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Abstract. The Lindeberg theorem is derived on stratilied nil- 
potent Lie groups; that is a normal convergence theorem for a trian- 
gular system of probability measures in case of bounded (homo- 
gemous) moments of second order. By using necessary and sufficient 
conditions for convergence of convolution semigroups of probability 
measures on Lie groups a Lindeberg-Feller theorem is proved on the 
Heisenberg group. 

btroductiw. One of the classical questions of the central limit problems 
for a sequence (p,),,, of probability measures on a topological group G is to 
find appropriate automorphisms z, of the group in such a way that the 
sequence (z, (p,* . . . *pJ),, , of the standardized convolution products con- 
verges to some Gaussian limit. The limiting Gaussian measure should be stable 
as well. It is known that nilpotent Lie groups play an important role 
concerning stability of probability measures on a topological group. In [28] 
and [lo] Hazod and Siebert showed that the investigation of stable measures 
on a locally compact group can be reduced to the case of a simply connected 
nilpotent Lie group whose Lie algebra admits a positive graduation. Therefore 
it is natural to study generalizations of the classical results connected with 
central limit problems in case of such groups. 

For the sake of simplicity we restrict our attention to the class of stratitied 
nilpotent Lie groups. Leaving the classical case of Rk out of consideration, these 
groups are non-commutative, non-compact, have infinite-dimensional irreduci- 
ble representations, and the set of finite-dimensional representations does not 
separate the points of the group (thus they are not maximally almost periodic). 

We consider a triangular system (pn,),= ,~ .= . , ,n ; , , ,  of probability measures. 
In the case of a Lie group, the convergence behaviour of the sequence 
(pn l * .  . . *pdn),, , of row products has been studied in [33], 161, [29], [12], and 
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[26]. Using the results of Wehn [33] we prove in the case of a stratified Lie 
group the analogue of the classical central limit theorem under the Lindeberg 
condition 

lim j JxI2 fin, (dx) = 0 for all E > 0, 
n + w  k = l  1 x 1 3 ~  

where x -, 1x1 is an arbitrary homogeneous norm on the group. Sometimes the 
condition 

k" 

lim C p,,(G\U) = 0 for all neighborhoods U of e 
n + m  k = i  

on a topological group is also called a (generalized) Lindeberg condition (see, 
e.g., [33], [29], and LIZ]), but it should be rather called a Khinchin condition 
(cf. [5] and [I]). As a corollary we obtain a central limit theorem for 
probability measures p with jlx12 ,u (dx) < co, that is, the convergence of the 
sequence (dl,& (cn))na to some Gaussian measure, where (63,, , are the natural 
dilations (see [22]; in [3] and [32] stronger moment conditions are supposed). 
Another corollary is a Lindeberg central limit theorem for suitably standar- 
dized n-fold convolution products p,* . . . *p,, of probability measures on the 
Heisenberg group (the simplest non-commutative stratified nilpotent Lie 
group). The standardization is performed in such a way that the limit 
distribution will be the standard Gaussian measure. 

Next we are concerned with necessary and sufficient conditions for the 
convergence of convolution semigroups of probability measures on Lie groups 
in terms of their generating functionals and characteristics of their canonical 
decompositions. (This problem plays an important role in investigation of the 
necessity of the Lindeberg condition.) Some partial results were obtained in 
[33] (see also the interpretation of Grenander [6]). Hazod 181 has proved that 
the convergence of the generating functionals of the convolution semigroups 
implies the convergence of the convolution semigroups themselves. The 
converse is contained in [26], though not explicitly stated, as remarked by 
Hazod and Scheffler [9] (who have also formulated, in the case of exponential 
Lie groups, necessary and sufficient conditions in terms of the corresponding 
generating functionals on the Lie algebra) and discovered in Khokhlov 1141 
(who applied it for stable measures). We give a complete proof of the 
above-mentioned converse part using the idea of Siebert [26], and prove the 
analogue of the classical results (see [5],  § 19, Theorems 1 and 2, in the case of 
R, and [30] in the case of Rk). 

Finally, we study Feller type central limit theorems, that is, the necessity of 
the Lindeberg condition for a triangular system (pnk),= ,;,, , of probability 
measures. Siebert [26] showed that under some boundedness condition on the 
Fourier transforms of the measures p, the classical approximation with the 
accompanying Poisson system can be applied. (In the case of a commutative 
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group it can always be achieved by appropriate shifts of p,, that the limit 
points of the row products of (p,,) and those of the accompanying Poisson 
system coincide; but for a general group this does not work.) 

In the case of the Heisenberg group we can use explicit forms for the 
irreducible unitary representations, and we prove that the condition 

implies the above-mentioned condition of Siebert. Thus the convergence of an 
infinitesimal triangular system with bounded (homogeneous) moments of 

, .  . .  . second order implies that the accompanying Poisson system is convergent to 
the same limit. In the classical situation of Rk this implies the convergence of 
the corresponding accompanying sequence of Poisson semigroups to the 
unique embedding semigroup of the limit distribution. But for the Heisenberg 
group the uniqueness of the embedding convolution semigroup of a Gaussian 
measure is not known (it is known only that the embedding of a Gaussian 
measure into a Gaussian semigroup is unique on a simply connected nilpotent 
Lie group; see [2] in the case of 2-step nilpotent Lie groups and 1211 for 
general nilpotent Lie groups). So we impose an additional condition: we 
Suppose that the system (pnk)k= 1 ,..., k,;n> 1 is norma1 in the sense that 
pni * g,, = p,, * pnj for all 1 d j, k < k,  (where ji is the adjoint of the measure p)  
and prove the classical necessary and sacient conditions for the convergence 
of triangular systems to a given Gaussian measure (for the sake of simplicity we 
assume also that the measures p,, are centered). Supposing moreover the 
convergence of variances of the first two coordinates and the Lindeberg 
condition for the third coordinate we obtain the usual form of the Lin- 
deberg-Feller theorem. 

1. Preliminaries on Lie groups. In this section we introduce some 
terminology, notation, preliminary background, and recall a version of the 
central limit theorem for infinitesimal, commutative triangular systems of 
probability measures on Lie groups due to Wehn [33]. 

Let G be a Lie group of dimension m 2 1 with neutral element e. Let 
Gx := G\{e). If B is a subset of G, then B-  and dB denote the closure and the 
boundary of B, respectively. Let B ( G )  denote the Bore1 a-algebra of G. Let 
42 (e) denote the system of all neighborhoods of e. By +Zb (G) we denote the space 
of bounded continuous complex-valued functions on G equipped with the 
supremum norm 11 .I(,. Let %, (G) be the subspace of Wb (G) of uniformly 
continuous functions with respect to the left uniform structure on G. Let 9 (G) 
be the space of infinitely differentiable complex-valued functions with compact 
support on G. The space b (G) of bounded regular functions on G is defined by 

b(G):= {f € g b ( G ) :  f .g€g(G)  for all g ~ g ( G ) ) .  

