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Abstract. Let X be a centered Gaussian random variable with 
values in a Hilbert space H. If U G H ,  then we deierminc the asymptotic 
behsrviour of P {JJX-aJJ < E }  as 6 40. This extends former results of 
G. N. Sytaya and V. M. Zolotarev in the centercd case, i.e., ror a = 0. 
More general, we describe the behaviour of P {JJX-.f(r)alJ < R(t)) as 
t + m for some R'-valued functions f and R. Basic tools are thc 
Laplace transform and a modiIied saddle point method. 

1. Introduction. Let X be a centered Gaussian random variable with 
values in a separable real Hilbert space H. Then one may ask for the 
probability that X attains small values, i.e., one asks for the behaviour of 
P {l(XII < E )  as E -, 0. This so-calIed "Small Ball Problem" has been inves- 
tigated by different methods. For example, in [6] the random variable X was 
approximated by X ,  with range in an n-dimensional subspace, where n was 
chosen in a delicate way and depended on E > 0. A completely different 
approach was used in [12] and [14]. Here the inversion formula for the 
Laplace transform of llX112 has been applied, together with some modified 
saddle point method. Recently it turned out that this technique leads also to 
solutions in related questions. For example, in 181 and [9] the behaviour of 
P {IJX - ta I( < R ( t))  as t + GO (a E H, R is some function either decreasing or 
increasing not too fast) could be determined by similar ideas. Results of this 
type have been used in many different problems. 

The aim of this paper is to prove a general theorem which includes the 
results of [I21 and [8] as special cases. More precisely, we determine the 
behaviour of 

for a €  H and some functions f and R. Iff ( t)  = t2 we are in the situation of [8] 
and for f - 0 and R (t) = t - 2  we rediscover the "SmalI Ball Problem" 
mentioned above. But even in these cases our main result (Theorem 3.1) gives 
some new insight. Namely, in both cases the asymptotic behaviour was 
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formerly described by exactly one function y = y (t) defined by the random 
variable X (and by a and by R (t), respectively) in a rather difficult way. Here we 
show that one may also use different functions provided they are not too far 
from the original y. So changing y a little bit, sometimes it simplifies the 
concrete calculations considerably. 

On the other hand, (1.1) contains at least one case of interest not treated 
before in this way. Namely, i f f  = 1 and R ( t )  = t -  2, then (1.1) describes the 
behaviour of 

where a is an arbitrary element of H .  Observe that the behaviour of (1.2) is 
known when a is in the reproducing kernel Hilbert space (RKHS) of X. Indeed, 
a result of Sore11 (cf. [3]) asserts that 

lim PIIIX-all < E )  
,-0 P(lIXll -1 = cxpI- IIalI~/2), 

where Iallx means the norm of a in the RKHS of X. Hence in this case (1.2) 
reduces to the investigation of balls centered at zero. So our results give new 
information about the behaviour of Gaussian random variables near points not 
belonging to the RKHS. 

The organization of the paper is as follows: Section 2 includes all technical 
lemmas needed for the proof of Theorem 3.1 in Section 3. Also some 
improvements of the main result in [8] are given in Section 3. Section 4 
contains applications of Theorem 3.1 to problem (1.2), and Section 5 is devoted 
to some concrete examples. 

Let us fix the notation: Iff, g are functions on ( to ,  a), we write as usual 
f - g provided that 

lim f Ct)/s ( 0  = 1 
t + m  

and f =g  means that 

0 < lim inf f (t)/g (t)  < lim sup f ( t ) / g  ( t )  < co. 
t-m t+ m 

Finally, we recall some well-known facts about Hilbert space valued 
Gaussian random variables. A random variable X with values in H is Gaussian 
centered if (X, y ) ,  the inner product in H,  is a real centered Gaussian random 
variable for each y.H. And there are I, > 1, 2 . . . > 0, xJm=l"=, i j  < m, and an 
orthonormal basis ( e j ;  j 2 1)  G H such that 

where i t j ; j 2 1 )  is a sequence of independent standard Gaussian random 
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variables. Furthermore, for u = zj: aj ej we have n E Xx (RKHS of X) iff 

cn 

and = ( f g)ln. 
J j =  1 l b j  

2. Basic estimates. I f  (Aj)& and (aj)T=l are sequences of real numbers 
with 

then the functions 

(2.1) 
I "  

and ~ ( z ) : = - C l o g ( l + 2 ; ? ~ z )  
2 , q  

are well-defined and analytic on C+ : = { z  E C;  Re ( z )  > 0 )  and we easily get 

