2  x I H ~ ( x ) J ~ x  + S; IH,(x)ldx), 
o o es. 

and 

J t -' 1 B + . ( / s n ) e c t  < C(si3 I x2 lD.(x)l dx + 2s;' I ID,(x)l dx) .  
0 0 esn 

(iii) If 1 < a < 2 and f in( - )  and Dm(-) are ultimateIy monotone functions, then 
for a e r y  c > 0 
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LEMMA 4. FOP' every p > 0 ,  0 < cx < 2 and & € [ - I ,  11, A , € [ - 1 ,  11, 

(16) SUP IGa,~i(x)- Ga,~,(x)l G (rjl+ l/a)/(na))lAi -J-,l, 
X 

and 

where 
X 

ei(x) = j (et/t)dt . 
- m  . 

P r o  of. Let g, , (x)  denote the density function of the stable law with 
exponent u, 0 < a < 2 and - 1 d 1 < 1. Then (19) follows from the inequalities 

and 

On the other hand, by Theorem 2.3.1 of [9, p. 1001, 

x + P  - 
IGu,n,(x+~)-Ga,n,(x)l G 1 u l-=ga.,A,(u-")du, 

X 

where a' = I/a, A' = - 1 + a( l  +A, K(a)), K(u) = (or- 1)+ sign(u - 1). Then 
using (22) we get (19). Similarly one can get (21). Inequalities (17), (18) and (20) 
follow from Theorem 2 and Lemma 8 of 18, Chapter V]. 

LEMMA 5.  Let h: (0, m )  -, [O, m) be a function. If h(x)xa + 0 as x + ca for 
some a > 0, then there exists a nunincreasing function E: (0,  co) -+ (0, CO) such 
that E ( X )  + 0 ,  X E ( X )  --, co and h(x&(x))xU -, 0 as x -, m .  
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Proof.  One can easily note that we may take 

I P r o  o f of The  o rem I. In the proof we follow the ideas presented in [I] 

j with necessary modifications needed for nonidentically distributed random 
variables. 

At first, by the triangle inequality, we get 

Thus, by Theorem 2 in C8, Chapter V], for every T >  0 and a # 1 we have 

+ SUP lGa,~~(x)- G,n(x)l +r(l/u)/(Txa), 

where A 

n, = c U;,~/S:. 
j= 1 

If a = 1, then 

Let us put T =  qs,. Let us remark that if we show that, for a # 1, 

SUP((IBI,~(~)I  + 1 ~ 2 , ~ ( t ) l ) ~ r ~ ) t - ~  + 0 as t + 0, 
A 

sup (IR,(t)l siU)t-a < 314 for sufficiently small t, 
n 

and, for a =  1, 
s~p(IB~, , ( t ) ls ,~) t-~ -r 0 as t + 0, . . 

n 

sup ( I  Rn(t)l s, ' ) t -  ' < 23/24 for sufficiently small t , 
n 

then there exist constants 0 < c < 1 and 0 < 0 < 1 such that for t ~ ( 0 ,  qOsn) 
and every u E (0, 2) 

Since we take supremum over all n, the constants c and 0 do not depend on n. 
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Let E ( X )  be a function defined in Lemma 5 for the function h(x) = 9(x) 
given by (6). Of course, by (6) we have xQ9(x) -, 0 as x +a. For simplicity we 
put B(x) = E(~/x)  and y(x) = B(x)/x. We note that y(x) oo as x 0. 

Assume, e.g., that 0 < or < 1 is given. Then, by the Second Mean Value 
Theorem (hj are uniformly ultimately monotone functions) and (6), we get 

n o, n m 

< I [ (1 -cos tx)dhj(x)ls,"t-" < C tl-"1 S (sin tx)hj(x)dxls;" 
j = 1  0 j =  1 0 

< tl-al:j' (sin tr)hj(x)dxls;"+ t-'l (sin u)hj(u/t)duls;" 
j =  1 D j = 1  PI0 

Furthermore, similarly we obtain 

Let us remark that we have proved more that it was needed. We prove that 

while it is suficient to show that 
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The stronger version will be needed in the estimations of 

sup{IRn(t)lsn-l;")t-" for a = 1 and or f 1. 
n 

By Lemmas 1, 2 and (4)-(7), we have 

for sufficiently small t. 
The other inequalities in the proof of (24) can be obtained similarly. By 

(24), for some c > 0 we get 

By Lemma 3 we may estimate the first term on the right-hand side of the last 
inequality. The last term, by (4), Lemmas 2 and 1 can be bounded by 

which completes the proof of Theorem 1 in the case 0 < a < i. In the cam 
a = 1 or 1 < a < 2 the proof of Theorem 1 runs similarly, so we omit the 
details. 
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Proof  of Theorem 2. By assumptions and Lemmas 7 and 8 in [8, 
Chapter W], for every T > 0 we have 

Since the assumptions of Theorem 2 imply the ones of Theorem 1 (e), we may 
estimate the second term of the right-hand side of (25) by the right-hand side of 
(12). Now Lemmas 1-4 and (25) give Theorem 2. 

Acknowledgement. The authors would like to thank the referee for his 
critical remarks and helpful comments. 
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