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Abstract. For two M-estimates of the regression model (evalu- 
ated for the same data) a test of difference between them is proposed. 
An asymptotic representation of J ~ ( ~ ' - f i n ]  was used as a key tool 
for the construction of the test. If the difference is classified as 
significant, it indicates that something does not correspond with the 
framework under which the consistency was derived. As the conditions 
for the consistency and the asymptotic normality of the estimates have 
a slatistical character, it may mean that for the samples of finite s i ~ e s  
one Q-function at least was not appropriate for the given data, so that 
the asymptotics does not yet work. This implies that at least one of our 
estimates may be rather far from the "true" model. 

1. Introduction. Even restricting ourselves to such @-functions which 
generate the M-estimators with the good properties we may evaluate nearly an 
unlimited amount of the various estimates of the regression models for the 
same data. Then we (frequently) find ourselves in a situation in which the 
estimates of the model so evidently differ that the question of significance of the 
differences requires to be answered. (For numerical examples of a situation in 
which we obtain rather different models for real data see [I31 or [14].) The 
question was studied for the linear models by Rubio et al. [I21 and the present 
paper brings a very first attempt to find some results for the non-linear 
regression. An asymptotic representation of the estimators of the regression 
coefficients [7] has appeared to be a very powerful tool to study the problem 
for the linear regression [12]. However, for the non-linear regression no 
asymptotic representation has been known. The first attempt of deriving such 
a representation may be traced out in [lo], although it was not isolated there 
and explicitly given. Moreover, the conditions required there (existence of the 
continuous second derivative of the @-function) do not cover the @-functions 
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frequently used. Although small modifications of these functions (in order to 
achieve continuity of their second derivative) would have presumably a neg- 
ligible influence on the resulting values of the estimators, it may complicate 
their evaluation, not being a very simple task, anyway. Surely, the increase of 
the complexity of evaluation of the M-estimators would not be crucial, 
however, if we did without it, it would be preferable. Moreover, such 
modifications break the admissibility of estimators [ S ]  (it is, of course, more or 
less an academic question). Nevertheless, it may be of interest to estabIish the 
asymptotic representation of estimators of the non-linear regression model 
under similarly wide conditions as in 171; compare also with the set of 
conditions given for the study of the change-of-variance function in [5 ] .  

So the first task was to verify that the technique which was developed for 
the linear models (see, e.g., [7 ] )  also works for non-linear ones. Since we have 
assumed the existence of corresponding derivatives of the non-linear surface, 
we may approximate this non-linear surface, in a neighbourhood of the "true" 
values of regression coefficients, by a plane, and hence the problem seems to be 
easy solvable. On the other hand, as this is a first attempt to generalize this 
technique to the non-linear framework, some care has been inevitable. 

Moreover, there exist other problems in which the asymptotic represen- 
tation of the estimators of the regression coefficients helped to find some results 
(see [14]), the representation for the nun-linear case may be itself of interest. 

Finally, since we have focussed on the problem of testing the differences 
between the models, we have omitted the question of the consistency of 
M-estimators and we have assumed simply that they are consistent. For the 
consistency problem consult, e.g., 1101. We have referred earlier on this paper 
having noted that there is an implaussible assumption of the existence of the 
second derivative of g-function there. However, the authors needed this 
assumption only to prove the asymptotic normality. The consistency was 
established under weaker conditions which apply to the frequently employed 
Q-functions. The present paper shows that it is possible to derive an asymptotic 
representation (which implies here also the asymptotic normality) also under 
the weaker conditions. 