Throughout this paper f and R are fixed R+-valued functions defined on 
( to ,  ro) for some to > 0. Now we introduce the complex-valued function 
B = B ( t ,  y ,  a) which wiII play an important role later on: 

- {X (Y + ifl) - x (7)) - log ( 1  + iu/y), 
where t > t o ,  y > 0 and G E R .  Furthermore, let = B(t,  y )  and q = g ( t ,  y)  be 
defined by 

and 

LEMMA 2.1. If y 2 yo for some yo > 0 and t > to ,  then 

I j eB(f,~,ddg/ Cye- i3 /8  

1.1 > y/J2 

,for some c > 0 depending only on yo  and on A,. 
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Proof.  Note that 

For la1 2 y/,,/s it follows that 

hence the first term of (2.7) can be estimated by 

Furthermore, using log (1 + x) 2 x/2 for 0 r x < I and 101 2 y/ J2 we obtain 

Thus 

Summing up,  it follows that 

S exp (Re 3 (t, y ,  4) do 
1 0 1  3 YIJZ 

as claimed above. rn 

LEMMA 2.2. For r > to,  y > 0 and U E R  the following estimates hold: 

Especially, if 101 < y/,/j, then 
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Pro of. Using the inequality log ( 1  +x) g x, x > 0, we obtain 

ReB(t, 7 ,  a) a - ~ [ G / Y ) ~  r - f ( t 1 ~ ~  $"il;)-yz f r ( y ) +  11 

= - ~ ( Q / Y ) ~  (P+ 1). 

On the other hand, by the relation x-x2/2 < log(x+ 1) we have 

Moreover, 

and hence 

ReB(t, Y ,  4 < --31a/y)2(l-(a/y)2)/?, 

as asserted. H 

LEMMA 2.3. Let q = pl ( t  , y) be as in (2.6). Then 

for all t > to, y > 0 and D E R .  

Proof. Note that 
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where 

Since Ix - arc tan x( < 1xI3/3 and 1/x2 - 1/(x2 + y 2 )  < y2/~4,  we have the es- 
timate 

and this completes the proof. ra 

Next we choose y = y ( t )  dependent on t > 0. I f  y is clearly understood, we 
shall write for simplicity Bit, cr), P ( t )  and q ( t )  instead of B ( t ,  y j r ) ,  uj ,  P( t ,  y ( t ) )  
and pl ( t ,  y (t)) ,  respectively. Let us suppose now that y ( t )  has the following 
properties : 

(2.1 1) lim inf y ( t )  > 0 and lim fl  ( t )  = lim f l  (t , y (t)) = cc . 
t + m  I - r m  t - r n  

LEMMA 2.4. If y ( t )  satisfies (2.11), then 

P r o  of. First note that 

by (2.11) and Lemma 2.1. Next we choose a function 6 = 6 ( t )  such that 

lim d ( t )  = m and lim 6 (t))/J8ilj = 0. 
t'oo t+ a3 

Observe that this is possible in view of (2.11). Applying (2.9) we get 

eB(',") do) < J exp ( - u2/4)  du; 
y/J?i31a12byp-1/2 lul B6 

thus by (2.12) and by the choice of 6 we obtain 

lim (fib,) J P r g o )  da = 0. 
t' m la1 >syp-'I2 

On the other hand, the equalities 
m 

,/% exp ( - q (t)'/2) = J exp (ius ( t )  - u2/2) du 
- m  
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and 
lim j exp (iuq (t) - u2/2) du = 0 
r - w  1111 3J(r) 

imply that it sufices to prove 

From (2.10) we derive 

for t large enough and lul < 6. Moreover, from (2.8) we also have 

for 1161 6 6. Thus 

< exp (- u2/2) exp i Im B t ,  - - exp (iuq (t)) I ( ( 2)) I 

combined with (2.14) and (2.15) proves (2.13) since 63//31/2 + 0. H 

+ 

3. Main result. Let X be a centered Gaussian random variable with values 
in a separable Hilbert space H. As mentioned above 

exp (- u2/2)- exp Re B t ,  - 

with 1, 233d2 > . . . 2 0, R j  < m, and (ej)%, is an orthonormal basis in H .  
If a = xj=, x j  ej ,  then we have 

