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Abstract. The Lindeberg theorem is derived on stratified nil-
potent Lie groups; that is a normal convergence theorem for a trian-
gular system of probability measures in case of bounded (homo-
geneous) moments of second order. By using necessary and sufficient
conditions for convergence of convolution semigroups of probability
measures on Lie groups a Lindeberg—Feller theorem is proved on the
Heisenberg group.

Introduction. One of the classical questions of the central limit problems
for a sequence (u,),», of probability measures on a topological group G is to
find appropriate automorphisms 7, of the group in such a way that the
sequence (t,(u*...%H,)),», of the standardized convolution products con-
verges to some Gaussian limit. The limiting Gaussian measure should be stable
as well. It is known that nilpotent Lie groups play an important role
concerning stability of probability measures on a topological group. In [28]
and [10] Hazod and Siebert showed that the investigation of stable measures
on a locally compact group can be reduced to the case of a simply connected
nilpotent Lie group whose Lie algebra admits a positive graduation. Therefore
it is natural to study generalizations of the classical results connected with
central limit problems in case of such groups.

For the sake of simplicity we restrict our attention to the class of stratified
nilpotent Lie groups. Leaving the classical case of R* out of consideration, these
groups are non-commutative, non-cornpact, have infinite-dimensional irreduci-
ble representations, and the set of finite-dimensional representations does not
separate the points of the group (thus they are not maximally almost periodic).

We consider a triangular system (i,);=1... .1 Of probability measures.
In the case of a Lie group, the convergence behaviour of the sequence
(Hy1* - *hy ), » 1 Of TOW products has been studied in [33], [6], [29], [12], and
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[26]. Using the results of Wehn [33] we prove in the case of a stratified Lie
group the analogue of the classical central limit theorem under the Lindeberg
condition
kn
lim > | |xPuu(dx)=0 for all ¢>0,
n—rowo k=1 |x|2¢
where x — |x| is an arbitrary homogeneous norm on the group. Sometimes the
condition
kn
lim Y p,(G\U)=0 for all neighborhoods U of e
n»aok=1
on a topological group is also called a (generalized) Lindeberg condition (see,
e.g., [33], [29], and [12]), but it should be rather called a Khinchin condition
(cf. [5] and [1]). As a corollary we obtain a central limit theorem for
probability measures y with _[|x|2 u(dx) < co, that is, the convergence of the
sequence (4, v (4")a» 1 to some Gaussian measure, where (J,),. , are the natural

dilations (see [22]; in {3] and [32] stronger moment conditions are supposed).
Another corollary is a Lindeberg central limit theorem for suitably standar-
dized n-fold convolution products p,*...#u, of probability measures on the
Heisenberg group (the simplest non-commutative stratified nilpotent Lie
group). The standardization is performed in such a way that the limit
distribution will be the standard Gaussian measure.

Next we are concerned with necessary and sufficient conditions for the
convergence of convolution semigroups of probability measures on Lie groups
in terms of their generating functionals and characteristics of their canonical
decompositions. (This problem plays an important role in investigation of the
necessity of the Lindeberg condition.) Some partial results were obtained in
[33] (see also the interpretation of Grenander [6]). Hazod [8] has proved that
the convergence of the generating functionals of the convolution semigroups
implies the convergence of the convolution semigroups themselves. The
converse is contained in [26], though not explicitly stated, as remarked by
Hazod and Scheffler [9] (who have also formulated, in the case of exponential
Lie groups, necessary and sufficient conditions in terms of the corresponding
generating functionals on the Lie algebra) and discovered in Khokhlov [14]
(who applied it for stable measures). We give a complete proof of the
above-mentioned converse part using the idea of Siebert [26], and prove the
analogue of the classical results (see [5], § 19, Theorems 1 and 2, in the case of
R, and [30] in the case of R¥). -

Finally, we study Feller type central limit theorems, that is, the necessity of
the Lindeberg condition for a triangular system (u,;),— .. ..z Of probability
measures. Siebert [26] showed that under some boundedness condition on the
Fourier transforms of the measures u, the classical approximation with the
accompanying Poisson system can be applied. (In the case of a commutative
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group it can always be achieved by appropriate shifts of y,, that the limit
points of the row products of (u,) and those of the accompanying Poisson
system coincide; but for a general group this does not work.)

In the case of the Heisenberg group we can use explicit forms for the
irreducible unitary representations, and we prove that the condition

kn
sup 3. f x| sy (dx) < oo
n=1k=1

implies the above-mentioned condition of Siebert. Thus the convergence of an
infinitesimal triangular system with - bounded (homogeneous) moments of
second order implies that the accompanying Poisson system is convergent to
the same limit. In the classical situation of R* this implies the convergence of
the corresponding accompanying sequence of Poisson semigroups to the
unique embedding semigroup of the limit distribution. But for the Heisenberg
group the uniqueness of the embedding convolution semigroup of a Gaussian
measure is not known (it is known only that the embedding of a Gaussian
measure into a Gaussian semigroup is unique on a simply connected nilpotent
Lie group; see [2] in the case of 2-step nilpotent Lie groups and [21] for
general nilpotent Lie groups). So we impose an additional condition: we
suppose that the system (g,),—;. i.n>1 15 normal in the sense that
Ponj * flog, = flog % iy for all 1 < j, k < k, (where i is the adjoint of the measure y)
and prove the classical necessary and sufficient conditions for the convergence
of triangular systems to a given Gaussian measure (for the sake of simplicity we
assume also that the measures u, are centered). Supposing moreover the
convergence of variances of the first two coordinates and the Lindeberg
condition for the third coordinate we obtain the usual form of the Lin-
deberg—Feller theorem.

1. Preliminaries on Lie groups. In this section we introduce some
terminology, notation, preliminary background, and recall a version of the
central limit theorem for infinitesimal, commutative triangular systems of
probability measures on Lie groups due to Wehn [33].

