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ON THE ALMOST UNIFORM CONVERGENCE 
IN NONCOMMUTATWE L2-SPACES 

BY 
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Abstract. We introduce a kind of convergence in L, ovcr a von 
Neumann algebra and prove a few typical results being the analogues 
of classical pointwise theorems. 

I. In [4] a notion of the almost sure convergence in L, over a von 
Neumann algebra has been introduced and several limit theorems have been 
proved (cf. [6 ] ) .  The main goal of this paper* is to define another kind of 
convergence in the noncommutative L2-space which coincides with the 
ordinary almost everywhere convergence in the case of a commutative von 
Neumann algebra L,  (X, 8, p). We shall call our new convergence the almost 
ungorm convergence in L,. Moreover, we prove some typical limit theorems (an 
individual ergodic theorem, a martingale convergence theorem, a Radema- 
cher-Menshov theorem) for this convergence. 

Let us begin with some notation and definitions. Let M be a a-finite von 
Neumann algebra with a faithful and normal state @. In our case, the GNS 
representation of (M, di) is faithful and normal so, without any loss of 
generality, we may assume that M acts in its GNS representation Hilbert space, 
say H, in a standard way. In particular, we have H = L2(M, @) being the 
completion of M under the norm x w @ (x* x)lI2, and @ (x) = (xO, O), x E M, 
where 52 is a cyclic and separating vector in H (cf. [13]). The norm in H will be 
denoted by 11 - 11, the operator norm in M by 1 1  .]I,. Proj M denotes the lattice of 
all orthogonal projections in M, pL = 1 - p  for p E Proj M. We always have 
1xI2 = x* x for X E  M, and M" (or M') consists of all selfadjoint (or positive) 
operators from M. 

A linear map a: M -+ M is said to be a Schwarz map if u (lx12) 2 la (x)I2 for 
x E M. A Schwarz map satisfying the condition @(ax) d @ (x) for x E M +  is 
called a kernel. A kernel a in M can always be extended in a unique way to 
a contraction p in H. Namely, we put p(xQ) = a (x) 52 for x E M, and then we 
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extend the obtained contraction from MO to the whole H by continuity. In this 
case, we say that the contraction /3 in H is induced by the kernel ol in M .  The 
most important kernels are @-preserving *-endomorphisms of M and 
@-preserving conditional expectations. They induce in H isometrics and 
orthogonal projections, respectively. 

2, Let us recall (following Lance [7] and Sinai and Anshelevich [12]; cf. 
also Paszkiewicz [10]) that a sequence (x,J c M is said to be almost uniformly 
convergent to x E M (x, + x a.u. in M )  if for every E > 0 there exists a p E Proj M 
with 8b1) < r such that II(xn-x)pII,+O as n +  co. 

We start with the following definition: 

2.1. DEFINITION. A sequence (r,) in W is said to be almost uniformly 
convergent in H to a 5 E H (t, + 5 a.u. in H )  if for every sequence (y,) c M with 
El 114,--[-~~D1~ c U) we have y,+O a.u. in M. 

Clearly, by Egorov's theorem and Beppo Levi's theorem, the almost 
uniform convergence in H = L , ( M ,  @) coincides with the usual almost 
everywhere convergence in the case M = L, (X, 9, p) over a probability space 
(X, 9, P I .  

Note that for a sequence (x,) in M if x, SZ is a.u. convergent in H to an 
xPEH, then x, is almost uniformly convergent in M to x. The inverse 
implication is just an open question. 

Finally, Iet us recall (see [4]) that a sequence (t,) c H is said to be almost 
surely convergent to  zero (5, + 0 a.s.) if  for every E > 0 there exists a projection 
p ~ P r o j  M with @(pL) < E and lltnll, -t 0 as n + co. Here the moduIar 11 - 11, 
(p E Proj M) is defined as follows: for a 5 E H we have 

m 

and C x,p converges in norm in M). 
k = l  

2.2. THEOREM. Let (t,) be a sequence in H.  If 5,  + 0 a.u. in H and IIlnII + 0, 
then <, -+ 0 a.s. 

Proof.  Let us choose operators x: E M (n, i = 1,  2,  . . .) such that 



Almost tmgorm convergence in L, 349 

By assumption, there exists an increasing sequence ( k ( n )  of positive 
integers such that 