2. Notation and conditions. Let N denote the set of all positive integers, R the 
real line, R' the 1-dimensional Euclidean space ( I  E N), and (a, d ,  P) a probability 
space. Let, moreover, for some fixed p E N and q E N, Po = (fly, 82, . . . , fi:)T be the 
vector of regression coefficients (the upper index T means transposition) and 
{Xi)?= "=1 Xi: SZ + R4, be a sequence of independent and identically distributed 
random variables (i.i.d.r.v.). Finally, let {e,): e; -+ R, be another sequence of 
i.i.d.r.v., independent of the sequence (Xi)?= For a function g: Rq+P + R we 
shall consider (for all  EN) a regression model 

(1) = $(Xi, BO)+ei. 
Let us denote by K ( x )  the distribution function of XI,  and by F(z )  the 
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distribution function of el ,  so that the joint distribution is G [x, z)  = 

K ( x )  - F (z). The density of the distribution F (z), whenever we shall assume its 
existence, will be denoted by f ' (z);  moreover, let S, denote the support of K (x). 
We wilI be interested in the M-estimator of f1° given as 

where Q :  R + R with properties specified below. Let us denote the first and the 
second derivatives of g (at those points where they exist) by fi and fif, 
respectively. For any finite set S = (s,, s,, . . ., s,] cr R and positive a put 

k 

Sjcl) = IJ [s,-m, s i + f f l .  
i =  1 

The following conditions will be considered later: 

CONDITIONS A. There are two sets 

1 = ? 2 ? 1 and D2 = 4 2 ,  - 3  dZS2}, 

with s, and s2 finite, such that: 
(i) The derivative $'(z) exists and is uniformly continuous on any 

interval (a, b) such that (a, 6) n {Dl u D , )  = 0. 

(ii) There is z0 such that F ( z )  has a continuous density f(z) on 
Dl (7,) u D, (2,) and $(z) is absolutely continuous on any interval (a, b) such 
that (a, b) n D, = 0. 

(iii) At each dZi  ( i  = 1, 2, .. ., s,) the limits 

lirn$(z)=+(d2,+) and 1im$(z)=$(dzi-) 
z l d 2 i  zr dz i  

exist and + # $ ( d  -1. Moreover, I$ (dZi +)) # co as well as 
I* (d2i - )I # m. 

(iv) Let E, $ (el) = 0 and 

Remark  1. Observe that, due to the continuity of f(x) on 
{Dl (z,) u D ,  (z,)), f(x) is bounded there, let us say by M < co. Notice also that 
Condition A (i) implies that there is a finite L such that 

Remark  2. Conditions A essentially coincide with those of Hampel et al. 
[5 ]  which have been used to study the change-of-variance function. The reader 
who is interested in a heuristic discussion of these conditions may find it in this 
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book. The conditions cover presumably the all Q-functions frequently used in 
the present robust statistics. The corresponding $-functions may be written as 
linear combinations of three functions 

where $, is an absolutely continuous function with uniformly continuous 
derivative, $, is a continuous function with the derivative which is 
a step-function with a finite number of jumps, and t,b, is a step-function with 
a finite number of jumps. 

CONDITIONS B. (i) The function g is in a neighbourhood of Po twice I 

differentiable in coordinates corresponding to regression coefficients, i.e., there 
is 6, > 0 such that, for any P f R P Y  II@-P0!1 < 60y the derivatives I 

a a 
- g ( x , P ) ( j = l , 2  ,,.., p) and - 

aPj afl, !?(x,P) C i , k = l , 2 , - . .  7 PI 

exist for any x E S1.  Let us denote the corresponding vector and the matrix 
simply by g f ( x ,  f l )  and g"(x ,  fl), respectively, and their coordinates and 
elements by g)(x, f l )  and gyk ( x ,  #?). 

(ii) There is J < o~ such that 

max SUP l ~ > ( x ,  PI1 < J y  

1 < j < p  XES~,BER~,IIB--B~II <do 

max SUP I& (X 7 < J a  
1 < j , k < p  XESI,BER~, / l B - f l D 1 /  

(iii) The matrix Q = E, {g' (x, Po) [g' (x, p0)]*) is regular (and hence 
positive definite). 

CONDI~ON C. The estimator fit") is consistent. 

3. Preliminaries. 
LEMMA 1.  Let Conditions A and B be fuifzlled. Then for any z E (0, $1 and any 

C > 0 we have for j = 1,2, ..., p 

in probability as n -t oo, where lltlj denotes the Euclidean norm of t € R P .  