Let G be a Lie group of dimension m > 1 with neutral element e. Let
G*:= G\{e}. If B is a subset of G, then B~ and 9B denote the closure and the
boundary of B, respectively. Let #(G) denote the Borel g-algebra of G. Let
% (e) denote the system of all neighborhoods of e. By ¢” (G) we denote the space
of bounded continuous complex-valued functions on G equipped with the
supremum norm | -|,,. Let %,(G) be the subspace of 4°(G) of uniformly
continuous functions with respect to the left uniform structure on G. Let % (G)
be the space of infinitely differentiable complex-valued functions with compact
support on G. The space & (G) of bounded regular functions on G is defined by

E(G):={fe¥"(G): f-ge2D(G) for all geP(G)}.
Let % be the Lic algebra of G, and exp: ¥+ G the exponential mapping.
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An element X e% can be regarded as a (left-invariant) differential operator
on G: for fe2(G) we put

tX)—
) — tim [ EER /)
t—=0 t
If {X,,...,X,} is a basis of ¥, then there is an associated triplet
(Ugs {C1s -5 L} @) (cf. [12], p. 260, and [26]) such that
(i) Use(e);
(i) {Cy,..., ) is a system of canomical coordinates of the first kind in
2 (G) adapted to the basis {X,,..., X,,} and valid in U, ie., one has
| x=-exp() (;(x)X;) for each xeUy;
=1
(i) @ is a Hunt function for G adapted to the coordinate system
{C4s...5 L} i, @ is in & (G), non-negative, bounded away from zero on G\U
for any Ue% (e), and

@(x)= i {,(x)? for all xeU,.
i=1

We denote by .#, (G) the space of positive Radon measures on G, 4% (G)
is the subspace of bounded measures, and 2 (G) the set of probability measures
on G which, equipped with the operation of convolution * and the weak
topology, is a topological semigroup. The Dirac measure in x€ G is denoted
by e,.

For pue?(G), fe%¥°(G) and xeG we define

TS (x):= [ f(xy) u(dy).

We have T,fe®’(G), and T, is called the convolution operator of p. It is
a bounded linear operator on %*(G) with ||T,| =1, T, =T,T, for all
u, ve 2 (G), and the correspondence u — Tl is continuous (cf. [12], p. 64).
A family (u,),5  in 2 (G) is said to be a (continuous) convolution semigroup if
Bsx i = pg,, for all s, t > 0, and lim, | i, = po = €,. If (), is a convolution
semigroup, the family (T,),,, of convolution operators defines a strongly
continuous semigroup of contractions on the Banach space %,(G) whose
infinitesimal generator is denoted by (N, 47). We have 2(G) c A" and
(Nf)(x) = 1ilrf)1 £ f(fCey) =S (%)) 1, (d)
t
for all xeG and fe 4. The generating functional (A, /) of the convolution
semigroup (u,),», is defined by

o= {fe¥"(G): A(f):=1limt™ ! [(f(x)—f(e)}p, (dx) exists}.

tl0

We have € (G) c & and (Nf)(x) = A(,f), where the function , f'is defined by
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SO =f(xy). On £(G) the functional 4 admits the canonical decomposition
(Lévy—Khinchin formula)

m

A= Y, aXNO+ ¥ a, XX, NE

i=1 ij=1
+ ] [0~0- 3 Lo @ n(d),

where a,, ..., a, are real numbers, (a;);<;j<n 1S 8 real symmetric positive
semidefinite matrix, and # is a Lévy measure on G, ie., ne#, (G’) with
_[GK @ (x)n(dx) < oo (see [13], [25], and [12], p. 268). We shall also say that the
generating functional A admits the canonical decomposition (a;, a;j, 1)1 <; j<m-

A convolution semigroup (,),», of non-degenerated measures is called
a Gaussian semigroup if we have lim, ot ! u,(G\U) =0 for all Ue%/(e).
A non-degenerated convolution semigroup (u),», With canonical decom-
position (a;, a;;, #); <ij<m 1S @ Gaussian semigroup if and only if # =0.
A non-degenerated measure pue 2 (G) is called a Gaussian measure if there exists
a Gaussian semigroup (i,),» o such that y, = u. (For information on Gaussian
semigroups cf. [12], [27].)

For ye #" (G) the Poisson measure exp(y—y(G)e,) € Z(G) with exponent
y is defined by

exp(y—7(G)er):=e™ "D} ¥/,
k=0

where * is the k-th convolution power of y, and y°:=¢,. For t > 0, clearly,
Ui = €eXp (t (y—v(G) se)) is the Poisson measure with exponent ty, and (), is
a convolution semigroup with generating functional (y—y(G)e,, °(G)); it is
called a Poisson semigroup. Clearly, its canonical decomposition is
(@, 0, Y)1 <i<m» Where a; = g« {;(x)y(dx)fori=1, ..., m(that is, it contains no
Gaussian part).

A triangular system (g, )x=1,....knn> 1 Of probability measures on G is called
infinitesimal if

lim max p, (G\U)=0 for all Ue%(e).

n—o 1<k<ky

The system (U, )i=1.. x.n>1 1S Said to be commutative if
Bj* Uy, = Mg * t;  for all 1<j, k<k, and n> 1.
The system (Upi=1,..4n=1 18 said to be convergent to the limit p if
pe?(G) and  p,*...kp, —p as n— o0,

We shall apply the following central limit theorem proved by Wehn [33]
(see also [6] and [26]):
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THEOREM 1.1. Let (U )i=1.... knn>1 be a commutative and infinitesimal system
on a Lie group G. Suppose that

) tim, ., 3, ; for0 9 (x) e (d) = O
(i) SuP,sy Yo, o li0) o (@) < 0 for i=1,...,m,
(i) Tim, oy Y, o G () i (dX) = @ for i=1, ..., m,
V) lim, oy 337, fo 8000 e () = ay for iy j=1,....m
for all Ue%(e). Then p,, *...%pu, —v as n— oo, where v is the Gaussian
measure with the infinitesimal generator

INeE

aX+“1* Y a;X. X,

1 1<i,j<m

i

Remark 1. Condition (i) implies that the system (4 )i=1,..kun>1 18
infinitesimal. The boundedness of the coordinate functions {{,, ..., {,,} implies
that if (4 )k=1....kun>1 15 an infinitesimal system, then conditions (ii), (iii) and
(iv) are satisfied for all Ue% (e) if and only if they are satisfied for at least one
Ue%(e). The non-classical condition (i) was replaced by Siebert [26] by
a weaker one (formulated by Fourier transforms of the measures y,,), but it is
not known whether it can be omitted.

2. Stratified nilpotent Lie groups and homogeneous norms. An algebra
% has a stratified decomposition of step s if there exists a vector space
decomposition ¥ = @;_, V; such that [V, V] < V,,; when i+j<s and
[V, V1=0 when i+ j > s and V, generates ¥ as an algebra. A basis
{X 15 +++» X} of & is adapted to the above decomposition if the basis elements
in V; form a basis for V;. Let d, =j when X, eV,

A stratified Lie group of step s is a simply connected Lie group whose L1e
algebra has a stratified decomposition of step s. Clearly, a stratified Lie group
of step s is nilpotent of step s. Moreover, (R¥, +), k> 1, are the only
commutative stratified Lie groups, and the non-commutative stratlﬁed Lie
groups are non-compact.

