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ANTI-IRREDUCIBLE PROBABILITY MEASURES 

Abstract. The paper is devoted to the study of anti-irreducible 
probability measures associated with generalized convolutions. In 
particular, for convolutions other than the max-convolution it is 
proved that the set of anti-irreducible measures is a proper subset of 
the set of all infinitely divisible measures. Moreover, for a special clws 
of convolutions containing a modification of the max-convolution it is 
proved that the probability measure concentrated at the origin is the 
only anti-irreducible measure. 

I. Notation and preliminaries. For the terminology and notation used here, 
see [lo]. In particular, V and P will stand for the set of all finite signed 
measures and the set of all probability measures defined on Borel subsets of the 
half-line [0, m), respectively. Elements of V and P will be denoted by capitals 
M, N and by Greek letters p, v with or without subscripts, respectively. The 
sets V and P are endowed with the metrizable topology of weak convergence. 
For M E V  and ae(0, co) we define the map T(a) by setting 
( ~ ( a )  M)(E)  = M(a-'E) for all Borel subsets E of [O ,  co). Further, for any Borel 
subset A of [O, a), M ( A will denote the restriction of M to A, i.e. (MI A)(E) 
= M(AnE) for ajl Borel subsets E of [0, ao) As usual we let 6, stand for the 
probability measure concentrated at the point c. Given M E  V we shall denote 
by s(M) and at (M) the closed support and the set of atoms of M, respectively. 
Throughout this paper, V+ will stand for the subset of V consisting of 
non-negative measures and U, will stand for the subset of V+ containing all 
measures M with O$at(M). Finally, W+ will stand for the subset of U+ 
containing all measures M which do not vanish identically, have a bounded 
support and 0 4 s(M).  

A continuous commutative and associative P-valued binary operation 
o on P is called a generalized convolution if it is distributive with respect to 
convex combinations and the maps T(a) with a €  (0, co), 6, is its unit element, 
and an analogue of the law of large numbers 
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is fulfilled for a choice of norming constants c,E(O, oo) and y # 6,. The power 
&","is taken here in the sense of operation o. The limit measure y is called 
a characteristic measure of the generalized convolution in question. By 
Proposition 4.4 in [lo] the characteristic measure is uniquely determined up to 
the scale change T(a) with a ~(0, a). Moreover, by Proposition 4.5 in [lo], 
there exists a constant K = K(O) belonging to (0, m] and called the characteris- 
tic exponent of o such that 

for any pair a ,  b ~ ( 0 ,  a), where 

(1.3) r(m, a, b) = max(a, b) and r(u, a ,  b)  = (aK+ byiiK if KE(O, m). 

The characteristic measure y can be regarded as an analogue of the Gaussian 
measure. In the sequel we shall use the notation 

It was shown in [10], Chapter 3, that every generalized convolution can be 
extended to a continuous operation on V by setting 

for every Borel subset E of [O, m) and My N E V It is clear that the set V+ is 
invariant under 0. 

Let m, be the sum of So and the Lebesgue measure on [0, a). It has been 
proved in [lo], Theorem 4.1 and Corollary 4.4, that each generalized 
convolution admits a weak characteristic function, i.e. a one-to-one correspon- 
dence p-fi between measures p from P and real-valued Borel functions f l  
from Lm(m,) such that 

for all c E LO, 11, a E (0, ao), and p ,  v E P. The weak convergence pn + p is 
e.quivalent to the convergence P ,  +,4 in the L,(m0)-topology of Lm(mo). 
Moreover, if J. is absolutely continuous with respect to the measure m,, then 
the function 1 is continuous and, by Lemma 3.11, Propositions 3.3 and 3.4 and 
Theorem 4.1 in [lo], 

lim x(t) = A({O]) .  
t+ m 

Recall that the weak characteristic function is uniquely determined up to 
a scale change and 

m 

(1.6) P(t) = J fi(tx)~(dx) 
0 
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m,-almost everywhere. The kernel Q is a Borel function with O(O) = 1 and 

(1.7) IJz(t)l< 1 for t€[O, m). 

Taking a suitable normalization if necessary we may always assume, by 
Theorem 4.2 in [lo], that for ICE (0, m) 

(1.8) f ( t )  = exp ( - tK) 
mo-almost everywhere. 

Generalized convolutions admitting a continuous kernel Q are called 
regular (see [lo], p. 93). In the sequel, 1, will denote the indicator of the set E. 
Further, by the naax-convolution *, we mean the generalized convolution in- 
duced by the operation max (X, Y) on independent random variables X and I: 
By Lemma 2.1 in [lo], ~ ( o )  = og if and only if o = *,. It is known that the 
max-convolution is not regular (see [a], p. 219). Throughout this paper, will 
denote the operation induced by the multiplication of independent random 
variables. In other words, 

cO gr 

M D N =  jjG,,M(dx)N(dy) for M , N E K  
0 0 

It is clear that 
m 

(1.9) M D N  = j ( ~ ( a ) ~ ) ~ ( d a ) ,  
0 

where T(0)M is assumed to be M({O))So. Setting 
m 

M (t) = O (tx) M (dx) 

we have the formula 

m 

(1.10) (M 17 ~ ) " ( t )  = M ( ~ x ) N ( ~ x )  for M, N E V. 
0 

We say that a probability measure p from P is o-infinitely diuisible if for 
every positive integer n there exists a measure p n € P  such that 

The set of all o-infinitely divisible probability measures will be denoted by 
P,(o). For regular generalized convolutions, o-infinitely divisible measures 
were studied in [8] and [9]. For the max-convoIution we have the formula 

(see [?I, p. 175). Notice that, by Proposition 3.2 in [ll], we may always assume 
that the measures p, in (1.11) belong to P,(o). Moreover, if o # *,, then, by 
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Lemma 2.4 in [12], for every p ~ P , ( o )  

mo-almost everywhere. 
In the sequel we shall use the following compactness Iemma: 

LEMMA 1.1. Suppose that o # *, and p = pin with p, E P, (o) (n = 1,2, . . .). 
Then for every aE(0, co) the sequence of restricted measures np, I [a, co) is 
conditionally compact in U,. Moreover, $ in addition the weak characteristic 
function a is mo-essentially bounded fiom below by a positive number, then the 
sequence np, 1 (0, co) is also conditionally compact. 