Proof.  Fix E > 0 ,  ZE(O,  *] and C > 0 and define for any t € R P  and ~ E Q  
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and also for j = l and 2 

*n,j(t, W) =  EN: (5 i ( t ,  w), li(t, o ) ) n D j  # 01, 
and finally 

In the sequel we shall omit t and o in .gnSj ( t ,  w) provided it cannot cause 
a misunderstanding. Let 

u O =  min lu-01. 
u + u , u , u ~ { D ~ u D 2 )  

Due to the assumption of the uniform (with respect to XES,) continuity of 
g ( x ,  P) at Po, we may find 6 ,  > 0 ,  6 ,  < S, (see Condition B (i)) such that for 
anypfRP, ll/?-j?OII < J1 we have Ig(x, fi)-g(x, flo)I < $a , fo ranyx~S , .  Now 
one can find n,  E N such that n r 5  C < 6,. Then for any t E RP, 11 tll < C and 
n > n, we have Sn,, ( t ,  w) n Af',,,, ( t ,  O) = O for any rn E 52. Then using the mean 
value theorem we may write for j = 1, 2, . .. , p the sum 

where ll/?-fiO 11 < n-' 11 tll . We shall consider the terms of (3) separately. Let us 
start with the first one. Now let us select 6, > 0 ,  6, < 6, so that for any f i ~  RP, 
11P -flOII < J2 we have, uniformly in x E S1, lg (x, fl) - g (x, Po)/ < Z~ and select 
n, > n,  so that Cn;" < 6,. (In what follows, at any step at which we shall look 
for some 6,, we will assume that it will be chosen so that 0 < 6,  < 6 , - , ;  
similarly, any next nr will be always n r € N  and larger than nr- ,  .) Let us now 
put for any t E RP and any k = 1,2, . . . , p 
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Due to the absolute continuity of $ (z )  on Dl (to) and the existence of g" (x, /3) 
(for any x E S ,  and /? E RP, lib- floII < So) we have for any i G Hn,, 

I $ ( & - g ( x i ,  Po+n- ' t ) ) g : ( X i ,  B O + n - ' t ) - $ ( X - g ( x , ,  P ) ) g ) ( x i ,  PO)I 

where $' coincides with $' except for the set D, u D ,  and we may define $' at 
the points of Dl u D ,  as the limit from the left of $'. Let us write 

&(t) = g(Xi, P O + n - ' t ) - g ( x i ,  go). 
Then IlkSn, ,)  = 1 implies 

ei f C d ~ l -  Idin (t)I dl1 + lain 

(for some 1~ { I ,  2, . . . , r ) ) ,  and since D ,  has a finite number of points, we have 

Let us assume that 6, ( t )  > 0 (for a negative value we need only to change the 
bounds of integration into the opposite order). Then 

(where we integrate in fact along the coordinates). But the last expression may 
be bounded by 

Since G ( x ,  z )  = K (x). F (z ) ,  we have EG IIieS,,,) < n-'p112 M .  J I l  tll , SO that 

Using Chebyshev's inequality for the nonnegative random variable, for any 
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E > 0 we may find n, so that for any n > n, we have 

Let us turn our attention to thg second term in (3). First of all, let us define on 
D, (z,) the functions $ and $ so that 

and 

Moreover, let us put 

As above let us keep in mind that IIiEzn,,, = 1 implies. d,,,, E (ti (t, o), I;i (t, w)) 
for some k( i )  E (1, 2, . . . , s). Now the second term in (3) can be written as 

Since 4 and (e fulfill on D,(ro) the same conditions as I) on Dl (ro), the sum 
over {i~4,,,) and over {i E Y , , ~ )  may be treated in the same way as the first 
term in (3). In fact, the first difference in the sums over b,,, and b,,, are 
precisely of the same type as the first term in (3). Treating the second differences 
in these sums is simpler - we need not take care about approximating the 
difference of the derivative g'. Now, let us turn to the last sum in (4). First of all, 
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let us observe that E (ti ( t ,  w),  C i  (t, w)) means either 

(5 )  dkcs < a, < d,,,, + 6, ( t )  (when 6 ,  (I) 2 0) .  

or 

(6) d i  + d i n  < e d (when din ( t )  < 0). 

