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Abstract. This paper is motivated by the statistical problcm of 
testing a zero-mean stationary Gaussian probability measure P on RZ 
against a similiar probability Q. The method uses a sequence or 
Neyman-Pearson's tests of the finite sections P, 01 P against the 
corresponding sections Q, of Q. First, following D. Dacunha-Castelle, 
we discuss the behaviour of the power achieved for levels approaching 
zero exponentially hst  at a suitable rate. Then, considering the 
l~kelihood ratio of Q, w.r.t. P,, we ask whether there exist approximate 
inverses of the covariance matrices of these probabilities, and ap- 
proximates 01 their determinants, which preserve the asymptotics of 
the tests considered. It turns out that these matrices are finite sections 
of the Toeplitz operators whose symbols are the spectral densities of 
P and Q. Using results of H. Widom on this class of operators we point 
out that such approximations exist and work under some factorisation 
condition for spectral densities. It is also shown that the same 
approximation method works for asymptotic solving of a class of 
discrete Wiener-Hopf equations. 

1. Introduction. Let P and Q be two probability measures on RZ, and let 
X,: RZ -+ R, ~ E Z ,  be the canonical coordinate process. For each positive 
integer n, let X (n) = (X,, . . . , X,- ,)' and denote by P, (resp. Q,) the probability 
distribution of X(n) under P (resp. Q). 

The problem considered here is the statistical problem of testing P against 
Q using a sequence of tests of P, against Q, for given observations X(n) and 
significance levels a,. The main question is the asymptotic behaviour of the 
sequence of powers achieved by the most powerful tests for suitable sequences 
of levels q. Let us first recall the main facts. Assume that P,  and Q ,  are 
equivalent for each n, and put 

A, = log dQJdP,. 

Given a s i d c a n c e  level a, in the open interval (0, I), the most powerful tests 
of P ,  against Q, at level an are the Neyman-Pearson tests of size ol,, namely 
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those tests t, that satisfy 

(1.1) l ( A ,  > a,) dz, < I ( A ,  3 a,), Epm(z , )  = m,. 

Here I (A)  stands for the indicator function of the set A, and a, is a real 
non-random constant. Such tests exist (see [16], p. 74). The power of the test .r, 
is by definition P, = EQo(z,J. It was observed by Dacunha-Castelle [7], 181, 
[lo] that the power problem indicated above can be made precise and solved 
by the method of large deviations for A,. The following remark drawn from [9] 
and [21] gives some information concerning this method. 

Let S, be a sequence of real-valued random variables defined on some 
probability spaces (a,, F,, Pn). Denote by 4, the moment generating function 
of S,: 

Suppose that $,(8,) < co for some 0, > 0, so that 4, exists and is finite on the 
closed interval [0, O0], by HGlder's inequality. By rescaling S,, if necessary, we 
can assume that 8, = 1. It is proved in Lemma 2.1 that if 

(1.3) $ is differentiable and strictly convex on (0, I), 

then for all a in $i (0, 1) we have 

(1.4) (ljn) log P, (S, > na) + - rl/ # (a). 

Here $# is the Fenchel-Legendre conjugate of $ ([19], pp. 28-35) given by 

(1.5) $# (a )=  sup (ae-$(8)), ~ E R .  
O S 8 4 1  

The derivative $' is then strictly increasing and continuous ([19], pp. 5-7), and 
the restriction of $# to rl/'(O, 1) is given by solving the equations ([19], p. 34): 

Now look at the pair A,, P, in place of S,, P,. Note that in this case 4,(1) = 1. 
Assume that (1.2) and (1.3) hold, fix a as above and put an = exp(--n$' (a)). 
Using (1.4) it can be shown (cf. [7], [8], [lo]) (see also Theorem 2.4) that 

(1.7) (l/n)log(l-B,J+ a-$# (a), a, - nu. 

It is therefore of interest to find conditions on the pair P, Q under which (1.2) 
and (1.3) hold and then identify $. Such conditions have been found by 
Dacunha-Castelle [7], [8], [lo] and refined by Coursol and Dacunha-Castelle 
[6] in the Gaussian case. We discuss this now. 