P r o  of. Since, by (1.6), (1.7) and (l.13), 0 < @,(t) G 1 and F(t) = P,(t)" 
mo-almost everywhere, we have the inequality 

m,-almost everywhere. Further, by Proposition 4.2 in [lo], 

t 

lim t-'j@(u)du = 1. 
1-0 0 

Consequently, for every EG(O, 1) there exists a closed subset 3 of [O, 11 with 
positive Lebesgue measure such that 

(1.15) @(t)>exp(-E) for ~ E B .  

Denoting by q - I  the Lebesgue measure of B and setting 1(dx) = ql,(x)dx, we 
infer that A E  P, s(1) = B, and the measure 1 is absolutely continuous with 
respect to m,. Thus, by (IS), 

lim l(t) = 0, 
t - r m  

which shows that for a sufficiently large number b the inequality f(t) < 2-I 
holds whenever t ~ [ b ,  m). Taking into account (1.14) and (1.15) we get the 
inequality . .  

for all indices n. On the other hand, byrLemma 2.5 in [12], for every a ~ ( 0 ,  co) 
the sequence np,([a, a)) is bounded. Hence we get the first assertion of Lem- 
ma 1.1. If, in addition, @(t) 2 exp (-dl mo-almost everywhere for some constant 
d E (0, co), then, by (1.14), 
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for a11 CE (0, CO) and all indices n. Letting c -, c~ and taking into account (1.16) 
we get, by the bounded convergence theorem, npn((O, m)) 6 d for all indices n, 
which yields the conditional compactness of the sequence npn((O, m). Lem- 
ma 1.1 is thus proved. 

We shall need the following characterization of the max-convolution. 

LEMMA 1.2. I J p S , + ( l - ~ ) S , E P , ( O )  for some p ~ ( 0 ,  I), then o = *,. 
Proof.  Suppose that ~ , E P  and 

Observe that, by (1.4), 

which yieIds the inclusion 

for ( p ,  x K x . . . x PA-almost dl n-tuples x,, x, ,  . . . , x,. By the continuity of 
the mapping 

n 

( ~ 1 1  x2, ..., x.1- 0 S X j  
j=  1 

we conclude that the above inclusion holds for all x,, x,,  . . . , x ,Es (~ , , ) .  In 
particular, we have 

(1.19) s ( 6 T ) c { O , 1 )  for all X E S ( ~ , , ) .  

Suppose that the set s(p,) contains two positive numbers a and b. Setting 
c = a/b, by (1.19) we have 

Comparing this relation with (1.19) we get the inclusion s(Sin) c (0). Thus 
6;" = 6, and, consequently, by Lemma 2.3 in [13], S ,  = So which contradicts 
the assumption a > 0. This proves the inclusion 

(1.20) s(pn) c {O, a,) (n = 2, 3, . . -1 

for some an€(O, a). Moreover, the inequality y, # 6, yields 

Now we shall prove that 
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for a certain index k 3 2. Suppose the contrary. Then, by (1.20), p,, = Jan, 
which, by (1.17), yields 

Hence the measure p6,+(1 -p)6, is o-stable ([10], Section 2) and, consequent- 
ly, by Lemma 2.2 in [lo], has no atom at the origin, which is a contradiction. 
Relation (1.22) for a certain index k 2 2 is thus proved. Substituting n = k, 
x, = x, = ., . = x ~ - ~  = 0 and x, = a, into (1.18) we get the inclusion ~ ( 6 , ~ )  
c (0, 11, which yields a, = 1. Further, setting n = k, x, = x, = 1 and x, = .. . 
... = x, = O into (1.18) we get the inclusion 4 6 ,  o 6,) c (0, 1). Consequently, 
6,06, = a6, + (1 -a)6, for some a E [O, 11. Hence, by standard dculations, 
the probability measure a(1 +a)-'6, + (1 + u ) - ~ J ,  is an idempotent other 
than 8,. Applying Theorems 4.1 and 4.2 from [13] we get the equality o = *,, 
which completes the proof. 

Given M E  U+ we define the probability measure x(M) by setting 

where d = M([O, a)). We record for Iater reference the following simple 
formulae: 

m 

(1.23) x(M)" (t) = exp 1 (fi(tx) - 1) M(dx) 
0 

m0-almost everywhere, 

(1.24) x(M) o x(N)  = x(M + N) ,  

(1.25) T(a) n (M) = x ( ~ ( a )  M) 

for M ,  N E U+ and a E (0, a). Moreover, x(Mn) + n(M) whenever M ,  -, M in 
U, . Finally, observe that the mapping U+ 3 M + n(M) is one-to-one. In fact, 
the equality n(M) = KIN) with M, N E U+ yields, by (1.23), 

~ ( t ) - ~ ( [ o ,  a)) = N(t)-N([o, a)) 

m,-almost everywhere or, equivalently, 

Since both measures M and N have no atom at the origin, the last equality 
yields M = N, which completes the proof. 

Throughout this paper, Poiss (0) will stand for the set of all measures z(M) 
with M 3  U+. We begin with a simple characterization of this set. 

LEMMA 1.3. A measure p~ Poiss(o) if and only if p ~ P , ( o )  and fi  is 
m0-essentially bounded *om below by a positive number. 
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Proof. Necessity. By (1.24) we have n(M) = x(M/n)On for all positive 
integers n. Hence Poiss(o) c P,(o). Further, by (1.23), we have the inequality 
n(M)^ (t) 2 exp ( -2M(p, 03))) m,,-almost everywhere, which completes the 
proof of the necessity of our conditions. 

Sufficiency. First consider the case o = *,. Then 62 = lI0,,, and, 
consequently, P(t) = p([0, t - '1) for t E [0, a). The boundedness of fi(t) from 
below by a positive number yields OE at (p). Setting M((0))  = 0 and M((x,  m)) 
= -log p([O, x]) for x E LO, ca) we infer that M E U+ and p = n(M).  

Suppose now that o # *,. The measure p can be written in the form 
p = p,"" for some pn EP,(o). By Lemma 1.1 in [12] there exists a subsequence 
n, < n, < . . . such that 

(1.26) lim n,(l - fin&)) = -log P(t)  
k+ m 

m,-almost everywhere. Put M ,  = n,p,,((O, CQ) (k = 1, 2, . . .). By Lemma 1.1 the 
sequence M, is conditionally compact in U+.  Passing to a subsequence if 
necessary we may assume without loss of generality that M ,  + M for some 
M E  U+ . Consequently, x(M,)  -c n(M). Since, by (1.23), 

m,-almost everywhere, we conclude, by (1.261, that ,G(t) = x(M)^(t) mo-almost 
everywhere. Thus p = n(M), which completes the proof. 