( ( ;))I 

Recall that t,, <,, . . . are independent M(0, 1)-distributed. Our objective is to 

6 - PAMS 14.2 
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determine the behaviour of (3.1) as t + m. To do so let us introduce the 
following definitibn : 

A function y = y (t) is admissible (for X, a ,  f and R) provided that 

(3.2) limB(t, ~ ( t ) )  = lim-yZ(f(t)$"(y)+x"P~)) = 
r-'m t-a3 

and 

lim q (t , y (t)) = lim R ( t )  -f 0) $' (Y) - X' (Y) 
= 0. 

i - t m  t - m  J - , f ( t ) $ t ' ( ~ ) ~ ' l I ~ )  

THEOREM 3.1. Let y = y jt) be admissible with liminf,,, y (t) > 0. Then 

1 exP(YR(t)-f(t)llr(r)-X(r)) (3.4) P { IIX -f(t)'/' a11 < R (t)} - 
f i  (lj 

as t + a. Conversely, $,fir some y = y ft) with liminf,,, y ( t )  > 0 we have (3.2) 
as well as (3.41, then necessariIy y satisfies (3.31, i.e., y is admissible. 

Proof, Given ZEC' ,  the Laplace transform of llX-f (t)'l2 all2 at z is 
equal to 

By the inversion formula (cf. [4], Chapter 11.1, Theorem I), 

y - i m  

where 

Defining A (t , y )  by 

(3.5) A(t, y ) : =  R(t)Y-logY-x(Y)-f (t)$(Y) 

we obtain 

with B(t, y, o) defined as in (2.4). Consequently, 

- m  

and this holds for any t > to and any y > 0. Choosing y = y (t) satisfying (3.2) 
and (3.3), from Lemma 2.4 and (3.3) we have 
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- 1 exp ( R  (4 :, - x 0)) -fit) + (Y ) )  -- 
@ ;% 

as t 4 co' and this proves (3.4). 
Next suppose that y = y ( t)  satisfies (3.2) as well as (3.4). Then (3.4k(3.6) 

yield . 

g i  

for this y = y ( t )  and, consequently, by Lemma 2.4 we conclude that 

lim rxp (- q ( l ,  y (t))'/2) = 1, 
1-m 

which clearly implies (3.3) and completes the proof. FJ 

R e m a r k  3.1. Suppose we have 
- 

R(t) G f ( t )  2 x f +  C ,Ij-e 
j = 1  j = 1  

for some E > 0 and for t large enough. Then we may define the function y = y ( t )  
as unique solution of the equation 

(3.8) R ( t)  = f ( t )  *' (Y) + X' ( Y )  

for large t. Of course, this y satisfies (3.3) by definition and, moreover, 

lim inf y ( t)  > 0. 
t-+ co 

Hence the folIowing is true: 

COROLLARY 3.2. Suppose that (3.7) holds and de$ne y by (3.8). IffDr this y 

(3.9) lim - y2 (f ( t )  $" CY)  +x" (7)) = 03 3 

t + m  

then 

Remark  3.2. Let us mention two cases where (3.7) holds and y defined by 
(3.8) satisfies condition (3.9) as well: 

(3.1 0) lim R ( t )  = 0 and card ( j ;  ,ij > 0 )  = 03. 
t - r m  
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Indeed, in this case we have lim,, , y (t)  = rn and lim,, , - u2 X" (u) = c ~ .  

m 

(3.1 1) lim f {t) = co and lim sup R (t) /f  (t) < (x; = I all 2. 

t - r m  t - m  j=  1 

Here we have lirn inf,,, y ( t )  > 0 and lim,, , - y (tI2 f (t) I)" ( y  (t)) = m. 

COROLLARY 3.3. Suppose that either (3.10) or (3.11) holds. Then 

as t -+ a, where y is de$nsd by (3.8). 

We want to state now three special cases of Theorem 3.1 explicitly. Let us 
begin with the "Small Hall Problem" for non-centered balls. 