Let B be the Lie algebra of G, and exp: B w G the exponential mapping. 
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An element X E ~  can be regarded as a (left-invariant) differential operator 
on G: for f€C@(G) we put 

Xf (x) = lim f (x exp tX) -f (4 

If {XI, ..., X,) is a basis of 3, then there is an associated triplet 
(U,, (C1, ..., C,), q) (cf. [12], p. 260, and [26]) such that 

(7 uo 42 (4 ;  
(ii) {[, , . . . , [,j is a system of canonical coordinates of the Jirst kind in 

9 ( G )  adapted to the basis {XI, ... , X,} and valid in U,,  i.e., one has 
m 

x = exp(C Ci(x)Xi )  for each X E  U o ;  
i =  1 

(iii) cp is a Hunt function for G adapted to the coordinate system 
(C1, . . , , Cm), i.e., rp is in b (G), non-negative, bounded away from zero on G\U 
for any U E % ( ~ ) ,  and 

m 

q (x) = C ti ( x ) ~  for all x E UO. 
i = l  

We denote by A+ (G) the space of positive Radon measures on G, A'b, (G) 
is the subspace of bounded measures, and B (G) the set of probability measures 
on G which, equipped with the operation of convolution * and the weak 
topology, is a topological semigroup. The Dirac measure in x E G is denoted 
by Ex- 

For p E 9 (G), f E qb (G) and x E G we define 

We have T,f€gb(G), and T, is called the convolution operator of p. It is 
a bounded linear operator on V b  (G) with 1 1  TpII = 1, q*,, = T, for all 
p,  V E ~ ( G ) ,  and the correspondence p + TpIVU(,, is continuous (cf. [12], p. 64). 

A family (p,),,, in P ( G )  is said to be a (continuous) conuolution semigroup if 
p, * p t  = p,+t for all s, t 2 0, and limtJ0 p, = po = E ~ .  If is a convolution 
semigroup, the family (T,t),,o of convolution operators defines a strongly 
continuous semigroup of contractions on the Banach space W,(G) whose 
infinitesimal generator is denoted by (N, M). We have 9(G)  c JV and 

for all X E  G and  EN. The generating functional (A ,  d) of the convolution 
semigroup (pJtao is defined by 

d:=  {f€qb(G): A(f):= limr-l~(f(x)-f(e))pt(dx) exists) 
tlo 

We have 8 (G) c d and (Nf) ( x )  = A ( ,  f) ,  where the function , f is defined by 
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f ( y )  = f (xy) .  On b(G) the functional A admits the canonical decomposition 
(Lkvy-Khinchin formula) 

where a,, , . ., a, are real numbers, (u,~),,,,~,, is a real symmetric posithe 
semidefinite matrix, and q is a Levy measure on G, i.e., y f A +  ( G x )  with 
Jcx  tp (x) q (dx)  < XI (see [13], 1253, and [12], p. 268). We shall also say that the 
generating functional A admits the canonical decomposition (a,, aij, q) ,  , i,jb ,,,. 

A convolution semigroup (pr),, , of non-degenerated measures is called 
a Gaussian semigroup if we have lirnrl, t -  l p, (G\ U) = 0 for all U E @ (e). 
A non-degenerated convolution semigroup (JL,),,, with canonicaI decom- 
position {ai, aij, q)14i,jsm is a Gaussian semigroup if and only if q = 0. 
A non-degenerated measure ,u E B (G) is called a Gaussian measure if there exists 
a Gaussian semigroup (p,),,, such that p, = p. (For information on Gaussian 
semigroups cf. [12], [27].) 

For y E A!+ (G) the Poisson measure exp (y - y (G) 6,) E P (G) with exponent 
y is defined by 

m 

exp ( y  - y (G) e,) : = ePYtG) yk/k!, 
k = O  

where yk is the k-th convolution power of y, and y o :  = E, .  For t 2 0, clearly, 
pt : = exp (t ( y  - y (G) ee)) is the Poisson measure with exponent ty , and is 
a convolution semigroup with generating functional (y - y  (G) E,, gb (G)); rt is 
called a Poisson semigroup. Clearly, its canonical decomposition is 
(a,, 0, y), ,iGm, where ai = J,, ci (x) y (dx) for i = 1, . . . , rn (that is, it contains no 
Gaussian part). 

A triangular system (pnk),= l,...,kn;n3 of probability measures on G is d e d  
infinitesimal if 

lim max pnk (G\U) = 0 for all U E @ (e). 
n-rco 1 4 k $ k n  

The system (pnk)k=l,...,k,;n31 is said to be commutative if 

Pnj*Clnk=pnk*finj foral l  l d j , k d k n a n d n > l .  

The system (pnk)k=l,...,k,;n31 is said to be convergent to the limit p if 

We shall apply the following central limit theorem proved by Wehn [33] 
(see also [6] and [26]): 
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THEOREM 1.1. Let (p,k)k=I,...,k,;nB1 be a commututive and infinitesimal system 
on a Lie group G.  Suppose lhal 

(i) limn-+ m 61 1 ].G\O (P (x) Pn, ( d x )  = 

(ii) 1 z:: I jU  c i  ( x )  pnk ( d x ) I  < .for = . . Y 

(iii) limn+, dl, lu ii (x )  pnk (dx) = ai f i r  i = 1, . . . , m y  

{iv) limn+, zF= :"_, Su ti (x) i j  (x) p, (dx) = aij for i, j = 1 ,  . . . , m 
for all U E %' (e). Then p,, * . . . * pnkn + v as n + co, where v is the Gaussian 
measure with the infinitesimal generator 

Re m a r k  1. Condition (i) implies that the system (,un&= l,..,,k,:nB1 is 
infinitesimal. The boundedness of the coordinate functions ti,, . . . , c,} implies 
that if (pnkIk= l . . . . , k , ; n S 1  is an infinitesimal system, then conditions (ii), (iii) and 
(iv) are satisfied for all U E % ( ~ )  if and only if they are satisfied for at least one 
U E all (e). The non-classical condition (ii) was replaced by Siebert [26] by 
a weaker one (formulated by Fourier transforms of the measures p,,), but it is 
not known whether it can be omitted. 

2. Stratified nilpotent Lie groups and homogeneous norms. An algebra 
3 has a stratiJed decomposition of step s if there exists a vector space 
decomposition 9 = @;=, t;: such that [T/,, 51 c q+ when i +j d s and 
[ y ,  51 = 0 when i + j  > s, and Vl generates 9 as an algebra. A basis 
(XI,  . . . , X,) of 3 is adapted to the above decomposition if the basis elements 
in 5 form a basis for 5. Let d, = j when X k €  5. 

A stratijied Lie group of step s is a simply connected Lie group whose Lie 
algebra has a stratified decomposition of step s. Clearly, a stratified Lie grohp 
of step s is nilpotent of step s. Moreover, (Rk, +), k 2 1, are the only 
commutative stratified Lie groups, and the non-commutative stratified Lie 
groups are non-compact. 