2. Factorization of probability measures. Let p, YEP. We say that v is 
a divisor of p if p = v o A for some 1 E P. The set of all divisors of p will be 
denoted by D(o, p). It is clear that (do, p) c D(o, p). By Proposition 2.4 and 
Corollary 2.3 in [I31 we have the following statement: 

PROPOSITION 2.1. For every P E P  the set D(o, p) is compact. 

By Lemma 2.3 in [13] the equation v o$ = 6, yields v = A = 6,.  Hence we 
get the following 

PROWSITION 2.2. D(o, So) = {So). 

PROPOSITION 2.3. If p l ~ D ( o ,  p,) and ~ , E D ( o ,  p,), then p, = p,. 

Proof. Suppose that p, = p, o Y, and p, = p, o v, for some v,, v2 EP. 
Setting A = v ,  op,, we have pl = p, OK, which yields p, = p1 o A"" for all 
positive integers n. Thus A"" E D(o, p,) and, by Proposition 2.1, the sequence Ron 
is conditionally compact. By Theorems 4.1 and 4.2 and Corollary 3.5 in [I31 
we conclude that either o = *, or o # *, and L"" -, So as n -, oo. In the case of 
the max-convolution our assertion is obvious. In the remaining case we have, 
by Corollary 2.4 in 1131, A = So, which by Proposition 2.2 yields v,  = v, = So. 
Consequently, p, = p,. 

LEMMA 2.1. If o # *, , then for euery A4 E U+ the following inclusion is true: 

D(o, n(M))n~,  (0) c Poiss (o).. 
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Proof.  Suppose that v E P, (0) and v o 1 = n ( M )  for some 1 = P. Then 
P(t) 2 n(M)I (t) mo-almost everywhere, which, by Lemma 1.3, yields v E Poiss (0). 

LEMMA 2.2. Suppose that o # *, , M E  U+,  and ~ ( o ,  n ( ~ ) )  c P,[o).  Then 
for every N E U+ with ~ ( N ) E D ( o ,  Z ( M ) )  the inclusion s(N) c s ( M )  is true. 

Proof.  Applying Lemma 2.1 we conclude that there exists a measure 
Q E  U+ fulfilling the condition x(N)o.n(Q) = TIM). Hence and from (1.24), by 
the uniqueness of the correspondence M ++x(M), we get the formula 
M = N + Q  which yields the desired inclusion. 

Given p~ P, by a p-norm we mean a function A, from D(o, p) into [O, oo) 
continuous at 6 ,  and fulfilling the condition 

whenever v o sl E D(o,  p) (see [?I, p. 37). 
We shall need the following lemma: 

LEMMA 2.3. Suppose that o # *, . Then for every p E P other than 6, there is 
a p-norm A, with A,(p) > 0. 

Proof.  Suppose that p E P and p # 6,. First we shall prove that there 
exists a number b ( p ) ~ ( O ,  1 )  such that the set 

has positive Lebesgue measure. Suppose the contrary. Then, by (1.6) and (1.7), 
the set {t: t E [O, 1 1 ,  IP(t)1 q! (0, 1 ) )  has the Lebesgue measure 0. Since, by 
Proposition 4.2 in [ l o ] ,  

t 

lim t - I  IF(u)du = 1 ,  
L-0 0 

we conclude that the set {t: t E [0, 11, $It) = 1 )  has positive Lebesgue measure. 
Applying Lemma 2.1 in [12] we get the equality p = do, which contradicts the 
assumption. The existence of the desired constant b(p)  is thus proved. 

Put 
A , ( v ) = -  1 log[v^(t)ldt for v ~ D ( o , p ) . _  

B(P) 

Notice that 

for v E D(o,  p) and m,-almost all t E B(p) .  Consequently, 0 G A,(v) < oo for all 
V E  D(o,  p). The inequality (@(t)l < 1 on B(p)  yields A&) > 0. Formula (2.1) is 
evident. It remains to prove that the function A, is continuous at 60. Suppose 
that V ,  E D(o, p) and v, + 6,. By Lemma 1.1 in [12] each subsequence of 
indices contains a subsequence n, < n, < ... such that $,+ 1 mo-almost 
everywhere. By (2.2) and the bounded convergence theorem we get the relation 
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A,(v,,) + 0 = A,(6,) which proves the continuity of d, at 6,. The lemma is thus 
proved. 

A probability measure p is said to be irreducible if p # 6 ,  and D(o,  p) 
= {So, p}. A probability measure p is said to be anti-irreducible if D(o, p) 
contains no irreducible measure. Throughout this paper I(o) will stand for the 
set of all anti-irreducible measures. The set I(o) has drawn much attention since 
the inception of decomposition theory (see [7], Sections 2.8, 2.9 and 5.7). The 
problem of describing anti-irreducible measures for the ordinary convolution 
has a long history but it has not been solved yet (see [4] and [6 ] ) .  It is known 
that for the max-convolution 

(2.3) I (* , )  = P,(*,) = P 

(see [7], p. 175). For the Kingman convolutions, ~strovsk; obtained in [ 5 ]  the 
nice formula I(o) = Gauss (0). It is of interest to clarify whether it is possible to 
realize the extremal case I(o) = (6,) for some generalized c~nvolutions. Sec- 
tion 3 will be devoted to the study of this problem. 

By Proposition 1.2 we have ~ , E I ( o ) .  It is clear that 

(2.4) D ( o , p ) c i ( o )  for ~ E I ( o ) .  

Bingham proved in [2] that for regular convolutions anti-irreducible measures 
are infinitely divisible. We shall show that this result remains true for arbitrary 
convolutions. 

THEOREM 2.1. For every conuolution o the inclusion I(o) c P,(o) holds. 

Proof.  By (2.3) it suffices to consider the case o # *, . By Theorem 4.2 in 
1131 the measure 6, is the only idempotent in the semigroup (P, 0). Taking into 
account Definitions 2.2 and 10.6 in [7] we conclude, by Propositions 2.1 and 
2.3 and Lemma 2.3, that (P, o) is a normable Hun semigroup. Thus, by 
Theorem 8.9 in [7], every anti-irreducible probability measure p is in- 
finitesimally divisible, i.e. for every neighbourhood U of 6, it has a represen- 
tation p = p, o p, o . . . o pk with pj€ U Cj = 1, 2, . . . , k). Of course, all partial 
products pi, o pi, o . . . o pi, (1 $ il  < iZ  < . . . < ir $ k) belong to D(o, p). Since, 
by Proposition 2.1, the set D(o, p) is compact, we apply Theorem 10.7 in [7] 
and obtain the infinite divisibility of p, which completes the proof. 