Let G be a stratified Lie group of step s. Let {X, ..., X,.} be an adapted
basis in its Lie algebra %. It is known that the exponential mapping exp: ¥+— G
is now an analytic difffomorphism; thus it can be used to transfer coordinates
from ¢ to G. For xe G we denote by {x,, ..., X,,} the canonical coordinates of
the first kind adapted to the basis {X,, ..., X,,} and valid on the whole G:

x=exp(), x;(x)X;) for each xeG.
i=1 _
We equip ¢ as well as G with the natural dilations by extending
8,(X):=tX,t>0,Xe Vj, by linearity to ¢ and putting &, (exp X): = exp (3, X).
(The family (8,),. , is a continuous one-parameter group of automorphisms of
G and plays the role of multiplication by scalars ¢ > 0.)
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A homogeneous norm on G is a function x — |x| from G to [0, co) satisfying
(i) x — |x| is continuous on G and C® on G;

(i) |x| =0 if and only if x = ¢;

(iii) |6, x| = t|x| for t >0, xeG.

Observe that homogeneous norms always exist (cf. [4]). Let us define

e(x) =Y |x|" for xeG.
i=1

It is known (cf. [4] and [16]) that for any homogeneous norm |-| on G there
exist ¢, ¢, > 0 such that :

0] c;o(x) < x| < cz0(x).

Consequently, any two homogeneous norms are equivalent in the usual sense.
We shall frequently use the property that for all xeG and i=1,...,m

2 x| < c|x|*

with a suitable constant ¢ > 0 depending only on the homogeneous norm ||
(cf. [16]).

Let ue2(G). For ke N let us consider the homogeneous moment of k-th
order of u:

My = 3 [ (@),

Inequality (1) implies that for a homogeneous norm |-| on G there are
constants c{, ¢?’ > 0 such that

ofP Il pdx) < My () < o [ IxI* p ().
Thus for pue 2(G) and ke N the following assertions are equivalent:
(i) M,(p) < oo.

(i) {}x/*p(dx) < oo for some homogeneous norm || on G.
(iii) {|x|* u(dx) < oo for arbitrary homogeneous norms || on G.

3. The Lindeberg theorem for triangular systems on stratified Lie groups.
Let G be a stratified nilpotent Lie group of step s, and |-| a homogeneous norm
on G. One can suppose that in the triplet (U, {{;, ..., (..}, @) the neighbor-
hood U, is the unit ball {xeG: |x| < 1} (cf. [12], p. 254). Clearly, a triangular
system (Upi=1,..kunz1 10 P(G) is infinitesimal if and only if for any ¢ > 0

lim max p,(x: |x|=¢e=0 for any ¢ > 0.

n—+w 1<k<k,
From Theorem 1.1 one can easily obtain the following consequence:

THEOREM 3.1. Let (fy)x=1.... kun>1 be a commutative system on a stratified
Lie group. Suppose that
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(i) Iimn_,wZ:" My (x: x| =€) =0 for all >0,
(ii) supn>lzk Mist<1 % y,,k(dx)l <o fori=1,...,m,
(iii) hmn_,wzk x1<1 Xi bt (dx) = @; for i=1, m,
(iv) hmn_,mzkﬂj'x;(lxi X o (d%) = ay; for i,j = 1, v, m
Then p,, *...%pu, —v as n— oo, where v is the Gaussian measure with the

infinitesimal generator
m

Y aXi+3 ) a; XX,

i=1 1<i,jsm

Now we derive Lindeberg’s theorem, that is, the normal convergence
theorem in the case of bounded (homogeneous) moments of second order. For
the sake of simplicity we shall deal only with centered measures (condition (i) in
the following theorem; cf. [3]).

THEOREM 3.2. Let (fyli=1,... knnz1 D€ a commutative system on a stratified
Lie group. Suppose that
() P> 1 Xy § ¥ i (d) < o0,
(id) fxi U (dx) =0 for d; =1,
(i) lim, o Yo | § %, e (d%) = a; for d; =2,
(iv) lim,,_,wz::" X% dx) = a; for di=d; =1,
W) 11mn_,ka itz eX? by (dx) = 0 for all &> 0.

Then p,y *...%pu, —v as n— o, where v is the Gaussian measure with the
infinitesimal generator

Y aXi+3 Y a; XX,

di=2 di=dy=1

Proof. We shall show that the conditions of Theorem 3.1 are satisfied.
Clearly, ’

T 112 e (dX) = € g (x: [x] > 8),

Ixl>e

so condition (v) implies lim,_, Zk=1 Uy (x: |x] 2 ) =0 for all ¢> 0.
If d; = 1, then using assumption (i) and estimate (2) we have

| | xpa@) =] | xpa@)<c § IXlpgp@x)<c | Ixpy(dx).

x| <1 Ixf=1 |x|>1 x| =1
Thus from assumption (v) we conclude that
kn kn
sup 3| | Xipg(dx) < o0 and  Lm Y | x,p,(dx)=0
nzlk=1 |x|<1 n»ok=1|x|<1

If d, > 2, then using again estimate (2) we get

| | Xt @x)| <c [ IXI% py (dX) < € [ Ix]? p (d).

[x[<1 x| <1
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Thus assumption (i) implies
kn
sup Y. | [ %y (dx)] < 0.

nz1k=1 |x|<1

In the case d, =2 the estimate

| § xi,unk(dx)|<0 § 11 i (d)

/=1 Ix[Z1
together with assumptions (iii) and (v) gives
kn
lim Y | x;p(dx) = a.
n—+w k=1 |x|<1

If d, > 3, then for 0 <& <1 we have

295

| § Xt (@) < o8 2 1xP e (dx) and | [ x, s ()] < cpx: Ix] > 9.

|x|<e e€|xj<1

Thus we obtain

kn Fn
limsup 3 | [ xpu(dx)| < ce® " 2Zsup Y {|x]? py (dx).

n—+wo k=1 |x|<1 nzl1k=1
Since 0 < ¢ < 1 is arbitrary, we conclude that

kn

lim ) | x;pu(dx)=0.

n2ook=1jfx|<1 .
Similarly, if d;+d; > 3, then from the inequality

| § % e (@)] < e 472 |2 py (dx)

|x] <&
one can derive
kn
lim Y | x;x;p,(dx)=0.
n» o k=1 [x|]<1

In the case d; =d; = 1 the estimate
I _f xixj.unk(dx)| < c? J |x|2ﬂnk(dx)

[xl=1 [x] =1
together with assumptions (iv) and (v) gives
kn
lim Z .‘. xixj.unk(dx) = Gyj-
n—o k=1 |x[<1

Hence we obtain the assertion. =

Remark 2. It should be mentioned that moment conditions are needed
only for coordinates x; with d, =1, 2, and not every Gaussian measure can
appear as a limit distribution, only those which are stable with respect to the
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natural dilations (4,),,,. Condition (ii) assures that the measures pu,, are
centered. By the help of suitable shifts it is always possible to ensure that
condition (ii) is satisfied (cf. [17]). The Lindeberg condition (v) of Theorem 3.2
implies the validity of the Feller condition

lim max {[x|?ty(dx) =0

n—ow 15ksky,

since for any ¢ > 0 we have

(X1 @) < 2+ [ |x? e (dx) < & +Z § 1l e (d).

|x|Ze k=1|x|2e
Thus
limsup max {|x|? u, (dx) < &%

n—owo 1Sk€k,

From Theorem 3.2 one can derive the standard version of the central limit
theorem (cf. [32], [3], [22], and [17]).