To simplify the rest of the proof of this step let us assume (without any loss of 
generality) that D, contains just one point d .  We shall study the processes (for 
j =  1, 2, . . . , P I  

where we have written the full notation for Xn,, (t, w) to indicate how the 
processes depend on t .  First of all, let us consider G(t)  = 4(t)-EF4(t). 
Following again Juretkovk [7] we have for u E RP, u 2 t (the ordering is meant 
coordinatewise) 

So continuing to follow JureEkovii [7] (see 2.12) and using the result of 
JureEkova and Sen [9] we obtain, for any C > 0, supll,ll c c  ll#(t)ll = o,(l) (an 
alternative possibility is to take the same steps as in [ 6 ]  together with the result 
concerning multidimensional processes from [8]). An approximation to the 
mean values is similar: Taking into account that 

we have 
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Now we may write similarly as above 

Now from the continuity of f on D ,  (T,) and the continuity of g (x, p) and 
g1(x7 f l )  at Do (which is uniform in XES,) we may find n, such that for any 
n > n, and any Iltll < C we have the last expression bounded by 
8m.J-l. [$ (d - ) -$ (d  +)Id1 n-r Ij t l J .  SO we have derived that there is n, such 
that for any n > n, 

Finally, let us consider the last term in (3). Repeating the steps from the first 
part of the proof we find that 

So we can treat the last term in (3) "without IiiE,,,,,". NOW, using a stan- 
dard technique of the approximation and the law of large numbers we find 
that 

in probability as n -+ a. By this we have proved that all the three terms in (3) 
are of order o,(l) as n -, a, so the proof is complete. rn 

Remark  3. Let us observe that Lemma 1 is a generalization of Lemma 2.1 
of JureEkovA [7] for the non-linear setup. The steps of the proof were of course 
modified but the main ideas have been followed quite closely. 

ASSERTION 1. Let Conditions A and B be fulJilEed. Then for any C > 0 and 
ZE(O, +I 
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in probability a s  n -, a. 
P r o  of (the schedule of the proof is analogous to the proof of Corollary 2.1 

of [7]). First of all, let us define for any i = 1 ,  2, . . . , n and any I € R P  

By Lemma 1 we can find for any E > 0 and any C > 0 an n , ~  N so that for 
j = l , 2  ,..., p and n>n, we have 

Let us put En = (n-'"suplltIl ,, lzl_, ~ ( i ,  j ,  111 > C-lg-l~). Then in the 
notation of zjk)'s of the proof of Lemma 1 we have for any U E B ;  

and the proof follows. H 

Let us put 2, = n-'I2 x;=, g' ( X i ,  Po) 9 (e i ) .  Note that under Conditions 
A and B the central limit theorem holds for 2, so that Z n  = 0,(1). 

ASSERTION 2. Let Conditions A and B hold. Then for any E > 0 there is 
C, > 0 such that for any C > C, there is n , ~  N so that for any n > n, we have 

where 
n 

B,,(C, E )  = (10 EQ: ] min C [ Q  (K-g ( x i ,  B0+n-l t2  t ) )  
I t 1  <Ci=i 

- @ ( q - g ( X i ,  Po))]- min [ - t T . Z n + j y t T ~ t ] l  > E ) .  

lltlt <c  

Proof  (again, the schedule of the proof is analogous to the proof of 
Lemma 3.1 of [7]). Assume that Un is a solution of the minimization 
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m i n [ - t T Z n + 4 y t T ~ t ] .  Then U, = y p ' ~ - l ~ n .  Let us find C, and n 0 € N  so 
that P(JJ  U,JJ > C,) < 613 and take any C > C,, Moreover, let us put 

Since we assume only t € R P ,  lltll < C, we easily find nl 3 no so that for any 
n > n, 