THEOREM 2.2. p ~ l ( o )  if and only if D(o, p) c P,(o). 

Proof.  By (2.3) it suffices to consider the case 

The necessity of the condition in question is an immediate consequence of 
inclusion (2.4) and Theorem 2.1. We prove its sufficiency indirectly. Suppose 
that D(o, p) c P,(o) and the set D(o, p) contains an irreducible measure v. 
Since v E P, (o), we have v = l o  R for some 1 # 6,. Of course, I E D(o, v) 

7 - PAMS 14.1 
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= {a,, v ) ,  which yields 1, = v.  In other words, v is an idempotent other than J , ,  
which, by Theorems 4.1 and 4.2 in [13] ,  contradicts (2.5). The theorem is thus 
proved. 

THEOREM 2.3. For every eonvoIution o other than *, , I ( o )  is a proper subset 
of Pm(0). 

Proof .  Setting Q = z:=, k-'2-LiiYk and M = QI(0, m) we have MEW+ 
and, by (1.231, 

m 

n(1M)c(t) = exp C k - l 2 - ' ( a k ( t ) - 1 )  = (2-P[t))- '  

m,-almost everywhere. Introduce the notation 

13k = 22k/(1 +2") and v ,  = p,6, + ( I  -p,)6;2k ( k  = 0,  1 ,  . . .). 
Of course, V ~ E P  and, by Lemma 1.2, 

Moreover, t k ( t )  = p,+(l -p,)f22k(t)  m,-almost everywhere. Using the formula 
m 

( 2 - x ) ' =  f l ( p k + ( l - p , ) x 2 ?  for X E [ - 1 , 1 ]  
k = O  

we get the equality 

m,-almost everywhere. Hence vo o v ,  o . . . ov, + z ( M )  as n -+ m. By Corolla- 
ry 2.3 in [13] the sequence v ,  o v, o . . . o v, is conditionally compact. Taking its 
cluster point A we have the equality v,  oA = z(A4). Thus v,, E D ( O ,  n ( ~ ) ) ,  which, 
by (2.6) and4Theorem 2.2, yields n(M)$ Ito).  On the other hand, ~(M)EP,(o), 
which completes the proof. 

We say that a generalized convolution o has the Cram& property if its 
characteristic measure y fulfils the condition D(o, y) c Gauss(o). Generalized 
convolutions with the CramCr property were studied in 1141. It is well known 
that the ordinary convolutions and the symmetric ones have the Cramkr 
property. 0strovsG proved in [5 ]  that the Kingman convolutions have also 
this property. Observe that, for the max-convolution y = d l ,  D(*, ,  y)  
= (v: S ( V )  c [0, 11) and Gauss (*,) = (6,: a E [0, a)), which shows that *, 
has not the Cramer property. 

Now we shall give a convenient sufficient condition for a convolution to 
have not the Cramkr property. 

LEMMA 2.4. Let o be a generalized convolution with $nite characteristic 
exponent K. Suppose that there exists a probability measure Q with d( t )  
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= (1 + ctK)exp (- t") for some c E (0, a). Then o does not have the Cramtr 
property. 

Proof.  Put v(dx)  = KX"-'exp(-xK)dx and 1 = ~ ( c ' ~ " ) ~  nv. Using (1.8) 
and (1.10) we have %(t) = (1 + etK)- l, which yields X(t)@(t) = exp (- tK) 

m,-almost everywhere. Consequently, y = R o Q and A E D(o,  y). On the other 
hand, by (1.8), A+ Gauss (o), which shows that the convolution in question does 
not have the Cramer property. 

Now we shall give some examples of generalized convolutions without the 
Crambr property. It  is clear that each generalized convolution o is uniquely 
determined by the expressions 6, o 6, with a, b ~ ( 0 ,  co). In our case they will be 
of the form 

where d(a, b) = min (a, b)/max (a, 6). The case f - 1 and g = 0 corresponds to 
the max-convolution. Therefore generalized convolutions (2.7) can be regarded 
as a modification d the max-convolution. 

EXAMPLE 2.1. Kendull convoltdtions. The Kendall convolution depends upon 
a positive integer n and is defined by (2.7) with the functions f (x) = (1 - x)" 
and 

where c = max (a, b). Here we have IC = 1 and 

Put ~ ( d x )  = ((n + l)!)- ' x-"- exp (- l/x)dx. By standard calculations we get 
the formula 

Q(t) = (l+(n+l)-lt)exp(-t) 

which, by Lemma 2.4, shows that the Kendall convolutions do not have the 
Cramkr property. 

EXAMPLE 2.2. (1, p)-convolutions. This family of convolutions - de- 
pends upon a parameter p ~ ( 0 ,  1) and is defined by (2.7) with the functions 
f(x) = l-px, 

g(a,b,x)=pab(2p-l)-1x-3(2p-max(aq,bg)x-q)lrc,,,(x) if p#1/2 

and 

where c = max(a, b) and q = (2p-l)/(l -p). Here we have u = 1 and 
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Observe that this convolution in not regular. Setting r = (1-p)-l, 

for x E (0, CO) and g(dx) = h(x)dx, by standard calculations we get p E P and 

a(t) = (1 +2-lt)exp(-t). 

Applying Lemma 2.4 we infer that (1, p)-convolutions do not have the Cramkr 
property. 

EXAMPLE 2.3. (2, p)-convolutions, This family of convolutions depends 
upon a parameter p ~ ( 2 ,  m). The functions f and g appearing in (2.7) are 
defined by the formulae 

f(x) = l - p ( ~ - I ) - ~  ~ + ( p - l ) - ~ x p  

and 

g(a, b, x) = p(p- 1 ) - ~ a b x - ~ ( 2 ( ~ - 2 ) + ( a ~ - l  +bp-')(I +p)xl-P 

-212~-  l)aP-' b P - I  X ~ - ~ ~ ) ~ ~ , ~ ~ ( X ) ,  

where c = max(a, b). Here we have rc = 1 and 

O(t) = ( ~ - ~ ( ~ - l ) - ~ t + ( p -  l)-l tP)ll~.~l(t) .  

Setting 

we get a probability measure with @(t) = (1 + 3 - I  t) exp (- t). Applying Lem- 
ma 2.4 we infer that the (2, p)-convolutions do not have the Cram6r property. 