Let 9 be the set of probability measures on RZ that are Gaussian, 
stationary, with mean zero and absolutely continuous spectral measure (with 
respect to normalized Lebesgue measure on the unit circle). Denote by Y the 
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Szegii class, that is the set of non-negative functions on the unit circle with 
integrable logarithm. A theorem of Coursol and Dacunha-Castelle [6] states 
that if P, Q are in 9 with spectral densities u, v in Y, then (1.2) holds for the 
pair A,, P, with 

A short proof of this is given in Theorem 2.2 below. Note that, under these 
conditions, P,, Q, are equivalent for each n (see, e.g., (1.9) below and 
Proposition 3.5). The condition (1.3) can be assured by assuming, for example, 
that the spectral densities u, u are (essentially) bounded away from zero and 
infinity and they differ on a set of positive measure. 

Fix a pair P, Q in 3 with spectral densities u,  v and look at the form of A, 
in this case. The covariance matrix of P,  has (s, tj entries 

-n 

This is the n-th order Toeplitz matrix with symbol tr, usually denoted by T, (u). 
Note that for w in L1, and 9, q in @ (the product of n copies of the complex 
plane) we have 

This shows that if w 2 0 and if w is non-zero, that is w > 0 on a set of positive 
measure, then T, (w) is invertible for a11 n (Proposition 3.5). Thus assuming this 
for U, v we have 

(1.10) A, = - log 
2 detT,(v) 

Since the treatment of the power problem is asymptotic, it seems reasonable to 
expect that the asymptotics of the tests defined by (1.1) will not be violated if 
the inverses (and determinants) of the matrices T,(u) and T,(v) are ap- 
proximated in some appropriate way. This question is closely related to that of 
asymptotic inversion of Toeplitz operators as follows. 

(a) For every (linear and bounded) operator A on a separable complex 
Hilbert space, denote by ) I  A)) ,  the operator norm of A and by 1 )  All1 the trace of 
the bositive) square root of A* A. Such an operator is said to be of trace class if 
IAI, is finite (see the last paragraph of this section). 

First, we show that if the spectral densities u, v are bounded away from 
zero and infinity and they differ on a set of positive measure, then any real 
approximate inverses Z - ' ) ( u )  and Z-')(v) for T,(u) and T , ( v )  that satisfy 
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preserve the limit formula of Coursol and Dacunha-Castelle (1.8) and the 
asymptotics of the corresponding approximate tests at exponential levels 
(Theorems 2.3 and 2.4). We show in addition that these asymptotics are also 
preserved if the determinant of T, (u) (resp. T, (v)) is approximated by the n-th 
power of tbe geometric mean of u (resp. v). This is made precise in Section 2. 
Now note that if w is non-negative and bounded away from zero and infinity, 
then the sequence T, (w) and that of the inverses are bounded in operator norm. 
This follows from (1.9). Thus, in this case, (1.11) is equivalent to 

where a, < b, stands for the usual Landau notation a, = 0 (b,) ,  and 1, is the 
n x n unit matrix. The conditions (1.12) have three remarkable features. First, 
they are more manageable than (1.11). Second, if a pair M,, Miu1) of operators 
on C" satisfy (1.12), then M, is invertible for all sufficiently large n and the 
sequence of inverses is bounded in operator norm ([23], p. 193). Third, they 
have an operator meaning which is related to the problem of asymptotic 
inversion of invertible Toeplitz operators by the so-called finite section method 
(see (c) below). Note that (1.12) is implied by 

since the trace class norm is greater than the operator norm. We now describe 
a class of symbols w and approximate inverses that satisfy (1.12) or (1.13). 