Finally, using Assertion 1 we find n, > n ,  such that putting 
n 

D. = {I min [ a  (Y;- g (Xi, Po + n-'I2 t)) - Q ( K -  g ( X i ,  BO))] 
Ilril <C i= 1 

- min [ - t T Z n + * y t T ~ t ] l  > P E )  
II t ll <C 

we have P(D,) < ~ / 3  for any n > n,. Now we obtain 

Remark  4. Let lIQ be the determinant of the matrix Q and 

We have assumed that Q is regular (and hence positive definite), and hence 
DQ > 0. Select any E > 0 and 6 > 0, 6 < 4 DQ Cp!]-' a'-". Under Conditions 
A and B we may now find  EN such that for any n > n, we have 

P K (  max lIQi,j-(Qn)i,jl > 6)  < 
16i,jdp 

But this implies that also the determinants i I Q n  are positive with probabiIity at 
least 1 - 8  starting with n,. This allows us to use Qil in the proof of the next 
lemma and formulate Corollary 1 below in a form containing also Q i l  (such 
a form we will need later). 

LEMMA 2. Let for the regression model 

q=g(Xi ,Po)+ei ,  i = 1 , 2  ,..., n, 

Conditions A, B and C be fuljilled. Then the estimate j?(") given in (2 )  is 
Jla-consistent, 

and .\ln(lS("'-Po) has an asymptotically p-dimensional normal distribution 
Np (0, g), where -3 = ( ~ $ / y  ') QF1 and o$ = E, $2 ( e l ) .  
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P r o  of. The first step will be to prove 4;-consistency of f?n). In order to do 
it let us define for any f i  E Rp the residuals r r )  (P) = 3 - g (Xi, f l ) ,  i = 1 2 ,  . . . n, 
and 

t i  (Dl = min {ei  $)(/I)) and ii (P) = max {ei, rIn)(B} 

and also for j = 1 and 2 

x,, (p["]) = {i E N :  (ti (Pn)), Ci (fi('))) n Dj  # 0), 
and finally 

.%,3 (B(n)) = (1, 2,  .. Y n)\(Xn,, tP")) u s n , 2  (PR3). 

In what follows we shall omit j?(") in x,,~@'")) provided it cannot cause 
a misunderstanding. Now we may write the expression 

M 

where I p"- Po 1 1  < llfln) -Po 1 1  (compare (3)) .  Using nearly the same arguments as 
in the proof of Lemma 1 we find that the first term of (8) can be written as 

Also using the arguments of the proof of Lemma 1 we show that the second 
term is 0,(1) (notice that in difference with the proof of Lemma 1 we have here 
a much more rough estimate of this term). Finally, we derive that the last term 
is asymptotically in probability equivalent to E - I  $(el)- Qil - &(p(")- Po)  (for 
Qn see (7)),, So we arrive at the conclusion that 
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Using the Lyapunov theorem we verify that the right-hand side of (9) is 0,(1). 
Finally, employing Lemma 4 (in the Appendix) we conclude that fit") is 
,/;-consistent. The rest of the proof very closely rnimicks, in the non-linear 
regression framework, all the steps carried out in the proof of Theorem 3.2 

of [7]. In fact, once having proved 4;-consistency of B("1 the assertion of the 
lemma follows (directly) from Lemma 1 since we have (1P(''- Po 11 < n-li2 C 
with probability 1-6, so that we may put t = nli2 (p'")- 0'). a 

COROLLARY 1. Let the conditions of Lemma 2 hold. Then we have also 

The corollary follows immediately from Lemma 2. 

4. Test for differences between models. Let g j ,  j = 1 ,  2 ,  be two distinct 
functions, both of them fulfilIing Conditions A. Let us denote by B(", j )  the 
M-estimate of regression coefficients generated by the function p j ,  i.e., 

n 

= arg min e (Y  - g (Xi, #I)). 
peaP i = l  

Furthermore, let rpvn be the i-th residual with respect to the j-th estimate, i.e., 
for i = 1 , 2  ,.,., pa a n d j = 1 , 2  

The following lemma together with Corollary 1 will be a key tool for testing the 
differences between the estimates of mode1 (1). 