EXAMPLE 2.4. Kucharezak convolutions. We define these convolutions for 
any p ~ ( 0 ,  1) by setting in (2.7) f = 0 and 

where s = (aP+ bp)'IP. Here we have K = p and 

where T(p, t) is the incomplete gamma function, i.e. T ( p ,  t) = jtm e -"xP-' dx 
for t E [0, a ) .  

In the study of the Kucharczak convolutions we need the following 

LEMMA 2.5. Let p ~ ( 0 ,  1) and b ~ ( 0 ,  p(l -p)). Then the function 

h(t) = (1 + btP) exp ( - tP) 

is completely monotone on [0, a ) .  
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Proof ,  It is clear that the function h is infinitely differentiable on (0, a). 
By standard calculations we conclude that its derivatives are of the form 

(2.8) n(")(t) = (- lYtP-"q,(tP) exp (- tP) (n = 1, 2, . .), 
where q, are polynomials of degree n fulfilling the recurrence formula 

Setting 

we get from (2.9) the recurrence formulae 

(2.11) an+l,n+l = 9an.n (n = 1, 29 * -  

(2.12) Q D , ~ + I = ( ~ - P ) ~ o , ~  ( n = l , 2 y . - w ) ,  

(2.13) a ~ , , , + ~  = (n-p-pk)a,,,+pa, -,,, (n = 1, 2, ..., n; n = l , 2 ,  ... ) 
with the initial conditions 

From (2.11) and (2.14) we get the equality 

(2.15) la,,, = bpn (n = 1, 2, ...) 

which, by (2.13), yields 

Now by induction one can easily check the formula 

a,-1,,=pn-1(p-8-1br2+8-1b(2n(l-p)1/2-r2)) ( n = 1 , 2 ,  ...), 

where r = (1 +p)(l -p)-'I2. Notice that 

p-8-lbr2 ), p-8-'~(1-p)r2 > 0, 

which yields the inequality 

(2.16) U ~ - ~ , , > O  (n=1929 . . . ) .  

Now we shall prove the inequality 

by induction with respect to n. By (2.14) our statement is obvious for n = 1, 
Suppose that inequalities (2.17) are true for k = 0, 1, . . . , n. We have to prove 
the inequalities ak,n+l > 0 for k = 0, 1, . . . , n+ 1. Observe that for k = n and 
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k = n+ 1 they are true because of (2.15) and (2.16). It remains to consider the 
case 0 < k 6 n - 1. Then n - p - pk 2 n (1 - p) > 0 and, consequently, our 
assertion is an immediate consequence of (2.13). This completes the proof of 
(2.17). Taking into account (2.10) we conclude that all polynomials q, 
are positive on the half-line [0, m), which, by (2.8), yields the inequality 
(- l)"h(")(t) 20 for n = 1,2, . . . and t ~ ( 0 ,  a). Lemma 2.5 is thus proved. 

Let us now return to the Kucharczak convolution with parameter 
p ~ ( 0 ,  1). Let b ~ ( 0 ,  ~ ( l - ~ ) )  and h(t) = (1 +btP)exp(-tP). Then 

fur t E [0, m). By Lemma 2.5 the function h is completely monotone on LO, a). 
Taking the Bernstein representation 

with v E V+ we have 0 $at (v) and 

m m 

J h { u ) ~ ~ ~ l d u  = J r(p, t~ )x -~v(dx)  for t~ [0, a). 
t 0 

Consequently, setting q(dx) = p(1 + b)-I r ( p ) ~ - ~ v ( d x )  and taking into account 
(2.18) we conclude that QEP  and 

which, by Lemma 2.4, shows that the Kucharczak convolutions do not have 
the Cram61 property. 

3. A class of convolutions. Given M, N E V+ we denote by C(M, N) the set 
of all positive numbers c fulfilling the condition M(E) 6 cN(E)  for all Bore1 
subsets E of [0, GO). Put k{M, N) = infC(M, N), where the infimum of an 
empty set is assumed to be m. The following statements are evident: 

whenever k(M, Q )  and k(Q, N) are finite; 

(3.3) k(M1 +M2, Nl +N2) G max(k(M1, N,), k(M2, N,)), 

(3.4) k(M1oM2, NloN2) d k(M1, Nl)k(M2, N2) 

whenever k(Ml, N,) and k{M2, N,) are finite; 

lim k(M,, N,) 2 k(M, N )  
n + m  
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if M ,  + M and N ,  + N; 

whenever k (M,  N )  is finite. 
Throughout this paper K will stand for the set of all probability measures 

A fulfilling the condition k(T(b)ll, A)) < oo for b ~ ( 1 ,  co). 

LEMMA 3.1. The measures i from K are of the form 1 = p6, + (1 -p)v, where 
p E [O,  11 and the probability measure v is eqetivulent to the Lebesgue measure on 
a half--line [u, a) with u 2 0. 

Proof.  By (3.6) we have the inclusion bs(L) = s(T(b);l) c s(h) for 
b ~ ( 1 ,  a), which shows that either s ( A )  = (0 )  or s(A l(0, a)) = [u ,  a) for some 
u 2 0 .  Consequently, to prove our lemma it suffices to show that the measure 
11(0, m) is absolutely continuous with respect to the Lebesgue measure on 
(0, a). Taking an arbitrary Bore1 subset E of (0, m) of the Lebesgue measure 
0 we have the equality 

m 

5 lE(ax)a-'da = 0 for all X E ( O ,  co). . 

112 

Consequently, 
m m m 

5 A ( ~ - ~ E ) a - ~ d a  = 1 I , (a~)a-~dal (dx)  = 0 ,  
112 o+ 112 

which yields 

(3.7) (T(a) l ) (E)  = R(aC1 E) = 0 for almost all a E (1/2, I). 

Using (3.1) we conclude that the measure L is absolutely continuous with 
respect to the measure T(a ) l  with a ~ ( 0 ,  1). Hence and from (3.7) we get the 
equality A(E) = 0, which completes the proof. 

Let A be a subset of [0, a). A mapping from A into [0, co) is said to be 
locally bounded if it is bounded on every compact subset of A. 

LEMMA 3.2. For every A E K the mapping (1 ,  co) 3 b + k(T(b)A, 1) is locally 
bounded. 