Let us fix a bijection x of the set N x { N \ { l } )  onto the set 
N o  = (1, 3, 5 ,  . . .) of all odd positive numbers. Now, we define a sequence 
(yn),4=, c M putting y, = x; for n $ ( k  (m): m E IV} , y,(,,, = d'm) (m E N) and 
y k ( n [ i 3 j j )  = 2jxf ( i ,  j E N,  j # 1). We get 

Indeed, by (21, we have 

By (4), we obtain 

because, by (2) and (4), we have 

Finally, by (3) and (2), we get 

which yields (5). 
Then, by (5) and the almost uniform convergence of (r,) in H, we get 

y, -, 0 a.u. in M ,  so for E > 0,there exists a projection p E Proj M with @ (P') < E 

such that Jjy,pllm + 0 as n + a. 
In particular, we obtain 

and 

1 I ~ k ( x ( i , j ) ) ~ / I m + O  a s m a x ( i , j ) + w , j # l ,  

because n ( i ,  j) -, co as max (i, j) + co. Thus 

sup I l ~ k ( a ( i , j ) ) ~ l l m  < 
i: jeN 
J +  1 

and 

(7) I I ~ k ( x ( i , j ) )  P I /  + 0 as n + 00, j + 1 

13 - PAMS 14.2 
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Then the series xJ?= 11xy p I ,  = zE 2- j  llfibe,j), pll is uniformly convergent 
with respect to n. 

But, by (I), we have 

so, by (6) and (7), we get l l < n ( l ,  + 0 as n -, co. The proof is completed. rn 

3: Now, we formulate some limit theorems for the almost uniform 
convergence in H.  By Theorem 2.2 we can regard them as new stronger 
versions of some results from [4] and [dl. 

3.1. THEOREM (individual ergodic theorem). Let P be a contraction in 
H b u kernel a in M. Then, for each E El, cr, (t) + a.u. in H, where 

n - Y  
rr, = n - z, =, and f = lim,, , u, (i.) in H given by the meun ergodic  heo or ern. 

3.2. THEOREM (martingale convergence theorem). Let (M,,],"=, be a decreas- 
ing sequence of von Neumann subalgebras of M with conditional expectations 
En. Let I!?" denote the orthogonal projection in H = L, (M, @) generaled by En, 
i-e., En (xQ) = En (x) a for x EM. Then, for every t E H, fin t converges almost 
ungortnly in H to 9 = Em 5, where E, = /I,:=, En. 

3.3. THEOREM (Rademacher-Menshov theorem). Let be an or- 
thogonal sequence in H such that 

m 

(8) C log2(n+1) 115n112 < a. 
n =  l 

Then 
n 

0, = C cj -) G a.u. in H, 
j =  1 

where r is the sum of the series z;=, c,. ; in H. 

4. For proofs of the above results we shall need some auxiliary results. 
Both in the classical and the noncommutative theory, behind the proofs 

of the individual ergodic theorems or martingale convergence theorems there 
are always some "maximal inequalities". We use the following theorem of, 
Goldstein ([3], cf. also 151). ... 

4.1. THEOREM (maximal inequality for ergodic averages). Let a: A4 + M be 
a normal positive map such that a1 < 1 and 8 (ax) < @ (x) for x E M + .  Let 
(x,) c M' and let (F,J be a sequence of positive numbers. We put 

A-1 sn = n- lEk=,  ak. Then there exists a projection p~ Projh4 such that 

I I P s ~ ( x ~ ) P I I ~ : < ~ E ~  for n , k = l , 2 , . . -  
and 

m 

8(pL) < 2 E,' @(x,). 
n =  1 
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A simple consequence of this theorem is the following 

4.2. PROPOSITION. Let [D,) c M + and zkm, @ ( I l k )  i m. Then for each 
E > O there exists a p E Proj M with @ ('l) < E such that IlpD, p 11, + 0 as n 4 m. 