Let G be a stratified Lie group of step s. Let (Xi, . . . , X,) be an adapted 
basis in its Lie algebra 3. It is known that the exponential mapping exp: B H G 
is now an analytic diffeomorphism; thus it can be used to transfer coordinates 
from 9 to G. For x E G we denote by {x,, . . . , x,) the canonical coordinates of 
the first kind adapted to the basis {XI, .. ., Xm) and valid on the whole G :  

m 

x = exp ( z xi ( x )  Xi) for each x E G. 
i=  1 

We equip 3 as well as G with the natural dilations by extending 
Jt (X) : = tj X ,  t > 0, X E 5, by linearity to B and putting 6, (exp X) : = exp (Jt X) .  
(The family (6Jt,, is a continuous one-parameter group of automorphisms of 
G and plays the role of multiplication by scalars t > 0.) 
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A homogeneous norm on G is a function x + 1x1 from G to [0, m) satisfying 
(i) x -+ 1x1 is continuous on G and C" on G ' ; 

(ii) 1x1 = 0 if and only if x = e; 
(iii) 1fitxl = tlxl for t > 0, XEG.  
Observe that homogeneous norms always exist (cf. [4]). Let us define 

m 

e(x)=  Ixillldi for X E G .  
i=  1 

It is known (cf. [4] and [16]) that for any homogeneous norm 1 .  I on G there 
exist c,, c, > 0 such that 

Consequently, any two homogeneous norms are equivalent in the usual sense. 
We shall frequently use the property that for all x E G and i = 1, . . . , m 

with a suitable constant c > 0 depending only on the homogeneous norm 1 .  I 
(cf. [16]). 

Let p E B (G). For k E N let us consider the homogeneous moment of k-th 
order of p: 

Inequality (1) implies that for a homogeneous norm 1 - 1  on G there are 
constants cil), ci2) > 0 such that 

Thus for p€B(G) and  EN the following assertions are equivalent: 
(9 M ,  (PI < 03 - 

(ii) jjxlkp(dx) < co for some homogeneous norm 1 . 1  on G. 
(iii) j lxlk p (ax) < co for arbitrary homogeneous norms I a I on G. 

3. The Eindeberg theorem for triangular systems on stratified Lie groups. 
Let G be a stratified nilpotent Lie group of step s, and ] - I a homogeneous norm 
on G. One can suppose that in the triplet (U , ,  {c,, . . . , c,), rp) the neighbor- 
hood U, is the unit ball { X E  G: 1x1 < 1) (cf. [12], p. 254). Clearly, a triangular 
system I ,..., k,;nb in 9(G) is infinitesimal if and only if for any E > 0 

lim max pnk(x: I x I ~ E ) = O  for any E > O .  
n+cc l < k < k ,  

From Theorem 1.1 one can easily obtain the following consequence: 

THEOREM 3.1. Let (p,,k)k=1,..,,kn;n21 be a commutative system on a stratijied 
l i e  group. Suppose that 
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(i) limn+, z::, fink (x: 1x1 > E )  = 0 for all E > 0, 

(ii) sup,, , xr=, xi pnk(dx)l < m for i = 1 ,  . . . , m, 
(iii) limn,, x:=, JIxI. xi pnk (dx) = ai for i = I ,  . . . . m, 
(iv) lim.,, xF=l jlxl,, xi xf pnk (dx) = a ,  for i ,  j = 1,  . . . , nr. 

Then p,, a .. . * pnkn -) v as n + m, where v is the Gaussian measure with the 
infinitesimal generator 

Now we derive Lindeberg's theorem, that is, the normal convergence 
theorem in the case of bounded (homogeneous) moments of second order. For 
the sake of simplicity we shall deal only with centered measures (condition (i) in 
the following theorem; cf. [3]). 

THEOREM 3.2. Let I ' J ~ ~ ) ~ = ~ , , . . , ~ ~ ; ~ ~ ~  be a cornmutatitre system on a stratijied 
Lie group. Suppose that 

(9 SUP,, 1 z;=, j 1x1' P, (dx) < m, 
(ii) J xi  p,, (dx)  = 0 for d, = 1, 

{iii) l iq, ,  ~ : l ,  j xi pnk ( d x )  = a, for d ,  = 2, 
(iv) l iq, ,  61, jri rf pn, (dx) = a,  for di = dj  = 1, 

(v) limn+r. xF= jlrl Z e  1x1' pnk (ax) = 0 for all 8 > 0. 
Then p,, * . . . * pnkn -, v as n + co, where v is the Gaussian measure with the 
injinitesimal generator 

Proof.  We shall show that the conditions of Theorem 3.1 are satisfied. 
Clearly, 

.f IxI2 ~ n k  (ax) 3 E~ ~ n k  (x: 1x1 2 
Ix l3e 

so condition (v) implies Iirq-, xil, pnk (x: 1x1 2 E) = 0 for all E > 0. 
If d,  = 1, then using assumption (ii) and estimate (2) we have 

Thus from assumption (v) we conclude that 

k" kn 

sup z I .f xi pnk (dx)l < co and lim 2 1 xi pnk (dx) = 0. 
n L l k = l  l x l 6 1  n+co k =  1 1x1 < 1 

If d,  3 2, then using again estimate (2) we get 
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Thus assumption (i) implies 

In the case di = 2 the estimate 

together with assumptions {iii) and (v) gives 

If d,  3 3, then for 0 < E < 1 we have 

I [ Xi ~ . k  (dx)I G C E ~ ~ ~ ~  1 1x1' P,R W X )  and I j xi  pnk (dx)l 4 cp,, ( x :  1x1 > E )  
Ixl<e E < ] x ] c ~  

Thus we obtain 
k. k ,  

lim sup C I J xi ~ , , ( d x ) l  4 
n + m  k = l  lxlcl 

J I x l 2  ~ l n k  Idx)- 
n3l  k= l  

Since 0 < E < 1 is arbitrary, we conclude that 
kn 

lim j x i p n k ( d x )  = 0. 
n+mk=l Ixl<l 

Similarly, if d i + d j  2 3, then from the inequality 

one can derive 
km 

lim C 1 x i x j p n k ( d x ) = O .  
n - + m k = l [ x l < l  

In the case di = d j  = 1 the estimate 

together with assumptions (iv) and (v) gives 
k .  

Hence we obtain the assertion. 

Remark  2. It should be mentioned that moment conditions are needed 
only for coordinates xi with di  = 1, 2 ,  and not every Gaussian measure can 
appear as a limit distribution, only those which are stable with respect to the 
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natural dilations (S,),,, , Condition (ii) assures that the measures p,, are 
centered. By  the help of suitable shifts it is always possible to ensure that 
condition (ii) is satisfied (cf, [17]). The Lindeberg condition (v) of Theorem 3.2 
implies the validity of the Feller condition 

lim max jlx12pnk(dx) = 0 
n+m l S k S k n  

since for any E > 0 we have 
k, 

I x 1 2  P ~ C , , ( ~ X )  < &'+ I x I 2  62+ 1 I x I Z ~ n k ( d x ) .  
1x1 3 e  k =  i 1x136 

Thus 

lim sup max [1x12 p, (dx) d z2. 
n + n  l < k S k n  

From Theorem 3.2 one can derive the standard version of the central limit 
theorem (cf. [32], [3], [22], and [17]). 