THEOREM 3.3. Let u be a centered probability measure on a stratified Lie
group with finite homogeneous moment of second order. (That is, | x; u(dx) =0
when d; =1 and [|x|* p(dx) < c0.) Then

51/‘/;(1“") -V,
where v is the Gaussian measure with the infinitesimal generator
Y aX+3 Y a;X. X,
di=2 dy=dj=1
and a;= [x;p(dx) for d;=2 and a; = [x;x ,udx)for d;=d;=1.

Proof. An easy calculation shows that the triangular system
Pt = 0, - (W), 1 < k< n, n= 1, satisfies the conditions of Theorem 3.2, since
§1x1? e (dx) = n™" [ x| p(d),

§%; g (d%) = n71 [x; u(dx)  for d; =2,
§%;% iy (dx) = n~ [ x;x;0(dx)  for d;=d; =1,

[ %P () =n"t [P p(do). m
x| =e x|Zevn
4. The Lindeberg theorem for standardized sequences on the Heisenberg
group. In this section we investigate the convergence of suitably standardized
n-fold convolution products p, *...*u, of probability measures on the
Heisenberg group to the standard (Gaussian measure.
Let R® be equipped with its natural topology and with the product

(X145 X35 X3) (V15 Vs Va) = (x1 F V15 X3+ Yas X3+ 3+ 500 Y, —x, )’1))-
Then we obtain a realization of the 3-dimensional Heisenberg group H (over R).
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The Lie algebra % (H) of the Lie group H can be realized as the vector
space R*® with the multiplication

[(x1a Xz, xs)a (y1= Yas y3)] = (Oa 0, X1 Ya—X, yl)'

Clearly, Z(H) = R*@®R is a stratified vector space decomposition of £ (H),
and the natural basis {X,, X,, X,} of #(H) is adapted to this decomposition.
Thus d, =d, =1 and d; =2, and the Heisenberg group H is a stratified
(nilpotent) Lie group of step 2. The exponential mapping exp: £ (H) — H is the
identity mapping. The natural dilations are given by

8, (15 Xy, X3) = (tX1, £x,, 2 x3)

for t >0 and (x,, x,, x;)eH.

Let u be a centered probability measure on H, i.e., | x; pu(dx) = | x, pu(dx)
= 0. Then it can be standardized by the help of an automorphism in the
following way. For a real (2 x2)-matrix 4 = (a;);<:,;<2 let

8,4(%y, X5, X3) = (A(xy, x5)T, xgdet(4)) for (x,, x,, x;)eH.

Then J, is an automorphism of H. Clearly, §, is represented by the matrix

411 13 0
ay; Qs 0 .
0 0 det(A)

For a centered probability measure u on H with 4 = ([ x,x; 4 (dx));<;,j<2 the
measure & 4-1,2(u) (where A~1/2 is the inverse of the positive definite square
root of A) is standard in the sense that it is centered and the covariance matrix
(§ x;%;6 4-1/2(4) (X)) <1,j<2 Of the first two coordinates is the unit matrix.

THEOREM 4.1. Let (4),.» 1 be a sequence of commutative probability measures

on the Heisenberg group H such that
() [x;pm@x)=0 for i=1,2,3,

(i) [ () < oo.
Fornz1llet A,:= Z:=1 (§ x;%; e (dx))1 <i,j< 2- Suppose that there exists noe N
such that A, > 0 (positive definite), and

(i) SUP,>no(det (4,)) X0 il 1 (dx) < o0,

(@) iy tr (A7) Yoo _ Fisesapiecasy X1 4(dx) = O for all &> 0.
Then

O -12(g *... %)) >V as n— o,

where A, 117 is the inverse of the positive definite square root of A,, and v is the
standard Gaussian measure on H, i.e., its infinitesimal generator is (X3 +X3).

Proof. We show that the triangular system g, :=6,-12(i), 1 <k <n,
n = 1, satisfies the conditions of Theorem 3.2.
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Let <-,-), respectively ||-|, denote the ordinary scalar product and the
norm of R% If A is a positive definite symmetric (2 x 2)-matrix, then

Ay, %5)TN? = <A(x4, xz)Ts A(xq, x5)
=(A? (x4 xz)Ta (x1; xz)T> < [1(xy, xz)”ztr(Az)
and
det(4) < 1 tr(4?).

Hence using the estimate |(x;, X,, x3)[* < c(x2+x3+[x;)), (x;, x5, x;)€H,
valid with some ¢ > 0 depending on |-|, we obtain

10,4 (615 %2, x3)|* < ([l (xg, x,)T[12 + 5] det (4)) < ¢ [x| tr (4?).

Thus
j |xI? Hi (dx) = j- |5A; 12 x|? Iy (dx)

x| =g dq-1/2x|2e
A
n

<etr(47Y) ).

|x)2 Ze2/tr (47 1)

Clearly, for i,j =1, 2 we have
Z jxi xj:unk(dx) = 6ij7
k=1

and this together with assumption (iii) implies

sup Y, [ 1% e (dx) < c0. m
nz1k=1

5. Convergence of convolution semigroups. For any ne N let S,:= (1),s0
be a convolution semigroup in £(G) and let S:=(u),», be a further
convolution semigroup in 2(G). Then we write S, — S if u{™ — p, uniformly in
te[0, d] for all d> 0.

Hazod [8], p. 36, proved that 4,(f) - A(f) for all fe £(G) implies S, — S.
(Indeed, as mentioned in [9], it is sufficient to assume that A, (f) » A () for all
f€2(G) and the Lévy measures 1, of A, are uniformly tight outside a neighbor-
hood of e.)

For the proof of the converse we shall use the following proposition due to
Siebert [26], Propositions 6.3 and 6.4.

PrROPOSITION 5.1. Let G be a Lie group, (S,),»1 @ sequence of convolution
semigroups in P(G), and let S be a further convolution semigroup in 2(G). Let A,
and A be the generating functionals, (a, af?, 1,)1<i,j<m and (a;, @55, N)1<1,j<m the
canonical decompositions of A, and A, respectively. If S,— S, then

7, [(G\U) = 5l (G\U) for all Ue%(e) with n(6U)=0
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and
m

sup(Y, a4+ Y 1P+ | edy,) < co.
GX

n<1 i=1 ij=1

Now we present the analogue of the classical necessary and sufficient
conditions for convergence of convolution semigroups (see [5], § 19, Theo-
rems 1 and 2, in case R, and [30] in case R*).

