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THE RATE OF CONVERGENCE OF SUMS
OF INDEPENDENT RANDOM VARIABLES TO A STABLE LAW

BY
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Abstract. In this paper we present uniform and nonuniform rates
of convergence of sums of independent random variables to a stable
law. The results obtained extend to the case of nonidentically
distributed random variables considered by Hall [1].

1. Introduction. Let {X,, n > 1} be a sequence of independent random
variables whose distribution functions {F,, n > 1} belong to the domain of
attraction of a stable law of exponent @, 0 < a <2. Then, under some
additional assumptions, there exist constants {z,, n > 1} and {s,, n > 1} such
that Z —1,)/s, converges to a stable law, as n —oo.

In thls paper we present uniform and nonuniform convergence rates in
this limit theorem. The former have been treated by many authors, mainly in
the case of independent and identically distributed (i.i.d.) random variables (see,
e.g., the work of Hall [1] and the reference therein). However, the nonuniform
rates have not been so extensively studied even in the i.i.d. case. The presented

- paper, by our opinion, fills in this gap.

At first we extend Hall’s [1] upper bounds to the nonidentically
distributed random variables. The extension obtained is described in Theo-
rem 1. Secondly, we derive the nonuniform rate of convergence of sums of
independent nonidentically distributed random .variables to a stable law with
1 < o < 2. These results are given in Theorem 2. As far as the authors know,
Theorem 2 even in the iid. case gives a new rcsult.

We close this section with some notation. Let {¢,, n > 1} be a sequence of
the characteristic functions of {X,, n>1} and let {cl pizl},i=1,2, be
sequences of nonnegative numbers such that ¢, ;4+c¢,; >0, j > 1. Write

hi(x) = 1= F(x)+ F(—x)—(cy,j+¢2, J(x~*" y,

d,(x) = 1= F{(x)— F(—x)—(c1,j— 2. )(x"**1), .
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H= 3o, D= ¥ 4,

.

M=
™=

H,(x) =
j

hix),  D,(x) =

1 i=1

|d;(x)!.

It
1

Here and in what follows, x v y = max {x, y} and x Ay = min {x, y}. Let us
put

o

— fu*(coswydu if xe(0, 1),
0

e, = [u%in(u)du, e,=- ifa=1,
0

1
fu *(1—cosu)du if ae(l, 2),
(]

-

by, ;(t) = T(l.—cos (tx))dhy(x) or by (1) =t }J sin (tx)hj(x)dx,
0 0
0j?sin (tx)dd;(x) for «€(0, 1),
b i) =14 °

t?(l —cos (tx))d;(x)dx  for ae[l,2),
0

ay,;=1(c1,j+cz,j)e;, ay;=1(c1,;—Cz2j)e,,
1

) by = [(1~ @)~ E(=x))dx + | d,(dx—(ex,;— 2.1,
o 1

T, =

-1 _
B+ Y, a;log(s/s;—1)+ay;logs; if a=1,
0 =t otherwise j > 1,

y=1im (), j~'—Inn) (Euler’s constant),

- n—+ow j=1

n
Cin= Z C1,j» Con= Z C2,j»

S =(C1,n+c2,n)e1a 8o = 0, nzl,
Throughout the paper, we assume that for some real number A

(2) '1 = hm (Cl.n_CZ,n)eZ/(Cl,n'l'C2,n)e17 ' hm Sn = +00

n— oo

and, for j> 1, EX;=0 iff it exists.
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Let G, ;() denote the stable law with the characteristic function
) i) = exp {—|t*(1 +idsignt)} ifa#1,

: "~ lexp{—lt(1 +idGignOnjt])} if a=1.
Let us define . '

A4,(x) = |P[S, < xs,] — G, ;(x)l, where S, = Zn: (X;—15).

i=1

In what follows, C denotes a positive constant which may only be
dependent on o and A.

2. The rates of convergence to a stable law. The following theorem presents
the uniform rate of convergence of sums of independent nonidentically
distributed random variables to a stable law.

THEOREM 1. Let {X,, n 21} be a sequence of independent random variables,
and let {¢,,n>1} be a sequence of posmve numbers such that, for every
0<ts<nand n=1,

241?';13_‘ {t*(las, jJ +laz, D #1bs ;O +1b2 ;0 <1 ifa#1,

@) . )
2411113;( {t(las. 1 +laz, jlog t)?| + i) + by ;@) + b2} <1 if o = 1,

) IS ayfsi—A| = s
=1

where 1 is some positive number. Assume

9(x) = sup {H,(x) v D,()}s;* = o(x ™) as x-c0
@ v ' | and  supx*$(x) < oo,
and, in addition, if a =1, then )
%) - max|by (@ fn <o forO<t<n.