THEOREM 3.3. Let p be a centered probability nteasure on a strat$sd Lie 
group with finite homoyeneous moment of second order. (That is, Sx ip(dx)  = 0 
when di = 1 and 1 1x1' p (dx) < m.) Then 

where v is the Gaussian measure with the infinitesimal generator 

and ai = 1 xi ,u (dx) for di = 2 and aij = j xi x j  ~ ( d x )  for d, = d j  = 1 .  

Proof.  An easy calculation shows that the triangular system 
pClnk:= 61,Jn(p), 1 < k < n, n 2 1, satisfies the conditions of Theorem 3.2, since 

[lx12Pnk(dx) = n - 1 1 1 ~ 1 2 p ( d ~ ) ,  

~ ~ ~ p ~ ~ ( d x ) = n - ~ j x ~ p ( d x )  for d i = 2 ,  

l x i x j p n k ( d x )  = n - ' [ x i x j p ( d x )  for di = dj = 1 ,  

J I ~ l ~ ~ ~ k ( d ~ ) = n - l  j - I x l Z ~ ( d x ) .  
I x l 3 &  1x1 > E J ~  

4. The Lindeberg theorem for standardized sequences on the Heisenberg 
group. In this section we investigate the convergence of suitably standardized 
n-fold convolution products p1 * . . . * p, of probability measures on the 
Heisenberg group to the standard Gaussian measure. 

Let R3 be equipped with its natural topology and with the product 
1 

( X I ,  X ~ Y  ~ 3 1 d Y 1 ,  Y 2 ,  ~ 3 )  = ( ~ 1 + ~ 1 ,  X2+y2, ~3~ ~ 3 + ~ ( ~ 1 ~ 2 - ~ 2 ~ 1 ) ) '  

Then we obtain a realization of the 3-dimensionaI Heisenberg group H (over R). 
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The Lie algebra 9 ( H )  of the Lie group H can be realized as the vector 
space R3 with the multiplication 

Clearly, 9 ( W )  = R2 0 dR is a stratified vector space decomposition of Y (M), 
and the natural basis {XI, X,, X,) of 9(M) is adapted to this decomposition. 
Thus dl = d ,  = 1 and d ,  = 2, and the Heisenberg group H is a stratified 
(nilpotent) Lie group of step 2. The exponential mapping exp: 9 ( H )  + H is the 
identity mapping. The natural dilations are given by 

St ( ~ 1 ,  ~ 2 ,  xg) = (tx1, t ~ 2  r t 2  ~ 3 )  

for t > 0 and (x,, x,, x J E R .  
Let p be a centered probability measure on H ,  i.e., jx, p(dx)  = j x , p ( d x )  

= 0. Then it can be standardized by the help of an automorphism in the 
following way. For a real (2 x 2)-matrix A = (aij)lGi,js2 let 

~ A ( ~ 1 , ~ 2 , x 3 ) = ( A ( x l , ~ z ) T , ~ 3 d e t ( A ) )  f o r ( x l , x , , x , ) f H .  

Then d, is an automorphism of H. Clearly, 6, is represented by the matrix 

For a centered probability measure p on H with A  = (f xi x j p  ( d ~ ) ) ~  s i , j G  the 
measure 8 A - ~ ~ 2 ( p )  (where A - 1 1 2  is the inverse of the positive definite square 
root of A) is standard in the sense that it is centered and the covariance matrix 
( [ x i  x j  dA-  112 ( p )  ( d ~ ) ) ~  di,j4 of the first two coordinates is the unit matrix. 

THEOREM 4.1. Let ( P ~ ) ~ >  be a sequence of commutative probability measures 
on the Heisenberg group H such that 

(i) { x i p k ( d x )  = 0 for i = 1 ,  2, 3, 

1 I x l 2  pk (dx)  < 
For n 2 1 let An: = z=, ( l x i x j + ( d x ) ) ,  G i , j s 2 .  Suppose that there exists n o s N  
such that Ano > 0 (positive definzte), and 

(iii)  SUP^ > no (det ( A n ) )  ' I 2  J 1x31 ~k ( d ~ )  < 
(iv) limn-, t r ( ~ ; ' )  G= ~ l x l ~ ) r ; l . ( A ;  1) 1 x 1 ~  pk (dx) = 0 for afl 8 > 0. 

Then 
A ( * * n )  a s n - a ,  

where A,112 is the inverse of the positive definite square root of A,, and v is the 
standard Gaussian measure on H,  i.e., its infinitesimal generator is $(Xf +Xi). 

Proof.  We show that the triangular system p,,:= dAnl/z(pk) ,  1 < k < n, 
n 2 1, satisfies the conditions of Theorem 3.2. 
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Let (-;), respectively I - 1 1 ,  denote the ordinary scalar product and the 
norm of R2. If A is a positive definite symmetric (2 x 2)-matrix, then 

and 

det (A) 4 tr (A2).  

Hence using the estimate x, ,  x,)12 < c(xI  - tx~+~x31) ,  (x lY x2, x~)EH, 
I valid with some c > 0 depending on I - I, we obtain 

Thus 

I Clearly, for i ,  j = 1 ,  2 we have 
I 

and this together with assumption (iii) implies 

5. Convergence of convolution semigroups. For any n E N  let S, : = ( ~ j " ' ) ~ , ~  
be a convolution semigroup in P(G)  and let S:=  Cut),,, be a further 
convolution semigroup in 9(G). Then we write S, + S if ,u j") + ,ut uniformly in 
~ E [ O ,  d l  for all d > 0. 

Hazod [S], p. 36, proved that A, (f) + A ( f )  for all f E Q(G) implies Sn 4 S. 
(Indeed, as mentioned in [9], it is ~ ~ c i e n t  to assume that A, (f) + A ( f )  for all 
f~ B(G) and the Lkvy measures v, of A, are uniformly tight outside a neighbor- 
hood of e.) 

For the proof of the converse we shall use the following proposition due to 
Siebert [26], Propositions 6.3 and 6.4. 

PROPOSITION 5.1. Let G be a Lie group, (S,),, , a sequence of conuolution 
semigroups in 9 ( G ) ,  and let S be a further convolution semigroup in 9 ( G ) .  Let An 
and A be the generating functionals, (a?), a$), g,), ci,j+,, and (a,, aij, qIl i , j a m  the 
canonical decompositions of A, and A, respectively. I f  S ,  + S, then 

g ( G )  + 1 ( G  for all U E  @(e) with q (av) = 0 
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Now we present the analogue of the cfassical necessary and sufficient 
conditions for convergence of convolution semigroups (see [ 5 ] ,  4 19, Theo- 
rems 1 and 2, in case R, and [30] in case Rk}). 