(b) For w in L", denote by T(w) and H  (w) the usual Toeplitz and Hankel 
operators on H z  with symbol w. Here HP, 1 < p < a ,  stands for the usual 
Hardy space of the unit circle [20]. The matrix entries of T(w) and H (w) in the 
natural basis of H z  are given by (see [43) 

Let 17, denote the natural projection of H z  onto the subspace of polynomials of 
degree at most n- 1. Then T,(w) can also be viewed as an operator on the 
range of I7, and identified with n, T(w)n,. Similarly, the finite Hankel 
operators are defined by H,, (w) = I7, H (w) Il,. Denote by W, the Banach 
algebra of those continuous functions with vanishing Fourier coefficients on 
the negative integers, and by Hl12 the class of those w in L2 that satisfy 

Note that L" n H I / ,  is a Banach algebra under the norm Ilw ll + llw lll/z (cf. 
[15]; see also [4]), and that H" n H I , ,  is a closed subalgebra of Lm n 
Finally, put &(z) = a (l/z). 
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A theorem of Widorn [23] (see also [22] and [24]) states that if a, b are in 
the range of the exponential function acting on H" n HI,,, then %(lib) is 
invertible for all sufficiently large n and the approximate inverse 

satisfies (1.13). We show in Theorem 3.3 that for every pair a ,  b of invertible 
elements in 5f+ (resp. H w  n H, , , ) ,  the approximate inverse (1.14) and its 
modified version 

satisfy (1.12) (resp. (1.13)). The interest of the latter version lies in the fact that it 
involves only finite matrices. 

(c) Here is another reievant application of the asymptotic inversion 
conditions (1.12). This deals with the problem of asymptotic inversion of 
Toeplitz operators. Let w be in Lm and suppose that T(w)  is invertible. This is 
so if, for example, w has a factorisation &b with a ,  b in Hm both invertible (cf. 
[4] and [ S ] ;  see also (3.2)). So the equation 

can be solved for x uniquely whatever be y in Hz. In terms of coordinates, this 
equation is equivalent to the following system of discrete Wiener-Hopf 
equations : 

For practical reasons, one needs to transform the infinite dimensional equation 
(1.16) into a sequence of finite dimensional equations whose solution converges 
to the exact solution of (1.16). This can be done with the so-called reduction, 
projection or finite section method (see [3],  [4], 1111, [17]) as follows. Solve, if 
possible, the finite dimensional equation 

and ask whether the resulting solution cn converges in H z  to the exact solution 
of (1.16). Baxter [3] has proved this convergence under the condition that w lies 
in the range of the exponential function acting on the Banach algebra of those 
f that satisfy x t v  (t) If(,)( < cc for some fixed sequence v which is submuIti- 
plicative and bounded from below by 1. 

The point is that stated as above the problem does not require to invert 
T,(w) exactly. One tries some approximate and manageable inverse ~ , ( ( - l ) ( w )  
for T, (w) and defines 

5", = T,"l '(w) y,. 

So the problem is turned into the question of finding conditions on w under 



which such an approximate inverse exists and makes the approximate solution 
f n  close to 5 ,  and convergent to the exact solution of (1.16). It turns out as in 
the power problem that every sequence T,(-')(w) satisfying (1.12) works. This is 
made precise and proved in Theorem 3.4. 

We conclude this section with some remarks on the materials used in the 
statements and proofs of theorems. These are the von Neumann-Schatten 
norm ideals [12], [18]. Let Z be a separable complex Hilbert space. Denote by 
Ym (#) or simply 9m the Banach algebra of (linear and bounded) operators 
on 2. The operator norm is denoted by 11 - 11,. For each real number p >, 1, the 
von Neumann-Schatten class XP consists of those A in $w that satisfy 
llAllp = [tr(A* A)piZ]llp < co, where tr stands for trace. Note that every 
positive operator has a well-defined trace (eventually intinite). Tn addition, 
every member of has finite trace. The class (resp. Y2) is the trace class 
(resp. Hilbert-Schmidt class). Each Yp is a two-sided ideal of ,Ym and a Banach 
space with the norm [ I .  11,. For finite p, the members of Yp are compact 
operators and the finite rank operators are dense in YP. There are two basic 
inequalities. The first one is the following: 

If A E Sp and BE YP. with lip + l/pl = 1, then AB and BA are in and the pair 
A, B satisfies the Holder inequality for operators: 

2. Testing Gaussian sequences. This section deals with three items. The 
first is a remark on large deviations drawn from [9 ]  and [21] and adapted to 
our situation. The second gives a short proof of a theorem of Coursol and 
Dacunha-Castelle [6] .  The third investigates the asymptotics of the Ney- 
man-Pearson tests (1.1) when the inverses (and determinants) of the finite 
Toeplitz matrices associated with the spectral densities u, v are suitably 
approximated. 