Proof.  The inequality k(T(b)L, A) 2 1 for b ~ [ l ,  co) is evident. Setting 

F(x) = log k ( T ( 8 )  2,  A) for x E [0, a), 

b y  (3.1) and (3.2) we have 

for x ,  Y E  [0, a). Thus the function F is subadditive on [0, m). Applying 
Theorem 6.4.1 of [3] we infer that F is locally bounded on (0 ,  m), which yields 
the assertion of the lemma. 
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LEMMA 3.3. For every ,I G K and M E  W+ with s(M) c (1, m) the inequality 
k(M A, A) < is true. 

P r o  of. Since s(M) is a compact subset of (1, a), we can find, by Lemma 
2.3, a positive constant c such that the inequality (T(b)A)(E) < cA(E) holds for 
all Borel subsets E of 10, m) and b ~ s ( M ) .  Integrating both sides of the above 
inequaIity with respect to M(db) and using formula (1.9) we get the inequality 
k(M 17 1, 1) < c, which completes the proof. 

We say that a generalized convoIution o is K-majorizable if there exists 
a measure g E K  such that 

(3.8) k ( M o N ,  ( M * , N ) + ( M * , N ) o ~ )  < c~ 
and 

(3.91 k(Tb)?, M Q N )  < a 
for all M, N E W+ and some q ~ ( 0 ,  a) depending on M and N .  The measure 
r is called a rnajorizing measure. 

Before taking up a more detailed study of K-majorizable convolutions we 
establish a very convenient sufficient condition in terms of the expressions 
6, o 6, with a E (0, 11 for a convolution to be K-majorizable. 

PROPOSI~ON 3.1. Suppose that for a E (0, 11 we have a representation 

where ~ E K ,  f and h are Borel functions dejined on (0, 11 and (0, I] x 10, a ) ,  
respectively, the mapping 

(3.1 1) (0, 1]3a -t H(a) = m,-esssup(h(a, x) :  x ~ s ( q ) )  

is locally bounded and for some c E (1, a )  

(3.12) G(a, c) = m,-essinf'(h(a, x): x~cs (q ) )  > 0. 

Then o is K-majorizable with q as a majorizing measure. 

Proof .  Observe that, by Lemma 3.1, the measure q is absolutely 
continuous with respect to the measure m,. Obviously, f (a) E LO, 11, which 
yields the inequality 

k(6, o d,, 6, + q )  6 max (1, Hla)) for a E (0, 11. 

Setting d = d(a, b) = min(a, b)/max(a, b) for a, b ~ ( 0 ,  a ) ,  by (3.1) we have 

Given M ,  N E W+ we conclude, by the local boundedness of H, that H(d(a, b)) 
< P for some r > 1 and all a E s(M) and b E s(N). Consequently, by (3.13), 

6, o 6, < r (dm,(,,,, + T(max (a, b ) ) ~ )  for all a E s(M) and b E s(N)- 
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Integrating both sides of the above inequality with respect to M(da)N(db) we 
get, by virtue of (1.91, the inequality 

which proves (3.8). Further, taking a number q fulfilling the condition 
q > c max (a, b) for a E s(M) and b E s(N) we have, by (3.11, the inequality 

Moreover, by (3.5), the function I(a, b) is Borel measurable on the product 
s(M) x s (N) .  Since C S ( ~ )  = s(T(c)~)  and u = ~(T(c )v ,  U) < a, we have 

v(EncsIv)) 2- o- (TCc)tl)(E) 

for all Borel subsets E of [0, a). Hence taking into account (3.10) and (3.12) we 
get 

6,06, > G(d, c)v-l T(c)q for all d ~ ( 0 ,  11. 

Substituting d = min (a, b)/max (a, b) for a E s (M)  and b E s(N) and setting 
u(a, 6)  = G(d, c)v-'l-l(a, b), from (3.14) and the last inequality we get 

(3.1 5 )  6, o 6, = T(max (a, b))(S, o S,J g G(d, c)v-'  T(c max (a, b))q 

for all a E s(M) and b E s(N). It is clear that the function ~ ( a ,  b) is Borel 
measurable on the product s(M) x s(N) and maps this product into the interval 
(0, 11. Integrating both sides of (3.15) with respect to M(da)N(db) and 
introducing the notation 

we get the inequalities u,, > 0 and u,T(q)v d M o N  which imply (3.9), 
Proposition 3.1 is thus proved. 

We shall apply Proposition 3.1 to generalized convolutions discussed in 
Examples 2.1-2.4. In what follows by the Pareto measure with parameter 
f l ~ ( 0 ,  OO) we mean the measure /?x-'-~lIl,,,(x)dx. We associate with 
(1, 1/2)-convolution a majorizing measure 

In all the remaining cases as a majorizing measure q we take the Pareto 
measure with the following parameter 8: P = n+ 1 for Kendall convolutions 
with parameter n, p = min (2, 1/(1 - p ) )  for (1, p)-convolutions with p # 1/2, 
p = 2 for (2, p)-convolutions with p ~ ( 2 ,  CQ), and fi = 2p for Kucharczak 
convolutions with p ~ ( 0 ,  1). Here we have s(q) = [I, a). Starting from re- 
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presentation (2.7) and determining the function h by the formula 

h(a, x)g(dx) = g(a, 1, x)dx for a E (0, 11 

we conclude, by standard calculations, that conditions (3.11) and (3.12) with 
c = 2 are fulfilleg. Thus as an immediate consequence of Proposition 3.1 we get 
the following statement: 

COROLLARY 3.1. The Kendall convolutions with n = 1 ,  2, . . . , (1, &con- 
volutions with p E (0, I), (2, p)-convolutions with p E (2, a ) ,  and the Kucharczak 
convolutions with p E (0, 1) are K-majorizabb. 

Now we proceed to the study of K-majorizable convolutions. 

LEMMA 3.4. Majorizing measures of a K-rnajorizable .convolution are 
equivalent to the Lebasgue measure on a half-line [u, CQ) for some u 3 0. 

Proof.  Let q and y be a majorizing measure and a characteristic measure 
of a K-majorizable convolution, respectively. Since, by Lemma 2.2 in [10], 

(3.16) o$a t (~ ) ,  

we can find an interval A such that y 1 A E  W+. Setting M = y 1 A, by (1.2) and 
(1.3) we have M o M < yo y = T(c)y, where c = r ( ~ ,  1, 1) > 0. On the other 
hand, by (3.9) we obtain k(T(q)q, M O M )  < a ,  which, by (3.2), yields 
k(T(q)q, T(c)y) < m. Consequently, at (q) c at (Tlcq-l)y) and, by (3.161, 
04at  (q). Now our assertion is an immediate consequence of Lemma 3.1. 