THEOREM 5.1. Let G be Q Lie group, (Sn)n3 a sequence of convolution 
semigroups in B(G) ,  and let S be afurther convolution semigroup in P (G) .  Let A, 
and A be the generatingfunctionds, (a?), a!;), q=Jl si , jg ,,, and (a,, aij ,  q), g ;,is, the 
canonical decompositions of A, and A, respectiaely. Then the following assertions 
are equivalent: 

(ij s,, 4 s. 
(ii) A,(f) + A ( f )  for all ~ E $ ( G ) .  

(iiij (a) q, (B) + q (B)  for all BE B(G) with e .$ B- and Q (aB) = 0; 
('1 a$'+kJ,x Si(~)ejcx)ll~(dx)+aij+iS,~Ci(x)ij(~)YIIdx) 

far all 1 6 i, j d m; 
(c) a?) +a, for all 1 g i < rn. 

(iv) (a) 1, {B)  + q (B) for all 3 E B ( G )  with e $ B -  and q (dB) = 0; 
(bl limEL, Iim sup,,, (a$)++ 1, <,y(x,<, ii (4 l j i x )  ul, (dx)) 

= limEl liming,, (la$) ++So < . ( X ) ~ E  Ci (x) C j  (x) v, (dx)) = aij 
for all 1 d i ,  j < m; 

(c) a?) + a ,  for all 1 < i < rn. 
Pro of. (ii) =. (i) has been proved by Hazod [S], p. 36. 
(iii) - (iv). Let E > 0. Then there exist E , ,  E, > 0 with 0 < s, < E < E ,  and 

Q({xEG: r p ( x ) = ~ ~ ) ) = O  for i = 1 , 2  

(cf. [26], p. 140). Clearly, there is a constant c > 0 such that (Ci (x) Cj(x)l < cip (x) 
for all X E  G. Then 

Thus we obtain 

1 CiCjdqn-c S q d q n  d J CiCjdtlnG J iiCjd?n+c J (~dvln- 
1>e2 e l i q 4 e 2  pr>& 9 > E 2  ~ ~ < p r Q e a  

Letting n -, oo it follows that 
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lirn sup (a:,?' + $ i, l, dq,) d lim (a!;) + : j i ,  l; dy$ - : lirn inf 1 (, C j  dqn 
A + %  O < p < e  n +  m G' n - r n  pl>e 

<aij+$ 1 SiCjd?-+ J 5iSjdV+4c 1 ~ d ?  
C ~ ' r 2  r i < p $ r 2  

Letting E / O  and cZ 10, we obtain 

lirn lirn sup (a;?) +* J li (x) cj (x) q, (dx))  < aij. 
E J O  n+m O c l p ( x ) d t  

Similarly we have 

lim lirn inf(aj,?l+) j ii (x) ij (x) g, (dx)) B a i j .  
El0 n+m O < r p ( ~ ) < &  

Hence (iii) - (iv) is proved. 
(iv) - (iii). Let E > 0 with q ({x E G : q~ (x) = E)) = 0. Then 

lirn sup (a!;) S. J Ci C j  drln) 
n- m G' 

d lim sup tag) + $ j Ci Cj  dqn) + $ lim j l i  Cj dq, 
n + m  O < q < c  n - t m  p > c  

= l imsup(a$)+~ j Ci l;jdqn)++ lim J iicjdq,-+ lirn J Si ljdyn. 
n + m  O C q d &  n + m  G K  n + m  O < r p S &  

Letting E J O  we obtain 
1 lirn sup (a!;)++ j li ij dq,) < aij+z j li Ijdq. 

n+ m G G x  

Similarly we get 

Hence (iv) + (iii) is proved. 
(iii) - (ii). Let E > 0 with ({x E G: q (x) = E}) = 0. Then conditions (a) and 

(b) of (iii) imply 

for all 1 < i, j $ n. If moreover {X E G: q~ (x) $ e )  c Uo,  then we obtain 

Again from (iii) (a) we infer that for all B € k @ ( G X )  with g (83) = 0 
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For every n E N we define the measure v, E At (G) by 
111 

= v , ( B ) : = + J ~ L E ~ ~ ,  for all B E ~ W " ? .  
i = l  B 

Similarly, we define v E J?: (G)  by 
m 

v((e)):= C nii v(B):= qdq for all B E ~ ( G " ) .  
i = l  B 

Then we have v ,+v .  Thus we can conclude that if QE&(G) and 
h : =  g / g a ~ % ? ~ ( G * )  is continuously extended to G by h(e)  = 0, then 
JGa gdrn +SGX gdv. 

Now we use the idea which was pointed out by Grenander [6],  p. 196. (See 
also [13].) For all f ~ g ( G )  and E ,O we have the decomposition 

A, (f) = C a?) (Xi f) (el + C ( ~ 6 )  + 4 1 Ci ij dsn) (xi xjf)  (t.1 
I i =  1 i,j= 1 O<fp<a 

+ [ f ( x )  - f ( e )  - C i i  (x) Qif .I (el] t ln  ('XI + J s (XI qn ('x)7 

rg>e i = l  O c r S c  

where the function 

I lies in &'(GI, and the Taylor expansion in a neighborhood of e  E G implies that 
the function h : = g/cp E qb (G ') is continuously extended to G by h (e) = 0 since 

for all x in a suitable neighborhood U c U , ,  where 9 (x) E U .  Thus 
m 

Is (x)I c (f; 4 i= 1  l i i  (x)I < C' (f; m) cp ( x ) ~ / ~  

with some constants c ( f ;  m) and c'(J m) depending on f E b(G) and on the 
dimension rn. Taking into consideration the above decomposition of A, we 
conclude (iii) =- (ii). 

(i) (iii). Applying Proposition 5.1 we obtain (iii) (a) and 

sup ( C lal")l+ C IalJ'I + J cp d ~ , )  < 
n 3 l  i = l  i,j= 1 G" 

Now we use some idea of Siebert [26] (also applied in [14]). Let (n&, be an 
arbitrary strictly monotone sequence in N. Then there is a subsequence (n,,)12 

! of ( ~ 1 ~ ) ~ ~ ~  such that there exist 

I0 - PAMS 14.2 
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b, : = lim oP1), b i j :  = lim (a$c)+f Ci l j  &.,,)-i j ii l j  dq.  
I - +  w 1-*m G G x  

Obviously, (b j j ) lG i , jQ ,  is a real symmetric positive semidefinite matrix. Let us 
define for all f E b(G) 

Then 3 is a generating functional of a convolution semigroup As in 
(iii) * (ii), it follows that 

l imAnkl(f)=B(f) for all f ~ b ( G ) ,  
l - rm 

and (ii) 5 (i) implies lirn,, , S, ,  = f. Hence S,  -, S yields f = S; thus B = A. 
Consequently, any strictly monotone sequence (n,)*,, , in N has a subsequence 
(nkJr3 for which (ii), (iii) (b) and (iii) (c) hold. This implies also (iii) (a) for this 
subsequence. Hence we obtain the assertion. m 

Remark 3. In the case of a stratified Lie group, conditions (iii) (a) and 
(iv) (a) can be replaced by 

r,rn (1x1 > E )  -+ q { ! X I  > E) for all E > 0 with q (1x1 = E )  = 0 .  