Let S ,  be a sequence of real-valued random variables defined on some 
probability spaces (a,, F,, P,). Denote by 4, the moment generating function 
of S,. 

LEMMA 2.1 ([g], [21]). Suppose that 
(a) 4,(1) < co for all (suficiently large) n; 
(b) (1/n) log #, (8) + $ (8) for aEE 8 in [0, 11; 
(c) $ is differentiable and strictly convex on (0, 1). 
Then 

VUE $' (0, I), (l/n)log P,(S, > nu) + -$' (a), 

where t,b# is the Fenchel-Legendre conjugate of $ defined by (1.5) and (1.6). In 
addition, the same is true for (S, 2 na). 
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Proof.  Put dP,,, = [eeSn/4, (@)I  dP,,  $, = (fin) log d,, and denote by En,, 
the expectation operator under P,.,. The main step of the proof is the following 
law of large numbers: 

( l / n )  S, -c $' (8)  in B,,, probability. 

To prove this we shall show that 

We prove that B,(S,/n < u) 4 0. The other half of the proof is simiIar to the 
first. Fix 8' such that 0 G 8' < 8. Using Markov's inequality, we get 

[ 
= exp. - n (0 - 0') 

0 - 8' 
Now 

Thus there exists a 8' as above such that the right-hand quotient is bounded 
from below by, say, half of $'(O) +a, and therefore so is the left-hand term for 
all sufficiently large n. This proves that P,(S ,  < nu) + 0. Next, we prove the 
convergence property stated in the lemma. Fix 0 in ( 0 ,  1 )  and put a = $' (0), so 
that $# (a)  + $ (0) = a8. The inequality 

lim sup ( l / n )  log P, (S, > nu) d - $ # (a )  

follows from a standard argument [I] using only Markov's inequality. To 
prove that 

Iim inf (1/n) log P, (S,, > nu) 2 - rC, # (a)  

fix&>Oandz€(O, 1)such t ha t a<$ ' ( z )<a+~ .Thusz+Oas~-+O, s ince$ '  
is strictly increasing and continuous on (0, 1) ( [ 1 9 ] ,  pp. 5-7). Now 

Taking logarithms, dividing by n, using the above law of large numbers, and 
letting E + 0 we get the first part of the lemma. Replacing ( S ,  > nu) by (S,  2 na) 
does not violate the above properties of the limsup and liminf, so the 
conclusion remains true also in this case. This completes the proof. w 

We now give a short proof of formula (1.8) for the pair A,, P,. 

THEOREM 2.2 ( [ 6 ] ) .  If P ,  Q are in Q with spectral densities u,  v in Y,  then 
(1.2) holds for the pair A,, P,  with $ as in (1.8). 



214 M. Bouaz iz  

P r o  of. Note first that if w is in 9, then w > O on a set of positive measure. 
Thus (see Proposition 3.5) T , ( w )  is invertible for all n. Using formula (1.10) for 
A,, and noting that, under P, the Rn-valued random vector X (n) is Gaussian 
with mean zero and covariance T,(u), we get 

det T, (u) e/2 

4" (,O) = (det T. Fn (4, 

I dx 
(2.2) F ,  (0) = [det T, (u)] - exp [- 4 x' A, (0) x] - 

(271)"j2' 
R" 

Now, for every O E [O, 11, the matrix A, (0) is real, symmetric and positive. 
Using the Gaussian integral formula 

1 exp [ - $ x' Ax] d x  = ( . Z ? C ) ~ ~ ~  (det A)- lt2 

R" 

which is valid for every n  x n real, symmetric and positive matrix A, we get 

F, (0) = [det T, (u)] [det A, (O)] - 

= [det (v)] u2 [det T. (8u + (1 - 8) v) ]  - 

9. (8) = [det T (u)]U2 [det (u)](' - ' ) I2  [det T, (Ou + (1 - 0) u)] " ' .  