COROLLARY 3.4. If a E H and card (j; Aj > 00) = c ~ ,  then 

lim c2 - ( Y )  - x f  (Y) 
= 0. 

e - 0  J-J~~'(Y)-X"(Y) 

Especially, (3.12) holds for y = y (8)  defined by E' = $' (7) + X I  (y). 

Remark  3.3. For a = 0, i.e., $ 0, the second part of Corollary 3.4 was 
proved in [12]. 

Next we apply Theorem 3.1 to f(t) = t-' and R ( t )  = R2/t2 for some 
R  > 0. Observe that (3.10) applies in this case. 

where RZ = @(y) + t2 (y). 

Finally, we want to improve Theorem 1 in [a]. There is an additional 
Illy)-term in the definition of y and it turns out that it is in fact not necessary. 
Note that (3.11) applies here. 

COROLLARY 3.6. If lim sup,,, R(t)/t < llal, then 
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if 
lim R2 (0 - t2 $ff IY) - xt CY) 

= 0. 
t+m J- t2+"(y ) -x f t ( y )  

Especially7 (3.14) holds for y = y ( t )  defined by R~ (t) = t2 Il/' (y )  + 2' [Y). 
Now let us treat the case R ( t )  = R for some R > 0. Since t + oo and 

f ( y )  4 0, one might expect that y defined by RZ = t2 IC/'(y) would work as well. 
Our next proposition shows that this is only so for Ais going to zero not too 
slowly or, equivalently, if X' tends to zero fast enough. 

PROPOSITION 3.7. Let y = y (t)  be defined by 
. .m (3.15) R2 = t Z  +I(?). 

Then y is admissible for (3.14) (with R ( t )  = R) 

Proof.  Observe that y defined by (3.15) is admissible iff 

(3.17) lim x' (Y 1 = 0. 
r-+ m J- t2 rl/" (7) - x'' (7) 

Using 

we see that condition (3.17) holds iff 

But b y  (3.15) this is equivalent to 

as asserted. s 

Remark  3.4. Since - u$" (u) < 2$' (u) we always have - $' (u)/$" (u) 
2 u/2. Hence, in order that (3.16) holds we have to have 

(3.1 9 )  lim JL~'(u) = 0. 
U- m 

It is not difficult to see that z'?, qt2 < co implies (3.19): Conversely, if (3.19) is 
valid, then lirn,,, j 2 A j  = 0. decal1 that we assumed that the sequence of the 
Aj's is decreasing. Thus, if the Aj's go to zero slower than j-', then (3.16) never 
holds and y defined by (3.15) is never admissible (for any UEH). 
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4. Ggplilications to the "Small Ball Problem". Recall that for a E iY we have 

with y = y ( E )  defined by 

Even if the behaviour of the right-hand side in (4.1) can be calculated explicitly, 
this does not say very much about the dependence on E because y is defined by 
(4.2) in a very implicit way. Thus in general it is rather difficult to describe the 
behaviour of (4.1) as a function of c even in the easiest examples. We shall do so 
in Section 5 only for one very special case. Much easier is to determine the 
behaviour of the logarithm of (4.1). Here the following is valid: 

PROPOSITION 4.1. We have 
K 

(4.3) ~ o ~ P ( I X - U I I  < E) - j  @ ' ( u ) ~ u ,  
E~ 

where 

and K > 0 is some positive constant. 

P r o  of. First note that 

- 3 l o g ( - ~ ~ $ " ( y ) - ~ ~ ~ ' ~ ( ~ ) )  = ~ ( C Y X ' ( Y ) - X ( Y I ~ + C Y @ ( Y ) - I C I ( Y ) I ) .  
This follows from 

y$'" ( y )  < - 3$" (Y) and YX"' (7) < - 2x" (Y) 
by using de L'HGspital's Rule. Hence the left-hand side of (4.3) behaves like 

Y e(o) 

Crx' (7) - x 6d1 + Cy$' ( Y )  - $ (?)I = 1 ue' (4 du = - 1 e - ' (4 du. 
0 E X  

This proves (4.3) as asserted. H 

COROLLARY 4.2. Assume lim,, , u4 Q (u) = c for some q E (0, 1 )  and some 
c > 0. Then 

Proof .  Since e - l  (u)  - ~ ~ 1 q u - ~ / q  as v _t 0, (4.5) follows from (4.3) by 
applying de L'Hbspital's Rule. rn 
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Our next objective is to ask for admissible y's which are defined in a less 
complicated way as in (4.2). There are two natural choices for y, namely, to 
define y by 