Condition (iii) (b) can be replaced by 

a$)++ 5 x i x j a @ )  - ai j++ j x i x j q  (dx)  
OC 1x1 $ 8  O < ( x ( < e  

for all 1 $ i, j d rn and for every E > 0 such that q {lxl = E )  = 0. (Obviously, it 
is enough to have the above relation for at least one E > 0 with q (1x1 = E )  = 0 
because of (iii) (a).) 

Similarly, (iv) (b) can be replaced by 

lim lim sup (a$) + $ J xi xj  qn (dx)) 
E / O  n+m O < ~ X ( < E  

= lim liminf (ajj"' ++ 1 x i x j  q, (dx)) = aij 
€10 n + m  O < l x ( < &  

for all 1 < i, j < m. 
6. Unitary representations and Fourier transforms. A (continuous) unitary 

representation of a locally compact group G is a homomorphism D of G into 
the group of unitary operators on a complex Hilbert space 3 such that the 
mapping x + D (x) u of G into X is continuous for all u E %. The space A? is 
called the repvesentation space of D and is denoted by &? (D). The inner product 
and the norm in Z ( D )  are denoted by (., .) and 1 ) .  I ) ,  respectively. The class of 
all irreducible (continuous) unitary representations of G is denoted by Irr (G). 
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Let D E lrr (G). The vector u E 2 (D) is said to be dlflerentiable for D i f  the 
coefficient function x + (D ( x )  u, v )  of G into C is in b ( G )  for any v E #(D). By 
%(Dl we denote the space of all vectors in X(D)  differentiable for D. 

Let D€Irr(G). The vector u ~ g ( D )  is said to be a Cm-zrector for D i f  the 
vector-valued fiinction x 4 D ( x )  u of G into X ( D )  is infinitely differentiable. By 
XCO (D) we denote the space of all Cm-vectors in X ( D ) ,  Then 9fm (D)  s Xo(D) is 
obvious; Xm(D) = Xo(D) is known (cf. 1261, p. 122, Remark). 

It is known (see, e.g., [3 I ] )  that every irreducible (continuous) unitary 
representation of the Heisenberg group R is unitarily equivalent to one of the 
representations Da,B, u, PER, or D*n,  R E  R\{O), defined in the following way: 

D,P, a, BER,  are one-dimensional representations of H on C defined by 

DaJ ( X I  , x2, ~ 3 )  : = exp [i (ax, -k Bxzll; 

D,,, A E  R\{O), are infinite-dimensional representations of HI on LZ(R) 
defined by 

for A > O ,  utzLZ(R). 
Moreover, iV0 (D+J = Xm (D* ,) = Y (R) for all R E  R\(O}, where the 

Schwartz space Y(R) i s  defined by (cf. [31]) 

cP(R):= {u.Cm(R): 1Isj$(/ < co for all j, i l~Nu(O] 
m 

For a probability measure ,u on a locally compact group G we define its 
Fourier transform f i  by 

for all D E Irr (G) (u, zr E X(D)). Then ji (D) is a bounded linear operator on 
&'(I)). (For information on Fourier transforms see [ l l ]  and [26].) 

It is easy to show that for a centered probability measure p on R the 
Fourier transform can be estimated in the following way: 

Iji(t)- 11 = (ei"- l - i tx)p(dx)  x2 ~ ( d x )  for all t ER. IS 
We prove a similar result in the case of the Heisenberg group. RecalI that 
a probability measure p on H is centered if Sx ,  ,u(dx) = Sx2p(dx)  = 0. 

LEMMA 1. Let p be a centered probability measure on H.  Then for all 
D E Irr (H) and u E sEa, (D) there exists a constant c (D, u) such that 

Pro of. In the case of the one-dimensional representations Da,B, a, BE R, 
we have simply 
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liii [D,,p) - 1 I = IS (exp Ci (EX, + b x , ) l -  1 - iax, - i8x2) p (d4l 

< (1 (exp [iax,] - 1 - iclx ,) exp [iflx,] (dx)( 

-t 1s ( ~ X P  CiPxz] - 1 - iPx2) P (dx)( 

+ IS iax, (exp CiPxzl - 1) P (dxll 

In the case of the infinite-dimensional representations D,, ,  A E  R\{O), we use 
a similar method. For h > 0 and u E Y ( R )  = Xo(DkA) we have the decom- 
position 

P ( ~ * i ) u b ) - u ( s )  = 11+12, 

where 

I ,  = ~ ~ X ~ [ ~ ( - ~ A ~ , + R ~ / ~ X ~ S + A X ~ X ~ / ~ ) ] ( U ( S + A ~ ~ ~ X ~ ) - U ( S ) } ~ ( ~ X ) ,  

I ,  = J(exp [ i ( + _ h ~ , 1 ; 1 ~ ~ ~  x1 s f  Axl x2/2)] - 1  ~ i l . 3 ~ ~  s)p[(dx)w(s) .  

In the case of the first integral we use the Taylor formula 

Since x, p (dx) = 0, we have to deal only with the second term of the Taylor 
formula. We have 

For the second integral of the decomposition of @ ( D ,  - j u (s) -u (s) we have 

lexp [ i ( k i x ,  x1 s+ixl x2/2)] - 1 T iAxl S I  
< lexp I:+ Ux,] - 11 + lexp [iAx, x2/2] - 11 + [exp [ f iR1I2 x1 S] - 1 f iLxl SI 

< R(Ix31+Ix, x21/2+x~s2/2) < c A I x ~ ~ ( ~ + s ~ )  

using property (2) of homogeneous norms. 
Summarizing we have 

1 1 P ~ ~ - 4 ~ . ) ~ - ~ 1 1 ~ c ~ ( i l ~ l l + l l ~ 2 ~ / I + l l ~ " l 0 ~ 1 ~ l 2 p ( d ~ ~  for all A€R\{O). 

Hence we obtain the assertion. B 
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7. The accompanying Poisson system of a triangular system. The accom- 
panying Poisson system of a triangular system (pnk)k = l , . . . , k , ;n2  is defined by 

v n k : =  exp@,,-E,), k = 1,  ..., k,,; 0 2 1. 