The conclusion follows now from the first Szego limit theorem ([13], p. 44): 

(2-4) [det T, (w)]lin + G fw) = exp 

Since Y is convex, Ou+(l-6) v is also in Y.  This completes the proof. E 

We now turn to the power problem outlined in Section 1. Our objective is 
to show that the asymptotics (1.7) of the tests (1.1) are not violated if the 
inverses (and determinants) of the Toeplitz matrices occurring in the definition 
of these tests are suitably approximated. 

Suppose that the spectral densities u, v are bounded away from zero and 
infinity. Let Ti- ') (u) (resp. T,(- (v)) be any real (n x n)-matrix which ap- 
proximates T,-l (u) (resp. T,- ' (v) )  in the sense of (1.11). Approximate the 
log-determinant of T, (u) (resp. T, (v)) by log [G (u)]" (resp. log [G (u)]"), where 
G(w) stands for the geometric mean of the function w as in (2.4). De"fine the 
approximate log-likelihood ratio of Q, w.r.t. P,, by 

(2.5) A; = {log (G (u)/G (u))" + X (n)' [Z(-'' (u) - T,(- (v)] X ( n ) )  . 
Put (0) = EPnexp(OAh). We begin with the limit formula of Coursol and 
Dacunha-Castelle for &. 
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THEOREM 2.3. Suppose that the spectral densities u, v are bounded u t v a y ~ o m  
zero and inJinity, and that the approximate inverses 2 - " ( u ) ,  T,(- ')(a) salisjj, 
(1.11). Then 

l / n ) l o g n ( 8 ) ( ) ,  0 < 0 < 1 ,  

with I,/I as in (1.8). 

Proof .  Following the method of proof of Theorem 2.2, we have 

K (0) = (G (u)/G Fn ((8, 

dx F,, (8) = (det T. (u)) - ' I 2  

R" 

xn (0) = T,- l (u) - 0 [ K (  = ( )  - - ') (v)] 

Since F,,(O) is unchanged if An(8) is replaced by its symmetric, symmetrizing 
?",,(- l) (u) and T,' - l ' (u) ,  if necessary, we can assume that the last two matrices 
are symmetric. Define A,(O) as in (2.3) and put 

R, (w) = T,- (w) - T,'- (w), Z, (8) = A, (8)-  'I2 [R, (u) - R, (v)] A, (8) - 'I2. 
Thus 

Jn (8) = A. (01 + CR, (u) - R,, (v)] = A, (8)'/' [l, + BZ, (f?)] An (e)1i2. 

Therefore, if we prove that llZn(8)1/, < 1, and actually we shall prove that this 
norm converges to zero, then l,+€JZ,(0) and Jn(8) are positive for all 
sufficiently large n. Thus the pair J,,, Fn is related to the pair $,, F, of (2.1) and 
(2.2) by the following relations: 

det (u) 
sn (0) = [($)I ( de t T, ( v )  ) ] [det (1, + BZ, (B))] - ". 

By Theorem 2.2, the proof will be complete if we prove that 
(4 llzn(e)llm +o;  
(b) if U,, is a sequence of n x n real matrices satisfying (a), then 

(l/n)log det (I, + U,) + 0. 

To prove (a), observe that, by (1.9), the eigenvalues of both T, (u) and T, (v) 
are uniformly bounded away from zero and infinity. Thus the operator norm 
of A,(0)-'t2 is uniformly bounded (in both n and 8). Now (a) follows from the 
approximation condition (1.1 1). 