(4.6) E2 = xf  (7) 
or by 

(4.7) .E2 = $' ( y )  . 
THEOREM 4.3. {a) I f  y i s  defined by (4.6), then it i s  admissible iy 

Proof .  (a) Observe that (3.13) holds in this case iff 

(4.10) lim (4 = 0. .- .. J- (u) -XI' (u) 

Thus, (4.8) clearly implies (4.10). Now assume that (4.10) holds and (4.8) does 
not. Then we find u, + CXJ with 

for some c > 0. Since -u:x" (u,) -t 03 as n -+ co, in view of (4.11) we get 
un!,bf(u,,) 4 co as well. Now (4.10) and (4.11) allow us to conclude that 

But - $" (u,) < 2 $' (u,)/un, so by (4.12) we have 

lim 
1 

= 00, 
n-m ~ n @ ( u J  

which contradicts u, I,P fun) -, m. This completes the proof of part (a). 
Part (b) follows easily from (3.18). ra 

THEOREM 4.4. (a) Suppose (4.8) holds. Then 

(b) If (4.9) holds, then 
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Proof .  (a) In view of Theorem 3.1 and Theorem 4.3 it remains to prove 

df" (4 lim - = 0 
w + m  ~''('1 

provided that (4.8) holds. Using -$"(u) < 21)'(u)/u it follows that 

( 4  3 -  1 ($ ' l  - ( ~ 1 ) ~  u2 ( - X I '  (u)). 
-;c" (u) 4 x" (u) 

But u2 (- XI' (u)) -t a, and hence (4.8) implies (4.13). 
(b) By (3.18) we have 

x" (4 
- 0 lim - - 

u-+ m $I' (4 
provided that (4.9) holds. This completes the proof. ma 

Remark  4.1. The e-term in the case (a) equals 

and in the case &) it may be written as follows: 

COROLLARY 4.5. Suppose that (4.8) holds. Then 

Remark  4.2. This easily generalizes to a = xT= a, e j  and b = x;= J j  e j  
as follows: 

provided that the $'s defined by a as well as by b satisfy (4.8). 

As a special case of Corollary 4.5 we obtain the following result of Borell 
(cf. [3]): 

COROLLARY 4.6. if a s Af,, i.e., xJm= orf/Aj  < m, then 

lim P(llX-all < 4 
= exp (- lla11:/2). 

e+,, P (IIXII < 4 
Proof.  Observe that UI+V (u) + 0 as u + c~ in this case. On the other hand, 

- u2 XI' (u) + m, thus (4.8) holds. Furthermore, 
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ajZy 1 
lim $ (7)  = lim C - - - - IIQIIx~ 
y'm 74, j = ,  1 +2Ajy 2 

which proves the corollary by Theorem 4.4 (a). rn 

To discuss the preceding results let us introduce the following three 
disjoint subsets of H. If H and $, is defined by 

then 

Recall that a E d. iff y defined by (4.6) is admissible, a E d* I f f y  defined by (4.7) 
is admissible, and, finally, a E dp iff the y's defined by (4.6) and by (4.7) are both 
not admissible. The set dx contains those U E H  for which the aj's tend to zero 
last. If b = El?=, Fl ej  and lvjl < lajl, j = 1, 2, . . . , then a E dx implies b s 4 as 
well. We have SX E d x ,  yet in general XX # d'. The set dli, contains those 
a E H for which the uj's go to zero slowly. If lPjl 2 Ictjl, j = 1, 2, . . . , and u E d*, 
then zJm= Pj e j  belongs to d* as well. Observe that 4 may be empty. Indeed, 
since - u$" (u) + 0 as u 4 m, we see that ,/; $ (u) + 0 is necessary for d* # 0. 
Thus, for Ajls with lim inf,,, j2 i j  .j 0 it follows that d* = 0. 

5. Examples. We investigate now the case 

a ,  = j - a P  
J and A, = j - b  

with a, f l  > 1. If p is defined by (4.41, then 

1 
( u )  = [ - +-] 

j=l G ' + ~ u ) ~  ~ ' 4 - 2 ~  

in this case and 

where 

8 -  
./P K - 2 U P - 1  

sin In//?)' 