LEMMA 3 .  Under Conditions A, B and C we have 

r',"gj) - ei = - [g' (xi, Po)] ' ( f i ( n s j j  - Po) + 0, (n - l) . 

Proof.  We may write 

where [ I F - P O  11 < - Po 11 ,  and the lemma follows due to Ji-consistency of 
/J[n,n and the assumption 3 (ii). rn 

Making use of Corollary 1 and Lemma 3 we may find an asymptotic 
representation of r',",ll -rp32), and a test for difference between two estimates of 
model ( 1 )  may be based on a (norrned) sum of the residuals. A derivation of 
corresponding results may closely follow that one in [12]. Here we will show 
the possibility to construct the test based on a sum of the squared differences of 
residuals. Using Corollary 1 and Lemma 3 we may find for any r > 0 and 6 > 0 
an  EN such that for any n > n, there is a set Bn with P(Bn)  > 1 -&  and we 
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have for any w E B, 

n112 @.I)-$.2') (rr 

with maxi supmEBn (xi. (w)( < 6, where we have denoted by if;] the 
1, k-element d the matrix Qil (due to Remark 4 we may assume that B, was 
also selected so that Qil exists at any WEB,). Putting 

and 

we obtain 
n l / 2  b , l )  - (n,ZI) = yl; . V( in)  (ri + xin, 

and finally 

where for any o E B, we have ]An (w)l < 6. Now we get 

We have prepared nearly everything to be able to give the promised test 
statistic and to derive its asymptotic distribution. Earlier however we still need 
to prove some other assertion. 

ASSERTION 3. Under Conditions A and B for any E > 0 there exists n, E N so 
that for any n > n, there is an (n  x p)-matrix D, and a set A, with P (A,,) > 1 - E 

such that for any w E An we have 
n 

C [d in) ]*  = Dm DT and n- l D,T * Dn = 9p, 
i =  1 

where Xp denotes the (p x p)  identity matrix. 
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Proof.  Let us find for a fixed E > 0 an a, E N such that for any n > n, there 
is a set A,, P(A,)  > 1 -E,  and Q, is regular for any W E  A,. Let us assume an 
arbitrary point W,,E A,. Since Q; l (a,) is symmetric and regular, it may be 
written as C; C,T, where C, is a regular (g x p)-matrix (set, e-g., [ll], 1b.l VI). 
Now denote by % the matrix with (BAkj = g)(X,, P o ) ,  k = 1, 2 , .  .. , n, 
j = 1, 2, . . . , p, and put D, = gn C,. Then we have 

which according to (11) gives x:=, U ( ' " ) . [ V ( ~ ~ ) - ~ ~ .  Moreover, let us consider 

Keeping in mind that Brq  = nQ, (see (7)) we find that this expression is 
equal to 

~ C , C , T - - C , , C ~ $ ~ ~ Q Q ~ '  = 0, 

which in turn implies that .YP = n p l  D: D,. w 
THEOREM 1. Under Conditions A, B and C the sum 

where 

a2 = CY(~'I - var ($(I) (e l ) ) -  2 [Y"' ~ ( ~ ' 1 -  C O ~  $(2))+ [y( ' ) ]  - var ($(2, (el)), 

has an asymptotical x2-distribution with p degrees of fi-eedom. 

Proof.  Let us put 

Using the previous assertion, the Lyapunov theorem and the fact that Q, are 
coordinatewise bounded in probability we find that 

Now let 0 be a random variable distributed according to J P ( Q ,  Yp). Using 
Slucky's theorem we derive that oT 0 - KT T, -, 0 in probability. On the other 
hand, we know that oT 0 has X2-distribution with p degrees of freedom, and 
the proof follows. rn 

Remark  5. It is easy to see that a2 may be substituted with some estimate 
d2. Some dficulties might be caused by the fact that for a non-continuous 
$-function we need to estimate 
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However, using some result of the strong approximation (see, e.g., [4], 
Theorem 6.1.1) one may cope with the problem. 