@ If {h,,n=1} and {d,, n =1} are sequences of uniformly ultimately
monotone functions on [0, o0) and 0 <a<1, then ,

® P4, < Clsr? [xH,Mldxrsy 1D, (dld

+ j‘ x~Y|H,(x)|+|D, (x)]}dx+s +s5 (an1- a))}

Sn

5 — PAMS 141
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(b) If j: 3(x)dx < o0, then for a =1

) sup 4,00 < Cis; ? { x[H, (0l dx+s7°  x21D, (o) dx
x o 0

+5, 1 [ [H, () +Dy(x)1dx +e,+s, *(logss,)*}.
(c) If (b) holds and {h,,n>1} is a sequence of uniformly ultimately
monotone functions on [0, o), then for o =1

(10)  sup4,(0) < C{sy? | x|H,(0ldx+s73 § x*|D,(x)ldx
x 0 0

+ )‘c_llH,,(x)ldx‘+s‘,;‘1 { 1D, ()l dx+e,+s, 2(log s,)}.
(d) If {h,, n =1} is a sequence of uﬁiformly ultimately monotone fuﬁctions,
then for 1<a <2 ' o ' '

(1) sup 4,00 < C{s72 | x|H, ()l dx+573 | x2|D,(9ldx
x 0 o ’
+§ x‘llH,,(x)Idx+s,,_1 [} D, (x)|dx+¢e,+5s22}.
() For 1<a<?2
(12) sup 4,(0) < C{sy* [ xIH, (ol dx+s7° | x2|D, () dx
x 0 (1]

+5, 1 [ [H, (0| +1D,(x)1dx+e,+s372}.

Let us observe that the condition (4) plays the same role as Feller’s
condition in the central limit theorem. On the other hand, let us observe that if
{X,,n> 1} is a sequence of iid. random variables, then we easily get the
upper bounds of Hall [1].-

The nonuniform bounds are the following:

" THEOREM 2. Let {X,, n = 1} be a sequence of independent random variables
satisfying the assumptions (4)(7) of- Theorem 1. If for every n > 1 the functions
H,(x) and D,(x) are ultimately monotone on [0, c0) and 1 < o < 2, then for every
xeR

(13)  (A+xD4,(x) < C{s; of(l +lin (e/s,)) LB, (x) + H, ()] dx

Sn

+ﬁ,,(s,,)+s,,‘3 j"xzﬁ,,(x)dx+s,,'2 j:‘xﬁ,,(x)dx+s,,+sﬁ'2}.
' 0 )
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3. Auxiliary lemmas and proofs. In the proofs of Theorems 1 and 2 we need
five lemmas. Lemmas 1-3 are extensions (to nonidentically distributed random
variables) of the corresponding ones given in [1]. Thus we omit the proofs.

LeMMA 1. Let {X,, n > 1} be a sequence of independent random variables.
Then for every j =1 :

(|t1(ay,;+ia,,;sign )+ by ;(2) +ib, ;(0)

+crjt e )ri(O)+ilcrj—c2)ra.(t)  if a#1,
1—p =< | -
|tl(ay,;+ i(sign £)(— p;+ az ;I |t) + by () +ib, ;(2)

+(crjt e )ri(B)+ilcy,j—caJraat) i a=1,

and for 1<cx<2

d
dt(¢ (t) W (t)) l bl j(t) \d bZ ](t) +(cl J+c2 J) rl a(t)
d 2a—1
+(c1,j—¢2,)) t"z ()| +aftl las,;+ mz A
where
v(1) = exp { —|t|*(a;,;+ia, ;signt)} ' if a#1,
A exp { —|tl(as,;+iay ;Gignlnt)} i a=1,

.
Fialt) = 1—(cos t)—tﬂjs‘u#du ~0(t) ast—0,
=2 B!

( (sin¢t) +t°‘

if O<a<lt,

F20(t) = < (t——smt)—t(m(t)——y+1n|t|) =00 .if a=1,.