THEOREM 5.1. Let G be a Lie group, (S,),>1 @ sequence of convolution
semigroups in (G), and let S be a further convolution semigroup in P(G). Let A,
and A be the generating functionals, (a®, a{, 1)1 <i,j<m and (a;, a;;, N1<i.j<m the
canonical decompositions of A, and A, respectively. Then the following assertions
are equivalent:

i) S,—S.
(i) 4,(f)— A(f) for all fe&(G).
(iii) (a) n,(B) - n(B) for all Be B(G) with e¢ B~ and n(0B) = 0;
() aff +3 g« £ L; ()1, (dx) = a5+ Jo £ (x) {;(x) m (dx)
for all 1 <i, j<m
(c) a™ —a; for all 1 <i<m.
@iv) (a) n,(B) > n(B) for all Be #(G) with e¢ B~ and n(0B) = 0;
(b) limzlo hm Supn—» %) (a(i']!) +% f0<<p(x)$s Ci (x) Cj (x) rfn (dx))
= limuo liminf,_, , (a$§” +%j‘0<¢p(x)S5 £i(x) Cj ()1, (dx)) = 4y
for all 1 <i,j<m;
(©) a®—>a, for all 1 <i<m.
Proof. (ii)= (i) has been proved by Hazod [8&], p. 36.
(iti) = (iv). Let ¢ > 0. Then there exist ¢,, &, > 0 with 0 <&; <& < ¢, and

n({xeG: p(x)=¢})=0 fori=1,2

(cf. [26], p. 140). Clearly, there is a constant ¢ > 0 such that |; (x) {;(x)] < co (x)
for all xeG. Then
| I C;'denn— j Ci dennl = l I Ci de”n| < c Jl (pd}?n S c j Q’dﬂn
P>e P>e2 e<p<ez E<@SeE2 e1<@<ez
Thus we obtain
j‘ Cicjdqn_c I pdn, < I (:icjd’hS I Cicjdnn+c j @dn,.

@>e2 g <pse: o>t @>e2 1 <@Sez

Letting n— co it follows that

{ ¢ldn,—c | o@dnp<liminf | {{dn,

Pp>e2 s1<@=e n—+w @>&

<limsup | (Gdn, < | (ldn+e | odn.

ns+w @>¢& P>e2 e1<@p<es
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Consequently,
limsup (@ +3 | {{dn,) < lm (aP+5 | (¢ dn,)—3liminf | ((dn,
n—+oo O<gp<e n—w G* n—~w p>e
“{aij‘i‘% j Cideﬂ_% [ Ciéljdﬂ‘i‘%c _[ @dn
G* @>Ey g <@<Ses
=aij"‘% _f Ciden_i_%c j ¢dﬂ<aij+c j @dn.
O<g<ez e1<@pse O<@p<ez

Letting ¢|0 and ¢,]0, we obtain
limlimsup(afP+3 [ () x)n,(@dx) < ay;.
£l0 noow O<egp(x)<e
Similarly we have
limliminf (@ +3 [ () ()n,(dx) = ay;.
£l0 n—ow 0<o(x)<e
Hence (iii) = (iv) is proved.
(iv) = (iii). Let ¢ > 0 with n({xeG: ¢(x) =¢}) = 0. Then
lim sup (e +3 [ ¢,¢;dn,) |
n—w G*

<limsup(afP+3 | (Gdn)+3lim | ({dn,

n—o O<p<¢ n—>o0 @>¢
=limsup(aff +% [ ((dp)+3lim | {{dn,—3lim | {(dn,.
n—w O<g<e n—>wo G* n—2w 0<p<e

Letting £}0 we obtain
limsup (@ +5 | {;¢dn,) <ay;+3 [ (¢ dn.
n— o G* G*
Similarly we get
liminf(a$§’+% j lCideﬂn) = aij+% f {;Cdn.
n-» G* G~
Hence (iv) = (iii) is proved.
(iii) = (ii). Let ¢ > 0 with n({xe G: @ (x) = ¢}) = 0. Then conditions (a) and
(b) of (iii) imply
ags)_l_% I Cigjd"n - aij+% I {; Cidn
O<ep<g O<ep<e
for all 1 <i,j<n If moreover {xeG: ¢(x)<e} < U,, then we obtain

m

Y aP+3 j (Pdrln_)zaii‘l'% I pdy.

i=1 O<gp<eg i=1 O<gps<e

Again from (iii) (a) we infer that for all Be #(G") with 5 (6B) =0

Y. a;+3[odn.
; B

i=1

Y aP+ifedy,—
i=1 B
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For every ne N we define the measure v, .#°(G) by

v, ({e}):= Z a,  v,(B):=%[pdny, for all Be B(G").
i=1 B
Similarly, we define ve.#% (G) by

m

v({e}):= Z v(B):= j(pdn for all Be B(G").

Then we have v,—v. Thus we can conclude that if ge&(G) and
h:=g/pe®%’(G") is continuously extended to G by h(e)=0, then

§ox gdn, > g~ gdn.
Now we use the idea which was pointed out by Grenander [6], p. 196. (See
also [13].) For all fe&(G) and ¢ >0 we have the decomposition

4,(f) = Z a (X,f)(e)+ Z @P+3 | GGan) (X X))

+ § [f(x)—f(e)—ZC () (X:)(€)] 1y d>€)+0 § g()n,(dx),

where the function

g(X)I=f(X)—f(e)—.§m‘, L)X f)(e)—3 Z L) G (X X ) (e)

iL,j=1

lies in &(G), and the Taylor expansion in a neighborhood of ee G implies that
the function h:= g/p e *(G") is continuously extended to G by h(e} = 0 since

<t T G086 0EX, X ) (O )

Ljk=1

for all x in a suitable neighborhood U < U,, where 0(x)eU. Thus

lg (Il < ¢(f; m) Z 15 < & (fs m) o (x)*2

with some constants ¢(f; m) and ¢ (f; m) depending on fe £(G) and on the
dimension m. Taking into consideration the above decomposition of 4, we
conclude (iii) = (ii).
(i) = (iii). Applying Proposition 5.1 we obtain (iii) (a) and -
sup(Z P+ Y el + J odn)<
nzl i= ) i,j=1

Now we use some idea of Siebert [26] (also applied in [14]). Let (n,);»; be an
arbitrary strictly monotone sequence in V. Then there is a subsequence (1, );>
of (m),»1 such that there exist

10 — PAMS 142
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b= lim af™), b= lim (a0 +3 | C.-dennk,)—%cf Liljdn.
GK x

I-w -

Obviously, (b;);<i,j<m is @ real symmetric positive semidefinite matrix. Let us
define for all fe &(G)

B(f):= Z b;(X.f)(e)+ Z bij(X: X;f)(e)

i,j=1

+ Gfx L/ () —fle)— -21 () (X,f) (@] n(dx).