To prove (b), put f, (0) = log det (1, +6U,), 0 < 0 < 1, and use the mean- 
-value theorem to estimate f,(l). Note that 1,+8U, is positive for all 
sufficiently large n, since U ,  satisfies (a). Now the derivative of f, is 
tr [(I, +Bun)- U,]  (see, e.g., [12], p. 163). By Holder's inequality for operators, 
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this is bounded by I /  U,II, l/(l,+OU,)-'11 and we have 

I + - ' I  6 n l l + n - l l l m  1 -  l l n l l .  
Thus, by the mean-value theorem, we have, for all sufficiently large n, 

llogdet(l,+ U,)I G n I I  UnlJ, (1 - I /  U"II,)- I .  

This proves (b) and completes the proof. ra 

Next, suppose that the conditions of Theorem 2.3 are satisfied. Fix a in 
$'(0, I), and consider those tests z' that satisfy 

(2.6) ( a ( a ) ,  Epn(~i)=exp[-n$#(a)], 

where a; is a real non-random constant. Of course, such tests exist, since N, is 
fd te .  The power of zh is 8; = E , , ( T ~ ) .  

THEOREM 2.4. Suppose that 
(a) the spectral densities u, v are bounded away from zero and inznily and 

they direr on a, set of positive measure; 
(b) the approximate inverses T,-'' (u), T , -  l' (u)  satisfy (1.1 1). 
Then the power 8; and the threshold a; of the test defined by (2.6) also sat- 

isfy (1.7). 

Proof.  We split the proof into three parts: 

(2.7) (l/n) 1% Q, (A, < na) + a- $#(a), 

(2.8) lim inf (l/n) log (1 -El 2 a- $# (a), lim inf (l/n) al, 3 a ,  

(2.9) lim sup (l/n) log (1 - PL) < a - $# (a), lim sup (l/n) a; < u . 

Note first that $ is differentiable and strictly convex on (0, I), since u,  v are 
(essentially) bounded away from both zero and infinity, and they differ on a set 
of positive measure. Thus its derivative maps (0, 1) onto a non-empty open 
interval. Also ([19], p. 34) $# is differentiable on $'(O, I), and its derivative is 
the reciprocal of $', so $# is strictly increasing on $'(O, 1). 

To prove (2.7), note that log dPJdQ, = -A,, dQ, = exp (A,) dP,. Thus, the 
moment generating function of -A, under Q,  is 8 t-, 4, (1 - 8) with 0 < 8 < 1. 
Because of this, the Fenchel-Lcgendre conjugate of the limiting function of 
(l/n) log 4, (1 - 8) is given at every b by 

SUP (b0-$(I-9)) = bi-I/ /#(-b).  
O S B Q 1  

Thus, by Lemma 2.1 and Theorem 2.2, (l/n) log Q, (A, < nu) -+ a - $" (a). This 
proves (2.7). 

Consider now the first part of (2.8). Fix E > 0 sufficiently small such that 
a i & ~ $ ' ( O ,  1) and $# (a -E)  < $#(a) < t,b#(a+~). We shall prove that 

(2.10) Qn(A, < n(a-E)) d 1-P:, 
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for all suficiently large n. Assume this for a moment. Then, using (2.7), it 
follows that 

a - ~ - I I / # ( a - e )  d lirninf(l/n)log(l-K). 

Letting E -, 0, we get the first part of (2.8). Now (2.10) can be justified as follows. 
Consider the test of P, against Q, which rejects P, when A, 2 n(a-8). This is 
a Neyman-Pearson test of size a,(&) = Pn(An 3 n(a-c)). It is thus most 
powerful at level a,(&) (see [16], p. 74). By Lemma 2.1 and Theorem 2.2, 
(l/n) log a, ( E )  + - $ ' (a - E). Since I) # (a - E )  < $' (a), it follows that for all 
sufficiently large n we have a, ( E )  > exp [- n+#(a)J. This implies (2.10) by the 
Neyman-Pearson lemma [16]. 

To prove the second part of (2.8), consider the unique 0 in (0, 1) such that 
$'(O) = a ,  $" (a)  + $ (0) = u0. Using Markov's inequality, we get 

Now (l/n) log EQn exp [(I - 8) (-A:)] -+ $ (01, by Theorem 2.3. Using the first 
part of (24, it follows that 

This proves the second part of (2.8). 
To prove (2.9), note that 

exp [ - n$# (a)] = EPn (7;) < P, (Ah 3 4) Q ~ X P  [ - oak1 6, (0). 