II L )
(t—sint)+¢* | cosudu— o) if l<a<?2,
- 0
as t -0, and
cilx) = j—“’s”d

LemMA 2. Let {X,, n > 1} be a sequence of independent random variables
and let

Bia) = ¥ bus0, Baal)= ¥ baf) n>L
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If 0<t<s,(An), then for a #1

” ',ﬁl b,(t/5)— H ui(tls)] <| n Ut/ (Bon(t/sy)l+ Ban(t/s)]

+|R,(t/s,)I} exp {|B1a(t/sp)l + R, (t/s,)l} = I(n, 1),
and for o =1

| fll ¢ (t/s,) exp{ —it(u;+as ;lns,)/s,} — f[l ¥ ,(t/s,) exp { —itay j(Ins,)/s,}]
| | <I(m, 1),

where

IR,(t/s,)| < 12 Zn: b ,(t/s, )2 + si(r1.a(t/s )/31 +72,4(t/s,)/e;)-
If 1< o:‘< 2 and 0 <t < s, (kAn), then

{(altl“ Y1+ 2)+1)(By a(t/s,)

2T 850 TT ) <

+ Bt/ + 16753+ 53 alt/s)l + r2a(tfs))

{ by, j(u)—iby ;) —(cy,j+C2,)71,.(1)

}exp{—w},

—i(ey,;— cz.j)rz,a(“)}|u=:/s..

where B (u)=Y,_, b @), j=1,2, n>1, ueR.

Proof. By Taylor’s formulae for the function “log” and under the
assumptions of Theorem 1, we have

ITT 650 TT )
= T st [t —oxp{ 3 [~ 3 (1= 50 50— 1 -l 5]}
Moreover, by (4),

|3 (1= i) ] < 211~ s,
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so that from Lemma 1 we obtain
[TT oit/s)—T1 vyt/s)
i=1 i=1

|l_[¢f(t/s )||1 exp {R,(t/s,) Bu(t/S)"-ian(t/S il

Thus the inequalities |¢™ — 1| [x], |e -1 < |x|e"‘I x € R, complete the proof of
the first part of Lemma 2 in the case o # 1. The proof for a = 1 runs similarly.
By the inequalities ' ‘
z 2 i) max [T /s - H ites)
. ek - E

(d’ {t/s,)— ¥ (t/sy) maxm (t/s,)],

1< \nn—

a—t(n &;(t/s)— H yi(t/s,))| <
i=1 j=1

¢ = 3|t|=/4
Jmax I.H Wilt/s,)] < :
i*k

< alt?*Yay j+iay s, 2

2 (10150~ 1)

+|E{—bl,j(u)—lbz,j(u)—(01,j+Cz,j)7'1,a(u)—1(01,,'—Cz,j)rz,u(u)}l,,=,/sn St

2

alt|**~ay j+ia, s,

‘ o(t/s,)| <

+ E{_bl,j(u)_lb2,j(u)_(cl,j+c2,j)rl,a(u)_l(cl,j—CZ.j)rZ,a(u)}I,,:t/s“ St

and, as in the proof of the Aﬁrst part,

max IH $5(t/5)— H (t/s,)
J#k J#k
< {B1a(t/s,)+ Baalt/s,)+IR, (t/S..)I}eXP{ 3¢)*/4+ By, n(t/s )+ (R, (t/s,)l} 5
we obtam the second part of Lemma 2.

LemMMA 3. Let the assumptions (4}{7) of Theorem 1 be satisfied.
() If 0 < o < 1 and D,() and H () are ultimately monotone on [0, c0), then
for any ¢ >0

(14) [t 4By /s)le"dt < C{sy { x|H,(ldx+ [ x~ [H,()ldx},
0 ' 0 Sn
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and

[ 47U 1By(t/s)le™dt < Clsy* | ID,(ldx-+1D,(s0) + | 11D, (ldx},
0 ()] Sn

where
(15) . Byn(f) = — [ (1—cos (tx))dH,,(x).

(11) If 1 < a <2 and H,() is ultimately monotone on [0, oo) and By ,()is
defined by (15) then (14) holds. If 1 < a < 2 and B, () is defined by the second
formula in (1), then far every ¢ >0 and any ¢ >0

[tfllBl,"(t/s")le‘c"dt C{s 'za}"le (x)ldx+s_1 j' |H, (x)|dx}
0 '

ESp
and
&Sy

jt"|Bz (/s e dt < C{ -3 j' x2|D,(x)|dx + 25,1 j D, (x)|dx}.

(iii) If 1 < a < 2 and H,() and D, (") are ultimately monotone functions, then
Jor every ¢ >0

"_;."(tfz +a(l+ )12 2)| By 4(¢/s,) e dt

9

< Clsy? i, x5t | IH,00ldx-+s7 | lin(x/s)l 1, (ol
0 Sn Sn .

nSn

f (€2 +a(l+A)t*~2)|B, ,(t/s,) e dt

(4] E
< C{si® { xID,(0ldx+257 [ 1D, (x)dx),
o X . : Sp .
nSn n o d .
j' A+ 195, Y | bya(w) e dt
j=1ldu u=tfsn

< Cis;? j' le ()| dx + _f x'llH (x)|dx+s‘1 j fn (x/s, )| |H (x)|dx+H (s}

Sn

"f"t L4t Y

ji=1

e dt

u=t/Sn

d
E b2,n (u)

<C{s? I x2ID,(0ldx + 5571 { D, (odx + 5772 j lin (x/s,)| 1D, ()| dx}.