Then B is a generating functional of a convolution semigroup S. As in
(iit) = (ii), it follows that '

lim 4, (f)=B(f) for all fe&(G),

=+ w
and (ii) = (i) implies lim, ., S, = §. Hence S, - yields § = S; thus B = A.
Consequently, any strictly monotone sequence (1}, ,, in N has a subsequence
(> 1 for which (ii), (iii) (b) and (iii) (c) hold. This implies also (iii) (a) for this
subsequence. Hence we obtain the assertion. m

Remark 3. In the case of a stratified Lie group, conditions (iii) (a) and
(iv) (a) can be replaced by

Ma{lx| > e} = n{lx| > e} for all >0 with n{x| =¢} =0.
Condition (iii) (b) can be replaced by

a@P+3 | xxm,dx)>ay+i | x; %7 (dx)
0<|x|<e 0<|x|<e
for all 1 < i, j < m and for every ¢ > 0 such that  {|x| = ¢} = 0. (Obviously, it
is enough to have the above relation for at least one & > 0 with # {Ix| =¢} =0
because of (iii) (a).)

Similarly, (iv) (b) can be replaced by
limlimsup(af?+3 |  x,x;7,(dx)

el0 n— a0 0 <|x]
= lim lim inf (a{? I xix;m,(dx)
el0 n-o 0<|x|<e

for all 1 <i,j<m

6. Unitary representations and Fourier transforms. A (continuous) unitary
representation of a locally compact group G is a homomorphism D of G into
the group of unitary operators on a complex Hilbert space # such that the
mapping x — D(x)u of G into 5 is continuous for all ue #. The space # is
called the representation space of D and is denoted by # (D). The inner product
and the norm in 5# (D) are denoted by (-, and || - |, respectively. The class of
all irreducible (continuous) unitary representations of G is denoted by Irr(G)
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Let D elrr (G). The vector ue #° (D) is said to be differentiable for D if the
coefficient function x — (D (x)u, v) of G into C is in &(G) for any ve # (D). By
#,(D) we denote the space of all vectors in #° (D) differentiable for D.

Let D elrr(G). The vector ue (D) is said to be a C™-vector for D if the
vector-valued finction x — D (x) u of G into 5 (D) is infinitely differentiable. By
#, (D) we denote the space of all C®-vectors in 3 (D). Then (D) = #,(D) is
obvious; #,,(D) = #,(D) is known (cf. [26], p. 122, Remark).

It is known (see, e.g., [31]) that every irreducible (continuous) unitary
representation of the Heisenberg group H is unitarily equivalent to one of the
representations D, 4, «, BeR, or D, A€ R\{0}, defined in the following way:

D, s, o, BeR, are one-dimensional representations of H on C defined by

Dy g(xy, Xy, X3)i= €Xp [i (ox; + Bx,)];

D.,, € R\{0}, are infinite-dimensional representations of H on L?*(R)
defined by

D, %y, Xy, X5)u(s):=exp [i(£Axs £ A7 x, s+ A% X,/2)]u (s + A2 x,)

for A>0, ueL?(R).
Moreover, #,(D,,) = #,(D.,)=F(R) for all 2eR\{0}, where the
Schwartz space #(R) is defined by (cf. [31])

FR):= {ueC‘”(R): i

dEU < oo for all j, ke N U {0};.
ds*

For a probability measure p on a locally compact group G we define its
Fourier transform fi by

(D) u, v):= [ (D (x)u, v) p(dx)
for all Delrr(G) (u, ve #(D)). Then ji(D) is a bounded linear operator on
H# (D). (For information on Fourier transforms see [11] and [26].)
It is easy to show that for a centered probability measure u on R the
Fourier transform can be estimated in the following way:

t2

-1 = Szszﬂ(dx) for all teR.

j (€™ —1—itx) u(dx)

We prove a similar result in the case of the Heisenberg group. Recall that
a probability measure z on H is centered if {x; pu(dx) = |x,pu(dx)=0.

LeMMA 1. Let u be a centered probability measure on H. Then for all
Delrr(H) and ue #,(D) there exists a constant c(D, u) such that

lAD)u—ul < c(D, w)fIxI* p(dx).

Proof. In the case of the one-dimensional representations D, g, o, f€R,
we have simply
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ADap)— 11 = [ (6xp [i o + )] — 1 oo —if) )|
< [f (exp [iex, ] — 1 —iox, ) exp [ifx,] u(dx)|
+|§ (exp [iBx;1— 1 —ifix;) (@)
+|f oo, (exp [iBx,]— 1) e (dx)|
2 2
< %jx% u(dx)+%—fx§ p(dx)+|apl Jpcl X, p(dx)

2, p2
<a+ﬁ
2

j(x% +x3) u(dx) < - ; F flxl2 pdx).

In the case of the infinite-dimensional representations D, ;, Ae R\{0}, we use
a similar method. For 2 > 0 and ue ¥ (R) = #,(D,,) we have the decom-
position

A Yuls)—uls) =1, +1,,
where
I, = fexp[i(£Axg £ AY2 x; 54 Axy x,/2)] (u(s+ A2 x,) —u(s)) u(dx),
I, = {(exp [i(£ Axy £ A% xy s+ A%, x5/2)] — 1 Fidx, s) u(dx)u(s).

In the case of the first integral we use the Taylor formula
1
u(s+A"2x,)—u(s) = A2 x,u (s)+ Ax3 [ (1 —t)u’ (s+tA* % x,) dt.
0

Since | x, u(dx) = 0, we have to deal only with the second term of the Taylor
formula. We have

1,1l = [|Ax3 fexp [i (£ Axs £ A2 x; 54 A%, X,/2)]
1 "
X [(1—0)u" (s+ A% x,) dep (dx)|| < zlujz—ﬂj' |x)? u(dx).
0
For the second integral of the decomposition of f(D, ;)u(s)—u(s) we have
lexp [i (£ Axy £ A2 x, s+ Ax,; x,/2)]— 1 Fidxy s|

< lexp [Fidx;]— 1] +|exp [idx; x,/2]— 1| +exp [ £id'? x, s]1—1Fidx, s|
< Alesl 1%, X51/24 x7 57/2) < cA[x]* (1457

using property (2) of homogeneous norms.
Summarizing we have

NAD ) u—ull < Cl(“““+HSZMH+‘||u"f|)§|x|zﬂ(dx) for all 2eR\{0}.

Hence we obtain the assertion. =
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7. The accompanying Poisson system of a triangular system. The accom-
panying Poisson system of a triangular system (g,;)x=1,.. k=1 1S defined by

Vao=expUu—t), k=1,...,k;n=1.