Thus -$#(a) < - 6 (aan) +(l/n) log $, (0). L.etting n + co, we get the second 
part of (2.9). Thus a; - na. Using this and (2.11), we get the first part of (2.9). 
This completes the proof. ta 

3. Asymptotic inversion of Toeplitz operators. In this section we prove that, 
for every pair a ,  b of invertible elements in $f+ (resp. H" n H,,,), the 
approximate inverses given by (1.14) and (1.1 5) satisfy (1.12) (resp. (1.1 3)). Then 
we consider the problem of asymptotic inversion of Toeplitz operators. Let us 
first recall some elementary but basic facts on Toeplitz and Hankel operators 
on H z .  These operators are linked by the following identity (see [4] and [24]): 

This shows that 

Thus, if 4 is in Hw and is invertible, then T(4) and T($) are invertible with 
inverses T(4-l) and ~ ( 6 - I ) .  Note also that 

Thus, if q5 is in H" and is invertible, then T,($) and its transpose T,(d) are 
invertible with inverses T,(#-I) and T,($-I). Finally, recall two important 



properties of Hankel operators. The first is that 

(3.3) IIH(#)ll2 = (C t l d ; ( t ) ~ ~ ) ~ ' ~ -  
t > 0 

Thus Hankel operators with symbol in Lw n Hl12  are Hilbert-Schmidt. 
Second, a theorem of Hartman [14] states that H ( w )  is compact if and only if 
the Fourier transform of w coincides on the positive integers with that of some 
continuous function. 

We begin with two lemmas due to Widom [23], [24]. The first gives some 
information on the approximate inversion conditions (1.12). The second 
describes how strong convergence, that is pointwise convergence, of sequences 
of operators is converted into convergence in Yp-norms under some conditions. 

LEMMA 3.1 ([23], p. 193). Let M,, Mi-') be operators on Cn satisfying (1.12). 
Then M ,  is invertible for all sufficiently large n, and the sequence of invlrses is 
bounded in operator norm. 

LEMMA 3.2 ([24], p. 6). Let A be a compact operator on a separable complex 
Hilbert space, and k t  B,, B,  C,, C be operators on this space such that 

B, -+ B ,  C,* -i C* strongly. 

Then 3, AC, -+ BAC in operator norm. I f ;  in addition, A is in Yp, with 
1 < p < m, then this convergence also holds in YP-norm. 

We now come to the main result of this section. 

THEOREM 3.3. Let a, b be a pair of invertible elements in %+ (resp. 
Hw n Then Tn(iib) is invertible for all suficiently large n, and the 
approximate inverses (1.14) and (1.15) satisfy (1.12) (resp. (1.13)). 

Proof.  The basic argument is a commutativity device of Basor and 
Helton 121, which leads to a nice factorisation of T,(a'b). Here is the precise 
method. For every w on L", write T,(w) = IT,  T(w)I7,. Then, by (3.2), 

Note also that I l n  T(w)  = T, (w) and T ( 3 )  17, = T, (I+) i f  w E Hm. Commute T ( 4  
and T(b) in the expression of T,(db) and compensate this operation with the 
multiplicative commutator 

[ T - ' ( b ) T ( 4 ]  [T(b)T-'(a?] = 1+A.  

Thus 

T,(a'b)=T,(b)M,T,(6), Mn=17,(l+A)17,. 