For a commutative triangular system (pnkjk ,,,,,,, n;n,l the row products of its 
accompanying Poisson system are the Poisson measures 

The accompanying sequence ofPoisson semigroups of a system {p,,k)k=l,...,kn;na 
is defined by 

kn 

S , , : = [ V ~ " ) ) , ~ ~ ,  v ~ I : = e x p ( t C ( p n L , , - ~ , ) )  for n > l , t Z O .  
k =  1 

Applying Theorem 5.1 one can simply obtain necessary and sufficient 
conditions for the convergence of the accompanying sequence of Poisson 
semigroups to a Gaussian one. 

PROPOSITION 7.1. Let (,unJk = ,,,,.,,,:,, be a commutatiue triangular syslcm 
on a Lie group with the accompanying sequence of Poisson semigroups (S,),,3 
The following statements are equivalent: 

(i) S, 4 S, where S = (vJtao is the Gaussian serniymup with the generating 
functional 

(ii) (a) limn+, EL, pn, (G\B) = 0 for aN 3 EB(G)  with e # B'; 

(b) limn+, 61, IG. Ii (x) I j  (x) pnk (dx) = aij for all 1 s i ,  j $ m; 

(c) limn+m 2; I J ~ .  L (xj pnk (dx) = ai for all 1 $ i < m. 
P r o  of. The Poisson semigroup S, = (v j"]),, , has the canonical decom- 

position (b?), 0 ,  i s  m, where 

The Gaussian semigroup S: = (vJ,,, has the canonical decomposition 
(a,, aij, Ojl i,js,. Theorem 5.1 yields the assertions. EJ 

Remark  4. In the case of a stratified Lie group, conditions in (ii) can be 
replaced by 

(a) limn_, xF= p* (1x1 > E )  = 0 for every E > 0 ;  

(b) l i m n + m ~ ~ ~ l ~ l x , ~ I x i x j p n k ( d x )  = aij for all 1 < i ,  j < m; 
(c) limn+in ~ ~ = l J l x l < l  xipnR(dx) = ai for all 1 < i $ m. 
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In order to obtain necessary and ~ ~ c i e n t  conditions for the convergence 
of triangular system to a Gaussian measure we have to ensure that the 
convergence of the triangular system implies the convergence of the accom- 
panying sequence of Poisson semigroups. We shall use the following statement 
due to Siebert [26], Proposition 8.1. 

PROPOSITION 7.2. Let (pnklk= ,..., k, , ;n3 be a commutative. and infinitesimal 
system of probability measures on a Iocally compact group G. Suppose that 

kn 

lim sup lI,dnk (D) u - u 11 < co for ail D E Irr (G) ,  u c So (D). 
n+m k = l  

Then the system (pnk)R-l,...,k,;n31 is cunvergenc if and only if the accompanying 
Poisson system is convergent, and in the aflrrnative case their limits coincide. 

8. The kindebrg-Feller theorem on the Beisenberg group. First we prove 
a convergence theorem for a symmetric triangular system in the case of 
bounded (homogeneous) moments d second order. 

THEOREM 8.1. Let (pnkIk= 1,...,R,;n3 be a comm~tative system of symmetric 
probability measures on the Heisenberg group H which satisfies the condition 

Then the following statements are equivalent: 

(i> (a) k k l k =  ,..., k,;n is infinitesimal; 
(b) pnl * . . . * f i n k ,  -) v as n -, CQ, where v = v , ,  (vJ,~,, is the (symmetric) 

Gaussian semigroup with the generating functional 

kn 
(ii) (a) limn,, xk=,  pnk {lxl > E }  = 0 for every E > 0; 

(b) limn+, zkl xi xj pnk (dx)  = a, for all 1 < i, j < 3.  

P r o  o f. (i) * (ii). Condition (3) together with Lemma 1 implies 

kn 

sup I1$,,k(D)u-ull < oo for all D ~ l r r ( H )  and UE#*(D). 
n 3 l  k = l  

Using Proposition 7.2 we conclude that (a) and (b) of (i) imply 

Since the Poisson measure $1 = exp (t x:=, (pnk - E.)) is symmetric for all n 2 1, 
t 2 0, the convolution operator T,(") : = XI") corresponding to the measure vy) is 
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a selfadjoint positive semidefinite contraction operator on the (complex) 
Hilbert space LZ (H). Since S, = (vj")),,, is a convolution semigroup, (T,'")),, , is 
a (strongly continuous) semigroup of operators on LZ(H). In view of [23], 
Section 141, there exist spectral resolutions (Et'),,lo,,l such that 

1 

Tfn) = 1 e'dEP' for every t 2 0, n E N .  
0 

Similarly, the convolution operator T,: = corresponding to the measure 
v ,  is a selfadjoint positive semidefinite contraction operator on L2(H) and 
admits a spectral decomposition 

1 

?; = j g ' d ~ ,  for every t 2 0. 
0 

Now assumption ti) (b) yields T{"' + TI in the strong operator topology (cf. 
Theorern 1.5.5 in 1121). By Lemma 6.2.21 in [12] we conclude that 7;'"'+ T, 

'ru 
, $$ and vp)  + v, for all t 2 0. Using Proposition 6.1 in 1261 we obtain S, + S and 

Proposition 7.1 becomes applicable. 
(ii) * (i). Condition (ii) (a) implies that the system (pndk= l,.,.,k,;nB is 

infinitesimal. By Proposition 7.1 we, have S, + S ,  which together with Proposi- 
tion 7.2 implies (i) {b). s 

By the method of symmetrization, Theorem 8.1 can be generalized for 
normal and centered systems. 

If p E 9 ( G ) ,  the iadjoint measure lii is defined by ji (f) : = p (f *) for every 
continuous function f: G + C with compact support, where f *: G + C is 
defined by f * (x) : = f (x- I) for all x E G. A measure p E P(G) is said to be normal 
if p * p = p * p .  

A triangular system (p ,k)k=l  ,..., k m ; n 3 1  is called normal if for all n $ 1, 
1 ,( j ,  k 4 k, the equality 

pnj * fink = fink * pnj 

holds. Particularly, pnj * ,Cnj = Pnj  * p n ~ ,  - i.e., the measure pnj is normal for all 
n 2- 1, 1 < j  < k,.  

The system @nk)k=l ,..., kn;n31  is called centered if for all n $ 1, 1 < k $ k, 
the measure pnk is centered. 

A convolution semigroup ( v , ) , ~ ,  is said to be normal if for all t 2 0 the 
measure v, is normal, i.e., v,* ff = fr * v,. A Gaussian semigroup ( v , ) , ~ ,  on 
a nilpotent Lie group with the generating functional 

is normal if ai = 0 for di = 1, i.e., v, is centered for all t 2 0 (cf. the 
representation of Gaussian sernigroups by the help of Wiener processes due to 
Roynette [24]). 
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THEOREM 8.2. Let f,unh)k=l ,,,,, k , ;nS  be a commutative, normal and centered 
system of probability measures on the Heisenberg group M which satisjes the 
condition 

k, 

Then the following statemenls are equivalent: 
(i) (a) (fink)h = I , . . . , ~ , : ~ ~  is infinitesimal; 

(b) pnl * . . . * pvk, + Y as n + oo, where v = v,, (v,),,, is the (normal) 
Gaussian semigroup with the generating funclional 

3 

A l f )  = a,(X3f)I@I+$ C a i j ( x i X j f ) ( e ) .  
i , j = l  

(ii) (a )  lirn.+, ~~~, p,,, (1x1 > E] = 0 for every E > 0; 
(b) limn_, 2, llXI., x i x j  p,,, (dx) = aij for all 1 < i, j G 3; 

(c) lim.,, ~11, IIxI. xi kr (dx)  = a, for all 1 < i d 3,  
where a ,  = a, = 0. 