For a commutative triangular system (u, )x =1, x.n>1 the row products of its
accompanying Poisson system are the Poisson measures

kn
xp(Y () n>1.
k=1
The accompanying sequence of Poisson semigroups of a system (i )i=1,.. k=1
is defined by
kn
S,i= (vhz0, V:=exp(t ) (uw—¢e)) fornx1,1>0.
k=1
Applying Theorem 5.1 one can simply obtain necessary and sufficient
conditions for the convergence of the accompanying sequence of Poisson
semigroups to a Gaussian one.

PrOPOSITION 7.1. Let (¢, )x=1,..k:m>1 b€ a commutative triangular system
on a Lie group with the accompanying sequence of Poisson semigroups (S,)y>1.
The following statements are equivalent:

(i) S,— S, where S = (v,);50 is the Gaussian semigroup with the generating
functional

A(f) = i GX ) @+E Y ay XX, (@).
i= =1

(ii) (2) Hm, o Yy #u(G\B) =0 for all BeB(G) with e¢B;
(0) Tim, -, Y, fr 5 ()85 (3) i (dx) = @ for all 1<, j < m;
(© lim, o Yo fox LX) e (dx) = a, for all 1 <i<m.

Proof. The Poisson semigroup S, = (v"),5, has the canonical decom-
pOSitiOIl (b?')s Oa Cn)i&is m» where

kn kn
b= LX) e (dx), L= ) e
k=1 k=1

The Gaussian semigroup S:=(v),», has the canonical decomposition
(a;, a;;» 0)1<i,j<m- Theorem 5.1 yields the assertions. =

Remark 4. In the case of a stratified Lie group, conditions in (ii) can be
replaced by

(a) lim,_, ,’:":1 e {1x] > €} = 0 for every &> 0;

() Hm, ., 5% [ ey X%, (d%) = a; for all 1< i, j< m;
w Lug=1Jx}<1 j ok j

© lim,ﬁwZﬁ": S is<1 X (@) = a; for all 1 <i<m.
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In order to obtain necessary and sufficient conditions for the convergence
of triangular system to a Gaussian measure we have to ensure that the
convergence of the triangular system implies the convergence of the accom-
panying sequence of Poisson semigroups. We shall use the following statement
due to Siebert [26], Proposition 8.1.

ProrosiTION 7.2. Let (U )i=1,.. knz1 be a commutative and infinitesimal
system of probability measures on a locally compact group G. Suppose that

kl‘l
limsup Y, ||d,(P)u—u| < oo for all Delrr(G), ue ¥, (D).

n—+o0 k=1

Then the system (Uy)i=1,. xn>1 iS convergent if and only if the accompanying
Poisson system is convergent, and in the affirmative case their limits coincide.

8. The Lindeberg-Feller theorem on the Heisenberg group. First we prove
a convergence theorem for a symmetric triangular system in the case of
bounded (homogeneous) moments of second order.

THEOREM 8.1. Let (Uy)i=1... r.n>1 be a commutative system of symmetric
probability measures on the Heisenberg group H which satisfies the condition

kn
©) sup 3. [ Ix1? . (dx) < co.

n>1k=1
Then the following statements are equivalent:
(1) @) (uhk=1.... kon=1 is infinitesimal;

(b) sy *...*xpy, —vasn— oo, where v="v, (v}, is the (symmetric)
Gaussian semigroup with the generating functional

3
A(f)=1_zlaij(X1—X,-f)(e)-
(i) (a) tim,, 3" | sy {Ixl > &} = O for every ¢>0;
kn

(b) lim, 37 i< X Xt (d%) = ay; for all 1<1i,j<3.
Proof. ()= (ij). Condition (3) together with Lemma 1 implies
kn
sup Y. Aw(D)u—u| < oo for all Delrr(H) and ue H#,(D).
nz1k=1

Using Proposition 7.2 we conclude that (a) and (b) of (i) imply

kn

exp( 3, (=) =

. . kn T e .
Since the Poisson measure v{"” = exp(t ).~ , (4, —¢,)) is symmetric for all n > 1,
t 2 0, the convolution operator T,":= T, corresponding to the measure v{" is




i
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a selfadjoint positive . semidefinite contraction operator on the (complex)
Hilbert space L?(H). Since S, = (W), , is a convolution semigroup, (T;™),, is
a (strongly continuous) semigroup of operators on L?(H). In view of [23],
Section 141, there exist spectral resolutions (E{)yeo,1; Such that

1
T = [o'dE{" for every t 20,neN.
0

Similarly, the convolution operator T;:= T,, corresponding to the measure
v, is a selfadjoint positive semidefinite contraction operator on L?(H) and
admits a spectral decomposition

1
T,={¢'dE, for every t>0.
0

Now assumption (i) (b) yields T{” — T, in the strong operator topology (cf.
Theorem 1.5.5 in [12]). By Lemma 6.2.21 in [12] we conclude that T, — T,
and v — v, for all ¢ > 0. Using Proposition 6.1 in [26] we obtain S, — S and
Proposition 7.1 becomes applicable.

(ii)= (i). Condition (ii) (a) implies that the system (ui=1,.. k=1 1S
infinitesimal. By Proposition 7.1 we have S, — S, which together with Proposi-
tion 7.2 implies (i) (b). =

By the method of symmetrization, Theorem 8.1 can be generalized for
normal and centered systems.

If pe#(G), the adjoint measure fi is defined by fi(f):= u(f*) for every
continuous function f: G — C with compact support, where f*: G- C is
defined by f*(x):=f(x ') for all xe G. A measure pe 2(G) is said to be normal
if psefi=fisp _

A triangular system (i, )i=1,. x.m>1 18 called normal if for all n> 1,
1 <j, k €k, the equality

.unj * ﬂnk = ﬁnk # -unj
holds. Particularly, p,;* fi,; = f,;* p,;, i€., the measure yu,; is normal for all
nzl, 1<j<k,

The system (4, )i=1,. x.m>1 18 called centered if foralln>1, 1 <k <k
the measure p, is centered.