Note that 1 + A  is invertible, and put Mi-'' = LZn (1 +A)-' IT,. We first show 
that A is compact (resp. trace class). Then identifying the unit operator on the 
range on II, with Il,, we shall prove that the pair Ad,, ML-') of operators on 
the range of I7, satisfies (1.12) (resp. (1.13)), and that 
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(3.4) M;l-ML-' )  4 0 in operator (resp, trace class) norm, 

where M i 1  stands for the inverse of M ,  on the range of 17,. The proof will be 
completed by showing that the approximate inverse 

satisfies (1.12) (resp. (1.13)), and that the two sequences 

q( - (iib) - Wn (Lb) , (ib) - Vn (db) 

converge to zero in operator (resp. trace class) norm. 
To prove that A is compact (resp. of trace class), write 

use (3.2)' and then (3.1)' to get A - - [H(bi )H(a) ]  T(b) T(K1) .  Thus A is 
compact by Hartman's theorem (resp. trace class by (3.3) and Holder's 
inequality for operators). To prove that the pair M,, ML- l1 satisfies (1.12) (resp. 
(1.13)), note first that the sequence M!-ll i s  bounded in operator norm. On the 
other hand, since &(I -n,) = 0, we have 

The desired result now follows from Lemma 3.2. since I7, converges strongly to 
the unit operator and is self-adjoint. This also proves (3.4) by Lemma 3.1 and 
Holder's inequality for operators. Thus the approximate inverse (3.5) satisfies 
(1.12) (resp. (1.13)), since for every bounded w the sequence T, (w) is bounded in 
operator norm. Using (3.1) and then (3.2)' we get 

Thus the approximate inverse (3.5) is T, (ii-'I T, (b-l) minus 

R, = [T,(K1) T(qj B[T(b) T,(b-')]. 

It is thus enough to check that R,, IlnBL7, and H,(b-')H,(a-l) (which is 
I7, H (b- ' )  L!, H (ap1) n,) all converge to B in operator (resp. trace class) norm. 
This follows from Lemma 3.2 since, for every bounded w ,  T,(w) converges 
strongly to T(w), and the adjoints of T, (w) ,  T(w) are obtained by replacing 
w by its complex conjugate. This completes the proof. H 

We now turn to the problem of asymptotic inversion of Toeplitz operators 
by the method of finite section. The notations are as in Section 1. 

THEOREM 3.4. Let w be in L" and suppose that T(w) is invertible. Then for 
every sequence of approximate inverses T,(-')(w) satisfying (1.12) we have the 
following properties: 
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(a) T, (w) is invertible fbr all slsfSEcientIy large n, and the sequence of inverses 
is bounded in operator norm. 

(b) Define by (1.18). If x (resp, r,) is the unique solution of (1.16) (resp. 
(1.17)), then 

In particulm, T,-' (w) und Ti- '1 (w) converge strongly to TI1  [w). 

Proof.  Part (a) follows from Lemma 3.1. To prove (b), f ix y in Hz and 
consider the equations (1.161, (1.17) and (1.18). Write 

and note that 

T,~w)17,b-Cn) = T,(w)n,x-n,y 

= IT, [T(w) fl, x - T(w) x] = l7,, T(w) (n, - 1) x. 

Thus, for all sufficiently large n, we have 

On the other hand, for all sufficiently large n, we have 

Thus 11 5, - FnlIz < II T,-' (w)ll, 11 1, - T,, (w) T,(- l)(w)ll, I Iy l  z .  This completes the 
proof. 

We close this section with a remark on the invertibility of T , ( w )  for 
a non-negative, integrable and non-zero symbol w. This is a particular case of 
the following more general remark. Let ,u be a non-negative Borel measure on 
the unit circle. Define the n x n Toeplitz matrix T,(p) with entries 

where T stands for the unit circle. Observe that, for 5 and q in G with 
components (5,) and (qt), we have an analog of (1.9): 

so that T , ( )  is non-negative. The measure p is said to be finitely supported if 
there exists a finite subset of T whose complement has zero p-measure. 

PROPOSITION 3.5. If p is a non-negative Borel measure on the unit circle, and 
if ,u is not finitely supported, then T,(p) is invertible for all n. 
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P r o  of. Put f(z) = Et-' l, .zr and denote by P the zero set of f on 1: 
Suppose that # 0, so that 2 is finite (possibly empty). Thus p(T \b )  > 0. 
Since p is regular ([20], p. 501, there exists a compact K contained in T \T with 
positive p-measure. Using (3.61, we get 

which proves the proposition. rn 
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