(5.3) cab = 21'8-u1B 8- r ((28 -a  + 1)/p) T ((a - 1)/8) 
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(cf. [8]). Observe that 

21 ,~ -de  n(fl+l-a)/fl2 1 < a < P+ I ,  
sin (n; ( f i  + 1 - ol)/P) ' 

Especially, we have 

I cap = (P+  1 -a)Knp/P, 1 < < p+1,  
I 

where KE6 is defined by (5.5) below and, moreover, 

caa = K d B  = K,/P- 
From (5.1) it follows that 

I 1 .  
Kgerlip-l, a > P ,  

@ (u) - (I + 1/b) KKp u1JR- 1, 0: = P, 
Ul/B-aiB 

~8 a < P ,  
as u + co. Then (4.5) implies the following: 

I 
I 

I PROPOSITION 5.1. Let R j  = j-fl and u . = j-a/2. Then 
I 

J 

f l I (  n )""I' 
-- E -  2/(P - I), 

2 Psin(n/P) 
a > B .  

COROLLARY 5.2. Let olj and Aj be as above. Then 

where c > 0 is the quotient of the coeficients in (5.4) for ol > and u < P, 
respectively. 
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Our next aim is to characterize those a > 1 for which a = ~ , " = , j a j 2  e j  
belongs to dx, s4, or d*, respectively. To do so, observe that 

-Xf f (U)=;U1~f i -z  

and 

Combining this with the asymptotic of I,!$' and X' we obtain 

and 

This implies 

PROPOSITION 5.3. If a = xJ?= J-'" ej  and Aj = j -@,  then 
(i) a€*", 13 a > p + l ,  

(ii) a€ 4 iff a a >+ 1/2, 
(iii) a€&, ifl p-1 < a  < P+1/2, 
(iv) LIE&* $ ct < P - 1 .  

Let us discuss these results: 

(i) If a E J$, , i.e., 8- 1 < a < /3 + 112, then neither E~ = X I  (7) nor = $' (7) 
can be used to describe the behaviour of P{IIX-a1 < E } .  But observe that 

$" (4 r" (4 lim - = 0 for a > p and lim - = 0 for a <  p. 
"+, x" (4 u- 00 $" (4 

Hence, for example, if /3 < a < /3 + 1/2, then 

with c2 = I,P (Y) + X' (7). 
(ii) As already mentioned, atrL may be empty. Here this happens for 

1 < 8 6 2  in view of a >  1. 
(iii) To our opinion, the most interesting case is a~d , \&'~ ,  i.e., 
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p +$ < a < P + 1. Then y may be defined by = x' (7) and 

We want to investigate this case now more thoroughly. To do so let us 
introduce the following notation: 

K , , ~ :  = 21 /8 -~18  nib 
sin (n (j + 1 - a)/P)' 

CY#p+l, 

Observe that C, : = C is Euler's constant and C,, 0 < s < 1, has been inves- 
tigated by de la Vallee Poussin (cf. [ 1 3 ] ,  p. 39). 

THEOREM 5.4. Suppose that f l +  < a d jl+ 1. Then 

Proof.  We have to investigate the behaviour of e-*(Y) with c2 = xf(l/). 
Because of 

with 

and by 

Lebesgue's D.C.T. applies and leads to 

1 

1 0 

Moreover, if a = p + 1, then 
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For c l < f l + l  we have 

because of 

Thus, in this case 

and 

Combining these results we obtain 

Our next aim is to replace y by E in (5.6). Using Euler-Maclaurin's summation 
formula, by similar arguments as above we get 

Using (5.7) we derive 

Let 6 > 0 be defined by 
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Then (5.8) lets us conclude that 

Now, 6 - l/p = 1 -a/P < 0, i.e., we may replace l - a l P +  l i p  by 

[ K ~ I I B -  1) E-2P/(O-1) 1 d B +  l / B  1 - 
in (5.61, and this completes the proof. 

Remark  5.1. We have 

i.e., for ol = #? + 1 we obtain 

For example, if P = 2, then 

4e - C/2 --- E exp ( - n2/8&2) 
n 

(cf. [I]). Thus, if 

" sin Grit) 
h( t )  = a z 7 3 j q  

j = 1  1 

and ( B  (t); 0 d t  ,< 1 )  is a Brownian bridge, then 
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