I Proof.  ( i)  - (ii). Let us consider the accompanying sequence of Poisson 
semigroups Sn = ( v ? ) ) , ~  *, n 2 1. Since (pnkIk = ,. .. ,k,,;n a is commutative and 
normal, we have 

v p ) * q ) =  fln)*vIn1 for all n 2 1, t 2 0. 

Therefore nj"): = $1 * $", t >, 0, is a symmetric Poisson semigroup for all n 2 1 
! see [7]). 

Since S = ( v J t 3 ,  is a normal Gaussian semigroup, n, : = v, + c, t 2 0, is 
a symmetric Gaussian semigroup. 

As in the proof of Theorem 8.1 we have v';' + v,, which implies n(1") + n,, 
and using the symmetry of and n, we can conclude that (TC?)),, + (xJ,,, as 
n -+ a. Clearly, the LBvy measure of the Poisson semigroup (xy)),,, is z;=, (pnk+j.&k) for n 2 1. Thus by Theorem 5.1 we obtain 

k .  

lirn C (p, (1x1 > E) +,ink (1x1 > E ) )  = 0 for every E > 0. 
n-'m k = l  

Obviously, this implies 
kn 

lim 1 pnk (1x1 > E }  = 0 for every E > 0, 
n- tm  k = l  

which together with Proposition 9.2 in [26] yields that any of the limit points 
of the accompanying sequence S,  = ( v ? ) ) , ~ ,  of Poisson semigroups is a Gaus- 
sian semigroup or a degenerated one. Now vF) + v implies that for each strictly 

I 

I 
monotone sequence (n,),, , in N there exists a subsequence (nk,), , , of (q), , , 

, and a continuous convolution semigroup (pJ,, , such that p, = v and vpk[)  + ,til 
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for all t 8 0 (see [15]). We have already known that (pJ,,, can be only 
a Gaussian semigroup. Since a Gaussian measure on a simply connected 
nilpotent Lie group can be uniquely embedded into a Gaussian semigroup (see 
[2] in the case of 2-step nilpotent Lie groups and [21] for the general case), we 
conclude that ,ut = v, for all t 2 0. Consequently, for all fixed t >, 0 any 
subsequence (vp)),, , of the sequence (v j")), , , has a convergent subsequence 
and the limit is always equal to v,. This proves S, 4 S and Proposition 7.1 
becomes applicable. 

(ii) * (i) follows from 7.1 rn 

If we suppose the convergence of variances of the first two coordinates and 
the Lindeberg condition on the third coordinate, then we obtain the usual form 
of the Lindeberg-Feller theorem. 

COROLLARY 1. Let (pnR)k= l , . . . , k R ; n Z  be a commutative, normal and centered 
system of probability measures on H which satisfies the conditions 

An 

(7) lim C Jxixjpnk(dx) = aij for all i ,  j = 1 ,  2. 
n + c o  k = l  

Then the following statements are equivalent: 

(i) (a) limn,, maxi g A kn 1 Ix12 pnk = 0; 
(b) pnl * . . . * pnkn + v as n -+ oo, where v = v,, (v,),,, is the (symmetric) 

Gaussian semigroup with the generating functional 
2 

A ( f )  = 3 C a i j ( x i x j f ) ( ' ) .  
i . j = l  

(ii) (a) limn_, z:, pnk (1x1 > e }  = 0 for every E > 0; 

(b) limn,, 61, hx,. xi xj p,,, (dx) = aij  for all i ,  j = 1,  2. 

(iii) limn+, x:=, Iirl 3. Ix12pnk (dx) = 0 for every e > 0. 

P r o  of. (i) e= (ii). Condition (i) (a) implies that the system (pnk)k= ~ , . . . , k , ; ~  3 1 is 
infinitesimal, since 

for arbitrary E > 0. From assumptions (7) and (4) we get (3). Applying Theo- 
rem 8.2 we obtain (i) (ii). 
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(ii) =. (iii). By (ii) (b) and (7) the equality 

kn 

lim C j x: p, (ax) = 0 
n - w k = l  \ x \ > l  

holds for i = 1, 2, 3. This together with (5) implies 

k" 

lim J 1x1' pDk (LIX) = 0. 
n + m  k = l  J x ( 3 l  

Now, from (ii) (a) we infer that 

for arbitrary 0 < 8,  < E,. Hence we obtain (iii). 
(iii) 3 (i). For any E > 0 we have 

k~ 

1 Ixl2 ~ n k  (dx)  E' f J 1x1' ~ n k  ( d ~ )  E' + Zj 5 1x1' ~ n k  ( d ~ ) .  
1x1 Be k = l  lx(Ba 

Thus we obtain (i) (a). To prove (i) (b) we shall show that conditions (ii) d 
Theorem 8.2 are satisfied. Estimation (8) implies that (ii) (a) of Theorem 8.2 
holds. Thus we have also (9). Clearly, (iii) implies 

Hence 

k" 

lim J x ? ~ ~ , ( d x ) = 0  for i = l , 2 .  
n-+m k = l  (x ($E 

k n  

Iim 1 xixjpnk(dx)=O for i , j = 1 , 2 ,  
n + m  k = l  1x13~ 

which together with assumption (7) gives (ii) (b) of Theorem 8.2 for i, j = 1, 2. 
Using estimate (2), for 0 < E < 1 we have 

! Further we have 

and, consequently, 
k" kn 

lim sup C 1 ~ 2 3  hk (dx) < CE' SUP C j IxJ2 pnk (dx). 
n - r m  k = l  l x l < l  n L l  k = l  

Since 0 < E < 1  is arbitrary, we conclude (ii) (b) of Theorem 8.2 for i  = j = 3. 
Using the same arguments we can obtain (ii) (b) of Theorem 8.2 for the 
remaining cases. Clearly, we have 
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km 

lim j JxiJ ,unk(dx) = 0 for i = 1, 2, 3, 
n + w  k = 1  ] x [ > l  

which together with the as&mption that the system is centered and assumption 
(6) implies (ii) (c) of Theorem 8.2. rn 

R e m a r k  5.  Conditions (i) (a) and (iii) are the classical Feller and 
Lindeberg conditions, respectively. Assumption (4) is needed in order to have 
bounded (homogeneous) moments of second order. Assumption (5) is in fact 
the Lindeberg condition for the third coordinate. 
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