LEMMA 3.5. The max-convolution is not K-majorizable! 

Proof .  Suppose the contrary and denote by q a majorizing measure for 
*,. Since 6, E W+ and S, *,a, = 61, by (3.9) we have k(T(q)g, 6,) < oo for 
some q E (0, a). Thus T(q)q = S,, which contradicts Lemma 3.4. 

As a consequence of our Lemma 3.5 and Lemma 2.1 in [lo] we get the 
following statement : 

COROLLARY 3.2. The characteristic exponent of K-majorizable convolutions 
is Jinite. 

LEMMA 3.6. Let o be a K-majorizable convolution. Then the inclusion 

at (M o N )  c at (M)uat (N) 

holds for all M, N E V+ . 
P r  o of. Observe that the measures M and N from V+ can be written in the 

form m m 

M = ad,+ M,, N = b6,+ Nk, 
k = l  k =  1 

where a, b E [0, m) and Mk, N, E W+ (k = 1, 2, . . .). Starting from the formula 
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we get the inclusion 

m 

(3.17) at (M o N) c at ( M u a t  (N)u u at (Mj o N,). 
j , k = l  

By Lemma 3.4 the measures (Mj+,N,)O q are absolutely continuous with 
respect to the Lebesgue measure on the half-line [O, m). Consequently, by (3.81, 

at (Mj o N,)  c at (Mj +, N,)  c at (Mj)uat (N,)  c at (M)uat (N), 

which together with (3.17) yields the assertion of the lemma. 

LEMMA 3.7. The characteristic measure y of a K-majorizabk convolution has 
no atom. 

Proof.  We argue indirectly. Suppose that at (y) # 0. Recall that, by 
Corollary 3.2, the characteristic exponent u of the convolution in question is 
fd te .  Moreover, by Lemma 2.2 in [10], O$at (y). Since the set at (y) is at most 
denumerable, we can find a pair p, q ~ ( 0 ,  co) such that the numbers pK, qK are 
linearly independent over the field generated by the numbers cK with c E at (y). 
By (1.2) and (1.3) we have the formula 

T(P)Y 0 T ~ ) Y  = T ( r k  P, q1)y 

which, by Lemma 3.6, yields the inclusion 

P, q)at(y) c P atIIJ)uqat(y). 

Consequently, for any a E at (y) there exists b E at (y) such that either (pK + qx)aK 
= pKbK or (pK + qK)aK = qKb", which contradicts the linear independence of pK 
and qK. The lemma is thus proved. 

LEMMA 3.8. For every K-majorizable convolution there exists a version of the 
kernel of the weak characteristic function which is continuous on the set 
LO, W)U(W, co) for some w ~ ( 0 ,  a]. 

Proof.  Given p ~ ( 0 ,  K )  we denote by o a o-stable probability measure of 
index p ([lo], Section 2). By Corollary 4.5 in [lo] the measure is equivalent 
to the Lebesgue measure on [0, co) and, by Theorem 4.2 in [IO], we may 
assume that 

(3.18) 8 (t) = exp ( - tP) 

m,-almost everywhere. 
Notice that, by Lemma 3.4, the majorizing measure q of the convolution in 

question is absolutely continuous with respect to 0. Since, by Lemma 2.2 in 
[10], 0  $at (a), we have a representation 
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where MjeW+ ( j = 1 , 2 ,  ...) and s (M,)c( l ,m) .  Observe that . 

('j = 1, 2, ...I. Setting 

we infer that the measure 1, is absolutely continuous with respect to a, and the 
remaining measures l j  (j = 2, 3, . . .) are absolutely continuous with respect to 
6 ,  +a.  Since, by (3.8), k(Sl o M j ,  ,Ij) < co for j = 1, 2, ..., we conclude that the 
measure I, o M, is absolutely continuous with respect to a and the measures 
6 ,  o M j  (j = 2,  3, .. .) are absolutely continuous with respect to 8 ,  +g. Hence 
and from (3.19) it follows that 6, oa # 6, and the measure 6, o a is absolutely 
continuous with respect to 6,fa. In other words, we have the equality 

where C E  [0, 1) and the probability measure e is absolutely continuous with 
respect to the Lebesgue measure on [O, a). By the definition of the weak 
characteristic function ([lo], p. 82), @ ( t )  is continuous. By (3.18) the last equality 
can be written in terms of the weak characteristic functions as follows: 

m,-almost everywhere. Denoting by w ~ ( 0 ,  ao] the only solution of the 
equation exp (- tP) = c we have the formula 

m,-aImost everywhere on [O, w ) u ( w ,  co). Obviously, the right-hand side of the 
above formula is continuous on [O, w ) u ( w ,  co) and can be taken as a required 
version of the kernel 9, which conipletes the proof. 

From now on it will be tacitIy assumed that the kernel SZ corresponding to 
a K-majorizable convolution has at most one discontinuity point. We shall see 
that K-majorizable convolutions have many properties similar to those for 
regular ones. In particular, from the basic theorem on weak convergence ([I], 
Theorem 25.7) we get the following statement: 

LEMMA 3.9. For every K-majorizable convolution and pn, p E P with at (p) 
c (0) the weak convergence p,, + p yieids the convergence 4, + @ uniform on 
every compact subset of [0, co). 

Applying the above lemma to relation (1.1) and using (1.8) and Lemma 3.7 
we get the following 

COROLLARY 3.3. For K-majorizable convolutions the relation T(c,,)S+ y 
for some norming constants c,E(O, 00) yields GJ(c,t? -+ exp(-tx) unformly on 
every compact subset of LO, co). 
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LEMMA 3.10. For every K-majorizabb convolution there exists a number 
UE(O,  cy)) such that Q(t) < 1 for t ~ ( 0 ,  v). 

Proof.  Contrary to this let us suppose that 9(6,) = 1 for a sequence 
b,€(O, co) tending to 0. Let c, be a sequence of norming constants in (1.1). By 
Lemmas 2.6 and 2.7 in [lo] we may assume without loss of generality that the 
sequence c, is monotone non-increasing, c, > b ,  and c,+ Jc, -+ 1 as n 4 a. 
Consequently, for any n there exists an index k, such that c ~ , + ~  < b, < Cam. 

Setting d,  = b,/c,, we have d, + 1 as n + m. Further, by Corollary 3.3, L!(c,t)" 
4 exp (- t") uniformly on every compact subset of [0, a). Thus 

which gives a contradiction. This proves the lemma. 