Conclusion. The paper proposes a possibility how to evaluate the 
statistical ~ i ~ c a n c e  of the difference between two estimates of the regression 
model. Since the evaluation of the required statistic is easy, the test is simple to 
apply - 

If for some data and $, and $, the difference appears to be significant, it 
may indicate that for instance at least one of these $-functions was not 
appropriate for given data or that the asymptotic consistency (and asymptotic 
normality) does not yet work, etc. Then some further analysis is inevitable. One 
may for instance try to employ some graphical diagnostic tools (see [3], [I 61 or 
[2]) - probably there have been not yet available results concerning 
non-linear regression diagnostic of this type because, e.g., [I] is devoted mostly 
to other problems than those discussed in this paper. Another possibility is to 
find a subset of data which is the most influential for estimation (see [15]) and 
to look for the estimating method giving more stable estimates on the 
complementary subsamples. 
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APPENDIX 

LEMMA 4. Let for some p E N ,  (Y(n)),"= V(") = { v I T 1 ] i  ::$:::;p~ be a sequence 
of O, xp)-matrices such that for i = 1, 2, . . . , p and j = 1, 2, . . . , p 

lim vty' = qij in probability, 
n+ a! 

where Q = {qij){Z!:z;:::;$ is a fixed non-random regular matrix. Moreover, let 
{B(n)),",l be a sequence of p-dimensional random vectors such that 

(1 2) 3 ( E  > 0) V (K > 0) lim sup P (JJO(")JJ > K) > E .  
n+ m 

Then 
P 

3 ( k ~ { 1 , 2 ,  . . . , p )  and 6 > O )  V(L>O) l i m s u p ~ ( l z  uG)e?)l>L)>d. 
n-rcc j = l  

Proof.  Let us at first assume that 'for the sequence {B["'),",, we have 

(13) 3(e > O)V(K > 0) lim P(\l$(")I > K )  > pe. 
n-+ m 

Let us fix a sequence (K",),"=, 7 a, I?, = 0, and construct a sequence {K,),"= , in 
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the following way. For every r E N find n , ~  N such that for any n  2 n,,  EN, 

and put for 1~ N ,  E E  [n,, n,, ,), K ,  = I?, (if n1 > 1 put K, = O for E < n,). Write 

B, = {oEQ: IIOcn)I > K , } ,  i.e., P(B,)  > p ~ / 2  for n 3 n l .  

Let us consider n > n, and for any U E  B, let us put 8""") = 0("). IItP"II -l .  Then 
we have l]fln']l = 1 for all n > n ,  and w E B,. Let us denote the elements of Q-I  
by q", and 

Now 

and hence 

I I @ 1 1 1 2  8 ( 2 A . p - 1 1 2 ) - 2  I I Q . O ~ " ) I ~ ~ ,  
so that for any n > n1 and W E B ,  we have llQa 87")11 2 2 A . p - l J 2 .  This implies 
that for any n~ N and w EB, there is k ( n ) ~  { l  , 2, . . . , p )  so that 

Putting B;(") = {w E 0: J =  1 qk(,,j @I) 2 24), we have P (B;(")) > ~ / 2  for n 2 nl . 
Now, let us select  EN such that, for any  EN, n 2 n,, 

Write C, = (0 E 52: maxi,,= ,.,., Ivij") - qijl < A p -  ' I 2 ) .  Then for any n  > n, we 
have 

Since B:(") n C, = B:(") - Ck, we have for any n E N ,  n > no = max inl, n,} , 

P (B;'") n C,) 2 P (B:'")) - P (Ck) 2 ~ / 2  - &/4 = r/4. 

For any n  > no and any o E B:(") n C, we obtain 

4 - PAMS 14.2 
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which means that 

j =  1 j =  1 

and the proof follows. To prove the lemma with (12) instead of (13) it is 
sufficient to assume that the lemma does not hold and to select a subsequence 
{ 8 ( n 1 ~ ) ~ 1  for which (13) holds and we get a contradiction. B 
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