Now, we formulate a lemma about some approximation possibilities. We 
omit its vexatious proof which is based only on "calculating mechanism" with 
its main tool - the triangle inequaIity. 

4.3. LEMMA. Let (5,)7= be an orthogonal sequence in H. Let (m (n)),"= and 
( k  (n))F= be two sequences of indices such that rn Cj) > 2j" (i = 1,  2, . . .) and 
k(n)  = s when 2" n Zs'l { s  = 0, 1 ,  2,  . . .). Then there exists a sequence [E;) of 
positive numbers such that for all (xi) c M (with x, = 0 when T, = 0) the 
inequalities 

lti-xiJZll < ci, i = 1, 2 ,  ..., 
imply 

m 

(91 C I/an-sn Q - ~ r n ( k ( n ) )  + ~ n z ~ k l n ) ]  fill < a, 
n= l 

where 

and 
m(k) 

The next lemma is a slight modification of Lemma 4.2 in [4] (cf. also 
Lemma 5.2.2 in [6 ] ) .  

4.4. LEMMA. Let J c N and # J = p. Let (ti)gl be a sequence of elements 
in H such that ti = 0 for i $ J .  Let ( E ~ )  be an arbitrary sequence of positive 
numbers. Then there exist operators xi E M ,  i E N (with xi = 0 when 5, = 0) and 
B E  M + such that 

5. P roo f  of Theo rem 3.1. Let us put 

HI = { ~ E H :  81 = q )  and Hz = {(x-xx)Q: X E M ) ~ .  

Clearly, we have H = HI OH,. Let C E  H. Obviously, t - f ~ H , .  Then there 
exists a sequence (x,) c M such that 
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where zk = xk- EX, (k = 1, 2, . . .) and 

(12) I z ~ - ,  k = 1 , 2 ,  ... 

Setting sn = n-' zyi,' aj, n = 1, 2, . . . , we have 

Moreover, 

Let (k(n))F=, be a sequence of indices such that putting 

we obtain 

(15) 

Setting 

by (14), we have crn(c)-F=v,Q+en, n =  1 , 2  ,... Now, let y,€M 
(n = 1, 2, ...) and 

The proof will be completed if we show that y, + 0 a.u. in M. 
Putting 6, = ynQ-(cr,(c)-~, n = 1, 2, ..., we get y,Q = v,Q+z,, where 

z , = Q , + ~ , ,  n = 1 , 2  ,... 
Then, by (15) and (16), we obtain 

On the other hand, we can write z, = t, O, n = 1, 2, . . . , where tn = y, - v, 
(n = 1, 2, . . .). Clearly, by (17), Zkm=, @ ((tk12) < a. 

Thus, for each E > 0 there exists a sequence of positive numbers 6 ,  -+ 0 
such that 

~ e t  us put E k = 2 4 - k ~ - 1  11 t - r1l2 (k = 1, 2, . . .). Then, by (12), we get 
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Now, applying Theorem 4.1, we can find a projection p E Proj M such that 

and 

But sn are (because of a) Schwarz maps as well, so Is,  (z,}p 11, d Ilps, (jz,12) p 11 1 , / 2 ,  
n, k = 1, 2, . . ., and thus, by (191, we get 

Then the above series is uniformly convergent (with respect to n) and, by (131, 
we obtain 

k(n) 

I I v , P I I ~  = 11 C s ~ ( z ~ ) P I I ~ + O  as n + a *  
k =  1 

Hence, by (20), we have Il y, p 1 ,  6 Il u, p 11, + Il t, p 11 , + 0 as n -t a which, with 
8 (g') < E, means that y, + 0 a.u. in M. The proof is completed. rn 

6. Proof  of T h e  or  em 3.2. The method of proof goes back to Neveu [9]. 
It was adapted to the context of von Neumann algebras by Dang-Ngoc [2]. 
We shall refer to [5]. By Lemma 3.1.5 of [5], p. 62, we find a sequence 
0 = a, < a,  < . . . < a, < 1, a, + 1, and a sequence (n,) of positive integers such 
that 

a, 

E = C (a,-a,- , )E,  
r=l 

is a kernel on M and 

Denote by fl the contraction in H generated by I, i.e. fl(xS;1) = a(x)Q for 
X E  M. Let 

Fix an arbitrary element in H, and let 9 = limn,, ern(<) in H (by the mean 
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ergodic theorem). Then, by (21), we also have Er t + f ,  so 

- - 
In particular, Er 5 = for r = I ,  2, . . . 