Starting from Corollaries 3.2 and 3.3 and Lemma 3.10 and applying the 
same arguments as used in [g], Theorem 7, for regular convolutions we get the 
following statement: 

COROLLARY 3.4. FOP K-majorizable convolutions with the characteristic 
exponent K the kernel In fuljils the condition 

1 -9(tx) 
lim = tK 
,+o 1 - Q(x) 

uniformly on every compact subset of [0, a). 

LEMMA 3.11. Let o be a K-majorizable convolution. Suppose that p, pn 
ePm(o),  p = pin (n = 1, 2, . . .) and np,, + 0 on every half-line [b, co) with 
b ~ ( 0 ,  a ) .  Then p ~ G a u s s  (0). 

Proof.  Using the same arguments as in the proving of Lemma 1.3 we get 

for a subsequence k, < k, < . . . mo-almost everywhere. If @(t) = 1 mo-almost 
everywhere, then p = 6, and, consequently, p E Gauss (0). In the remaining case 
there exists a number to E (0, 00) such that equality (3.20) holds for t = to and 
c = - t i K  log $(to) ~ ( 0 ,  m). Setting 

we have, by Corollary 3.4, 

lim u(t, b) = 0. 
b+O 

Moreover, for every b E (0, a )  
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which, by (3.20), yields P(t] = exp(-ctK) m,-almost everywhere as n + and 
b + 0. Thus p = T (elt") y, which completes the proof. 

For regular convolutions the following statement is an immediate con- 
sequence of the Lkvy-Khinchin representation of P,(o) given in [8], The- 
orem 13. 

LEMMA 3.12. Let o be a K-majorizable convolution. lf,u~P,(o) and D(o, p) 
nPoiss (0) = {6,), then p E Gauss (a). 

Proof.  We argue indirectly. Suppose that p E P ,  (o)\Gauss (0) and 

Put fi = pin, where pn E P,(o) (n = 1 ,  2,  . . .). By Lemmas 1.1 and 3.1 1 we 
conclude that there exist a number b E (0, a), a sequence k ,  < k, < . . . and 
a measure M E  U+ which does not vanish identically and knpk, 1 [b ,  m) -+ M. 
Using the same arguments as in the proving of Lemma 1.3 we may assume that 
formula (3.20) is true for the same subsequence k, < k, < . . . Consequently, 
setting 

Mn = k,&,, I [by 03) and Nn = kn&, 1 (0, b), 

we have TcIM,) + x(M) # 6, and 

pn,-almost everywhere, which yields the relation 

Observing that, by Corollary 2.3 in [13], the sequence n(N,) is conditionally 
compact and denoting by A its cluster point we get the equality x(M) o 1 = p. 
Consequently, n(M) E D(o, p), which contradicts (3.21). The Iernma is thus 
proved. 

LEMMA 3.13. For K-majorizable convolutions the equality I(o)nPoiss(o) 
= ( 6 , )  is true. 

Proof.  Suppose the contrary. Then we can find a measure M E  W+ such 
that n(M) EI(o). Let q be a majorizing measure for the convolution in question. 
By (3.9) there exists a positive number q fulfilling the condition 

(3.22) k(T(q)?, Mo2) < 03.  

Since, by Lemma 3.4, the measure g is equivalent to the Lebesgue measure on 
a half-line [u, a) with u 2 0, we can find an interval A = [a, b] fulfilling the 
conditions a > 1, qa > max s (M) and q 1 A E W+ . Setting N = T(q)(v I A) we 
have N E W, , 
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Note that, by (3.1), k ( N ,  T(q)q) = k(q  1 A,  Q) < 1, which, by (3.2) and (3.22) 
yields 

(3.25) k ( N ,  Mo2) < m. 

Since s(q 1 A) c A c (1, co), we have, by (3 .1)  and Lemma 3.3, 

which, by (3,221, yields 

Further, by (3.24), 

( M * , N ) + ( M * , N ) O q  = N + N O q  

and 

(N*,N)+(N*,N)Oq G 2CN+NLlq>, 

which, by (3.21, (3.8), (3.25) and (3.26), yield the inequalities 

(3.27) 
and 

(3.28) 

k ( M 0  N ,  M02) < 0 

k (NQ2 ,  M02) < co.  

From (3.4) and (3.27) we get 

Similarly, by (3.4) and (3.28), k (No3,  Mo2 o N )  < CO, which together with (3.2) 
and (3.29) yields 

It is clear, by (3.23), (3.25), (3.27), (3.29) and (3.301, that setting Q = EN, 
where E is a sufficiently small positive number, we get a measure belonging to 
W+ and fulfilling the conditions 

(3.32) 

and 

(3.33) 
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Put R = M -Q. We shall prove the inequality R " ~  2 0 for all k B 2. First 
observe that, by (3.32) and (3.33), 

and 
Rn3 = M ~ ~ - ~ M ~ ~ O Q + ~ M O Q " ~ - Q ~ ~  2 0.  

For the remaining exponents our assertion is an immediate consequence of the 
equalities Ro2" = (RoZ)"" and R"(2"'3) = ( R O ~ ) O ~  o Ro3 (n = 1 ,  2 ,  . . .). Further, by 
(3.321, 

Hence the formula 

with r = R([O, a)) defines a probability measure. Moreover, it is easy to check 
the equality x ( Q )  o v = x(M). Consequently, n(Q) E D(o, n(A4)). Since, by (2.4) 
and Theorem 2.1, D(o,  R(M))  c P,(o), we conclude, by Lemma 2.2, that the 
inclusion s(Q) c s (M)  holds. But this contradicts (3.31). The lemma is thus 
proved. 

We are now in a position to prove the main results of this section. The 
following statements are an immediate consequence of (2.4) and Lemmas 3.12 
and 3.13. 

THEOREM 3.1. For K-majorizable convolutions the inclusion I(o)  c Gauss (0) 

is true. 

THEOREM 3.2. Suppose that a K-rnajorizable convolution does not have the 
Cram& property. Then I(o) = (6,). 

Since the convolutions discussed in Examples 2.1-2.4 and Corollary 3.1 
fulfil the conditions of Theorem 3.2, we have the following result: 

COROLLARY 3.5. For KendalE convolutions with n = 1,  2 ,  . . . , (1, &on- 
voEutions with p E (0, I), (2, p)-convolutions with p E (2, a) and - Kucharczak 
convolutions with p ~ ( 0 ,  I), a,, is the only anti-irreducible measure. 
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