A convolution semigroup (v,),»o is said to be normal if for all ¢ > 0 the
measure v, is normal, ie., v,* ¥, = ¥,*v,. A Gaussian semigroup (v,}>o on
a nilpotent Lie group with the generating functional

m m

Alf)= Y a;(X;N)@+F Y ay;(X, X;f)(e)
_ i=1 ij=1
is normal if a,=0 for d,=1, ie, v, is centered for all £>0 (cf. the
representation of Gaussian semigroups by the help of Wiener processes due to
Roynette [24]).
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. TueoreM 8.2. Let (Uy)i=1,.. k.m>1 be a commutative, normal and centered

system of probab;hty measures on the Heisenberg group H which satisfies the
condition :

kn .
sup 3 [ I py (dx) < co.

n21k=1
Then the following statements are equivalent:

() @) (o=t n>1 is infinitesimal,
(b) ppy*...%py —v as n— o, where v=vy, (V)5 is the (normal)
Gaussian semigroup with the generating functional
3

AN =a, (X3 N+ Y ay(X.X,0) ).
i,j=1
(i) (a) limn_,wzt"zlunk {Ix| > &} =0 for every £¢>0;
(b) lim, o, 3", fiug <1 X X; i (dX) = @ for all 1<, j<3;

(©) lim, o, 3, fiap< X o (%) = @, for all 1<i<3,
where a, = a, =

Proof. (i)#-(ii).v Let us consider the accompanying sequence of Poisson

semigroups S, = (vV""),»,, n > 1. Since k=1...km>1 1S commutative and
_ n 120 Hng, soeknin >
normal, we have

Vs g = Wy for all n =1, t > 0.

Therefore =y % 9", t > 0, is a symmetric P01ss0n semigroup for alin>1
see [7]) | | -

Since S = (v,);»0 is a normal Gaussian semigroup, 7,:= v,%7V,, t 2 0, is
a symmetric Gaussian semigroup.

As in the proof of Theorem 8.1 we have v{” - v,, which implies #{’ — =,
and using the symmetry of n{™ and =, we can conclude that (n{"),5 o = (%), a8
n— co. Clearly, the Lévy measure of the Poisson semigroup (n{"),., is
Zk L (U + i) for n> 1. Thus by Theorem 5.1 we obtain

. v
im Y (uu{lxl > e} + i, {x| >¢e}) =0 for every & >0.

n+owok=1

Obviously, this implies

. : ‘
lim ) p,{lxl>¢e} =0 for every >0,
n—»wk=1
which together with Proposition 9.2 in [26] yields that any of the limit points
of the accompanying sequence S, = (vV), , of Poisson semigroups is a Gaus-
sian semigroup or a degenerated one. Now v{" — v implies that for each strictly
monotone sequence (n,),», in N there exists a subsequence (1), of (>
and a continuous convolution semigroup (u,),» ; such that g, = v and v{"™? — g,
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for all t >0 (see [15]). We have already known that (4,),,, can be only
a Gaussian semigroup. Since a Gaussian measure on a simply connected
nilpotent Lie group can be uniquely embedded into a Gaussian semigroup (see
[2] in the case of 2-step nilpotent Lie groups and [21] for the general case), we
conclude that u, =v, for all ¢> 0. Consequently, for all fixed >0 any
subsequence (v{"™), ., of the sequence (v{”),, bas a convergent subsequence
and the limit is always equal to v,. This proves S, — S and Proposition 7.1
becomes applicable.

(i) = (i) follows from 7.1 m

If we suppose the convergence of variances of the first two coordinates and

the Lindeberg condition on the third coordinate, then we obtain the usual form
of the Lindeberg—Feller theorem.

COROLLARY 1. Let () )i=1,...x,:n>1 be a commutative, normal and centered
system of probability measures on H which satisfies the conditions

kn
@ sup Y. %3] s (dx) < o0,
nzlk=1
. i
&) - lim Y | |eslp(dx) =0,
n—~ook=1|x|z1
K .
(6) Hm Y, §xyp,(dx) =0,
n—oo k=1
kn L
) lim Y [x,X;py(dx)=a; forali,j=1,2. !
n—o0 k=1 ;

Then the following statements are equivalent:

(@) (a) lim,_, maxlSk$k,.j x| P (d%) = 0;
(D) fpy *...* phy, — Vv asn— o0, where v = vy, (V)5 is the (symmetric)
Gaussian semigroup with the generating functional

A(f)= %z_: aij(Xinf)(e)-

(i) (a) lim,,_,r,ozz"=1 o {lx| > &} =0 for every £>0; !
. Fon v . ’ .
(b) llmn_,z}zk:lj]x‘qxixjunk(dx) =aq; for all i,j=1,2.
({ii) Hm, - 0 Y e o Jixize %1% i (dX) = O for every &> 0.

Proof. (i) = (ii). Condition (i) (a) implies that the system (¢, )i=1,....knn>1 15
infinitesimal, since

®8) , e (%0 Ix1 2 8} < &7 x]? py (d)

for arbitrary & > 0. From assumptions (7) and (4) we get (3). Applying Theo-
rem 8.2 we obtain (i) = (ii).
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(ii) = (iii). By (ii) (b) and (7) the equality
kn

im ¥ | x?p,(dx)=0

nswo k=1 |x|21
holds for i =1, 2, 3. This together with (5) implies

kn

m Y | |xI*pu(dx) = 0.

n~owk=1|x{z1
Now, from (ii) (a) we infer that

kn

o) | im Y [ el pdx) = 0

nrok=1¢1 €[x|<ex
for arbitrary 0 <&, <¢,. Hence we obtain (jii).
(iii) = (i). For any &> 0 we have

kn
S (@) < 84§ X @0) <@+ Y, [ Il iy d).
x| =g k=1|x|2z
Thus we obtain (i) (a). To prove (i) (b) we shall show that conditions (i) of
Theorem 8.2 are satisfied. Estimation (8) implies that (ii) (a) of Theorem 8.2
holds. Thus we have also (9). Clearly, (iii) implies

k“
lim ) | x?p,(dx)=0 fori=1,2.

- k=1 |x|2¢
Hence

kn

im ) x;X;p,(dx)=0 forij=1,2,

n—>o0 k=1 |x|Z¢

which together with assumption (7) gives (i) (b) of Theorem 8.2 for i, j =1, 2.
Using estimate (2), for 0 <& <1 we have .

[ Epdx)<c | I pp(dn) < ce? [P py, (d).
|xf<e Ixj<e
Further we have
_" x% Hux (dx) ""'-<~ Clunk (x: le > 8)
e<]x[<1

and, consequently,

kn kn
limsup 3, 3 (dx) < ce?sup Y, JIx|? pyy(d).
n—owo k=1]x|<1 nz1k=1
Since 0 < & < 1 is arbitrary, we conclude (ii) (b) of Theorem 8.2 for i = j=3.

Using the same arguments we can obtain (ii) (b) of Theorem 8.2 for the
remaining cases. Clearly, we have
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ki _
lim Y | Ixlpgdx)=0 fori=1,2,3,

n~ok=1]|x|21

which together with the aséﬁmption that the system is centered and assumption
(6) implies (ii) (c}) of Theorem 8.2. m

Remark 5. Conditions (i) (a) and (iii) are the classical Feller and
Lindeberg conditions, respectively. Assumption (4) is needed in order to have
bounded (homogeneous) moments of second order. Assumption (5) is in fact
the Lindeberg condition for the third coordinate.
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