Sn
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LEMMA 4. For every p>0, 0<a <2 and 4,6[—1,1], ,,e[—1,1],
(16) SUP |Gy 2, (%) = Go 2, (M) < (ML + L)/ (me))lA; — 4],

(7 (L +1DIGus, () = Gany(9l -
< 640[20 (20— 1)/a) + 2+ /)T (1 = 1/&)] 1A —dol/m if 1<a<2,

(18)  SupIGas,(+P)—Gurs @ < (Tl @) A L,

(19) Gaty (X +P) = Ga, ()| < T(@0)| e+ pl ™= — x| ™% . for O<a<2, a1,
(20) |

@/ra)(p*v P~ +|ADIL—p* A p™
' if a#1,

@)L=~ ApI(p A D™ + 1Ayl [y —2ei(— 1))
+ Qg if a=1,

Sup lGa,th (px) - Gu,lx (x)' \<\

and

(21) |Gu,}.1(px) ah(x)l F(a)lxl_alp_avp —lln 1! g

where
ei(x) = j[c (e*/t)dt.

Proof. Let g,,(x) denote the density function of the stable law with
exponent o, 0 < o < 2 and —1 < 4 < 1. Then (19) follows from the inequalities

x+p

|G (X +P)= G ay (0} < <(] Gan W du) A 1

and
22) Ga,3, () < T'(1/a)/(mr).
On the other hand, by Theorem 2.3.1 of [9, p. 10'0],‘

x+p

|Gah(x+p) Gah(x)l j u -1 aga A(u a)du

where o =1/a, 4 = ——1+oc(1+l K(@), K(o)=(@a— 1)+51gn(oc 1). Then
using (22) we get (19). Similarly one can get (21). Inequalities (17) (18) and (20)
follow from Theorem 2 and Lemma 8 of [8, Chapter V].

LEMMA 5. Let h: (0, 00) = [0, oo) be a function. If h(x)x* —0as x — co for

some o > 0, then there exists a nonincreasing function g: (0, c0) — (0 o0) such
that &(x) = 0, xe(x) > 0 and h(xs(x))x 0 as x - 0. : :
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Proof Oné can easily note that we may take

e(x) = x2v (sup {h(y'M)y: y > x¥?})

Proof of Theorem 1. In the proof we follow the ideas presented in [1]
with necessary modifications needed for nonidentically distributed random
variables.

At first, by the triangle inequality, we get

1/2a

sup A4,(x) < sup |P[S, < x5,]1— Go.2, ()| +5up |Gy, 5, () — Gy 2 ().

Thus, by Theorem 2 in [8, Chapter V], for every T> 0 and « # 1 we have

T n n
(23) sup 4,(x) < 7w~ " {7 [T ost/s)— [T v,(t/s,)|dt
x 0 i=1 i=1 _
+5Up |G, 2, (%) — Go, s ()| + I (1/)/(Trer),
where .
. A" = Z a'z,j/sﬁ.
If o« =1, then =

T
sup 4,(x) <m !t
x 0 j

T b,(/s,) exp { —it(uy+az Ins,)fs,}

— In] y;(t/s,) exp {—ita, ;(In s,,)/s,,}|dt +sup |G, 1, (X)— Gy 1 (x)| + I (1/)(T7er).
sl e

J

Let us put T=ys,. Let us remark that if we show that, for a # 1,
sup ((1By (0l + 1B (0)sr )t =0 as t -0,

sup(IR,(®)ls, )t~ * < 3/4 for sufficiently small ¢,

and, for a =1, : :
sup (|Bya(t)ls, 1)t™' >0 as t >0,

sup(|B2,,(®)ls, 1)t Int| "t -0 as t—>0,
sup (IR, (t)ls, )t~ <23/24  for sufficiently small ¢,

then there exist constants 0 <c <1 and 0 < 0 < 1 such that for te(0, #0s,
and every ae(0, 2) ' :

4 sup(IBua(t/s)l +IR,(¢/,)) < (L= "

Since we take supremum over all n, the constants ¢ and 8 do not depend on n.
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Let &(x) be a function defined in Lemma 5 for the function h(x) = 9(x)

given by (6). Of course, by (6) we have x*$(x) - 0 as x —co. For simplicity we
put B(x) = &(1/x) and y(x) = f(x)/x. We note that y(x) » o as x—0.