The continuation of our reasoning is very similar to that in the proof of 
Theorem 3.1, so we shall keep the earlier notation and only sketch the proof. 

We have the decomposition H = HI @ H ,  and we can find, in the same 
manner, a sequence (xk)  c M such that ( l l j (14)  hold. 

Moreover, we get 

By (21) and (12) we have the estimation 

Let (k(r))?==, be a sequence of indices such that putting this time, for 
r = 1, 2, ..., 

00 

we also obtain r=, 11 < oo, whereas setting 

we get onr(<)-r= firJ2+Gr. Let y r € M  (r = 1, 2, ...) and 

To conclude the proof it is enough to show that yr -+ 0 a.u. in M. 
Putting6 = yrSZ-- (Er~-~ ,weget  yrL2 = &J2+.5,,where< = &+?,+&, 

and by (21), (24) and (23) we obtain 

But, writing = 01, -fir) SZ = Q, where <EM, we have by (25) 
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Now, for given E > 0 and E~ = 24-k E-  I /t-f\~ ( k  = 1, 2, . . .), using (18) 
and (26) and applying Theorem 4.1, we can find a projection p~ Proj M with 
@(pL) < E and such that 

Since the series z;=, llsn(zk)pll a is also uniformly convergent, by (13, we 
obtain 

Thus, we get Ilj,p(l, < Ilqpllw+Il<pI/a+O as n+m, which completes the 
proof. H 

7. P r o of of T h eo I e m  3.3. Clearly, z?=, ti is convergent in H. Exactly 
like in the classical case ([I 11, 181, d [l]! we have 

Then there exists a sequence of indices (m(k)),", with m(k)  > Zk+', 
k =  l , 2 ,  ..., such that 

- Define the sequence (k(n))."=, of indices by putting k(n) = s for 
' 

2" n < 2"' (n = 1, 2, . . .). Applying Lemma 4.3 we can find a sequence (ci) 
such that for all (xi) c M (with xi = 0 when ti = 0) the inequalities 
Ilci-xi811 < E~ (i = 1, 2, ...) imply (9) and (10). 

Next, we use Lemma 4.4 by taking the sequence ( E ~ )  just found and as J the 
set I, = (2k + 1, . . . , 2k'1}, Then there exist operators x i€  A4 (i = 1 ,  2 ,  . . .) and 
D k € M f  (k = 0, 1, 2, ...) such that ll(i-xiQ1l < E~ for all i and 

(29) I s , - s , ~ ~ ~  < Dk for 2 k < n < 2 k + 1 ,  k =0, 1 ,  2 ,  ..., 
where 

11 

and 
2 k t l  

Obviously, we get immediately 
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and 

By (30) and the assumption (8) we obtain 

Let us put for k = 0 ,  1 , 2 , . , .  

Then, by (321, we have 

Thus, by (27), we get 

Now, we take an arbitrary sequence (y,) c M such that 

The proof will be completed if we show that y, + 0 a.u. in M. 
Let us put for n = 1 ,  2, . . . 

(3 7) Fn = lyn + (~rn(k(n)) -S,)I~- 
Then we have 

m 

ak = l l ~ ~ ~ - ( ~ ~ - ~ ) l l ~  < oO, 
k = O  n 

further, by (28), 
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and, at last, by (31), 

Thus, we obtain 

Applying Proposition 4.2 to the sequence ( D , ,  E l ,  F , ,  D,, E, ,  F , ,  . . .), by (33), 
(35) and (38) for each E > 0 we can find a p E Proj M with @ IpL) < E such that 

To conclude the proof we remark that, by (371, (34) and f29), we have 

which, with (39) and @(P') < E ,  gives y, + 0, a.u. in M and completes the 
proof. BI 
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