Assume, e.g., that 0 < a < 1 is given. Then, by the Second Mean Value
Theorem (h; are uniformly ultimately monotone functions) and (6), we get

sup|By 4(t)ls, *t 7" < _Z Iy ,(t)ls; e

n a0

<

j=1 0

s T Z ! _"H (sin £x) h,(x)dx|s,

< Z A= a” (sin tx)hy(x)dx]|s, *+ Z £ J‘ (sin w)h (u/t)du|s_“

i=1 B@)

(1)
<27 | xH,(x)dx)s, “+t “H,(y(®))s, *
0
B (1)
< t27*sup sup (x* H,(x)s, %) _[ x! “dx+t_°‘sup( . (e(1/t)/t)sq %)

< C{(ty () +9(e(1/8)/1)t ™) |
C{(e(1/0)* "+ 8(e(1/8)/)t =} >0 as t 0.
-Furthermore, similarly we obtain

sup |By ()]s, t7* < Y. |by,j(t)ls, “t™*
n j=1
< Y | (costx)d; (x)dxls,, ap-e
Jj=1 0 ]

< Z i “H (cos tx)d (x)dx|s; *+ Z il f (cos u)d;(u/t)du|s,

j=1 @)

' )
<t1‘“supsup( x*D,(x)s, )jx *dx 4t~ “sup( W(E(/0)/1)s7*) >0  as t-0.

Let us remark that we have proved more that it was needed. We prove that
sup { Z (lbl,](t)' -+ Ibz,j(t)l)s,‘_“}t'“ -0 as t—0
n j=1
while it is sufficient to show that

sup{| Y. by ;(®)|s;*}t™ >0 as t 0.
n j=1
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The stronger version will be needed in the estimations of

sup{lR,,(t)]s,,‘“}t"“ for a =1 and o # 1.

By Lemmas 1, 2 and (4H7) we have ‘
IR, (2)s *t ™" sLngcjl ;1) —(cs e, a(t)t
7

—i(cq,j— 2, )2 (O i (IB4,;®)l +Ib2'j(t)|)+sﬁt“}s,,““t:‘“
+ 3 1}1>a1x (@1,;+az,)(rf (1) + rﬁ,,(t))/(t“(ef A e%))

(1,20 + 2O/t (e; A €2))
<3hsup { Y (11, @O+ 162 0))ss Jt ™+ 5 +0()) <3
moj=t .
for sufficiently small ¢.
- The other inequalities in the proof of (24) can be obtained similarly. By
(24), for some ¢ > 0 we get

|lfll ‘/Ij(t/sn)l exp {lBl,n(t/S")| + IR"(t/S")l} < exp { _cltla}

and, by (23),
Bnsp '
SUp A4,() <Y | 17 (1Bya(t/)]+ |Baalt/s, e dt +Ce,+ Cs; *
X 0 g . :
Onsn A ‘
+n71 [ 7Y R, (t/s,)le”“dt.

]
By Lemma 3 we may estimate the first term on the right-hand side of the last
inequality. The last term, by (4), Lemmas 2 and 1 can be bounded by

Onsy,
281 | ¢ {(Z |t2%/s2%|a, ,+la2 J|2+b J(t/s )+ b3 (t/s,)
0 i=1 :
+s"‘1max (cy 1+c2 J)(rl «t/sn )+r2 (t/s, )))} e dt
$J$
onsn . 0nsn ' )
<C j" 2T T 4 e e+ C |t sG((e/s,)* + (/)
' 0 .

4+ (t/sn)d- + (t/sn)4-[u]+ l)e—aﬂdt < CSH—(a AQ2[a]+1 —u)),

which completes the proof of Theorem 1 in the case 0 <a <1 In the case
a=1or 1 <u<2 the proof of Theorem 1 runs similarly, so we omit the
details.
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Proof of Theorem 2. By assumptions and Lemmas 7 and 8 in [8,
Chapter VI], for every T > 0 we have

(25) (L+1x])4,(x) < Cft_2|_]_£[ P (t/s)— 1_2[ W(t/s,)|dt
+C_[t‘1|]_[¢(t/s w(t/s )|dt

+C.ft_1 E(H (W)~ H Z(C0) W R
0 j=1 j=1

+1Ga,2,(x) — G a(X)| + C/T.

Since the assumptions of Theorem 2 imply the ones of Theorem 1 (¢), we may
estimate the second term of the right-hand side of (25) by the right-hand side of
(12). Now Lemmas 1-4 and (25) give Theorem 2.
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