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Abstract. A central limit theorem and a corresponding functional
central limit theorem are given under a uniform mixing condition for
uniformly infinitesimal triangular arrays of random variables which
take values in a locally compact second countable Abelian group. The
limiting distribution in the central limit theorem is Gaussian and the
limiting distribution in the functional central limit theorem is the dis-
tribution of a Gaussian process with independent increments and con-
tinuous sample paths — a Wiener-type process.

1. Imtroduction. Throughout this article G will denote a locally compact
second countable Abelian group, and G will denote the dual group of G. Thus,
G is the set of continuous homomorphisms of G into the unit circle group T of
complex numbers of modulus one, with topology induced from the complex
plane and the group operation of complex multiplication. We endow G with
the topology of uniform convergence on compact subsets and the natural
group operation induced by the operation on T. Then G is, like G, a locally
compact second countable Abelian group. We shall denote by {x, y) the value
of the homomorphism yeG at the point xe G. Choose and fix a local inner
product g on G x G; that is, g is a function with the properties specified in
Lemma 5.3 on p. 83 of Parthasarathy [5].

All random variables that we consider will be assumed to be Borel measu-
rable and their distributions will therefore be Borel measures. The mode of
convergence in the central limit theorem will be weak convergence of probability
measures on G. The characteristic function of a probability measure u on G is
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the complex-valued function j defined on G by

()= [<{x, ypu@x) for all yeG.

G

It is well known that there is a one-one correspondence between probability
measures on G and their characteristic functions on G and that a sequence {u,}
of probability measures on G converges weakly to the probability measure p on
G as n— oo if and only if ji,(y)— fi(y) as n— oo for each yeG.

The limiting distribution in the central limit theorem below is Gaussian.

DEFINITION 1. A continuous nonnegative function ¢ defined on G is called
a continuous nonnegative quadratic form on G if it satisfies the equation

e 1+y)+oi—y) =2001)+20(y,) for all y,, Y2Eé-

A probability measure u on G is called Gaussian if its characteristic function is
of the form

1) A@) = <{xq, yoexp[—30 (], yeG,

where x, is a fixed point of G and ¢ is a continuous nonnegative quadratic
form on G. The Gaussian distribution is symmetric if x, is the identity of G. =

In fact, any function which has the form of the right-hand side of equation
(1) is the characteristic function of some (Gaussian) probability measure on G.
The above definition of Gaussian distributions is equivalent to the definition of
Gaussian distributions in Parthasarathy [5], the equivalence also being proved
there. Heyer [4] also considers other candidates for the description ‘Gaussian
distribution’ and calls the distributions defined in Definition 1 Gaussian dis-
tributions in the sense of Parthasarathy.

For general facts about locally compact second countable Abelian groups
we refer the reader to Hewitt and Ross [3] and Rudin [6], and for the theory of
~ probability measures on such groups we recommend Heyer [4] and Parthasa-

rathy [5].

The results in this paper concern a triangular array of G-valued random
variables {X,;: j=1,2,...,k,; n=1,2,...} defined on a probability space
(2, &, P). Given such an array, define the following sub-o-fields of % : for each
positive integer n and positive integers a, b such that a < b, let

M, a,b):=0c{X,;:a<j<b},

where X, ; = e, the identity of G, whenever j is not an integer in the range
1 <j<k,. For positive integers n, k define
¥,(k):=sup sup{|P(B|4)—P(B):

15
Ss+k<kn

AeM (n,1,s), P(4) >0, Be# (n, s+k, k,)},

where the supremum of the empty set is taken to be 0.
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2. The central limit theorem

TaeoreMm 1. Let {X,;: j=1,2,..., k,; n=1,2,...} be a triangular array
of G-valued random variables and suppose that the followmg conditions hold as
n— oo for every nezghbourhood N of the identity in G and for every yeG:

(¥ Z P(X,;¢N)—0,

j=1

kn
(11) Z |Eg(Xn,j5 .V)| -> 0:

. S J=1
o Ko ,

(iii) E[(Y X )] =00,

j=1
where @ is a continuous nonnegative quadratic form on G. Suppose also that
(iv) supy,(j)—»0 as j— .

Then, as n — oo, the distribution of the row sum §,,: Z X, ; converges weak-
ly to the Gaussian probability measure with character:stlc function

y—exp[—30()], yeG. s
Remark 1. Assumption (i) is a typical uniform infinitesimality condition
when the limiting distribution is Gaussian, and assumption (ii) ensures that the
triangular array is asymptotically centred. Condition (iii) provides the limiting
variance, and assumption (iv) is a uniform mixing condition, which controls the
extent to which random variables in the same row of the triangular array can
be dependent. =

Proof of Theorem 1. Fix yeG. For each n=1,2,... and
j=1,2,..., k, define

Un,j:= g(Xn,ja y)_Eg(Xn,j’ _V)
Then.

|E[E§U,.,] 00)

< [B[{( Zg(Xn,,Y))] ¢(y)|+|EZg(X"J,y)| -0 as n— o,

i=1
so, by assumption (iii),
kn
=Var() U,j)— @(y) as n— 0.
i=1
Choose ¢ > 0 and suppose y is such that ¢ (y) > 0. Then o, > 3./ (y) for
all sufficiently large n and, because of assumption (ii), we also have

[Eg(X,.j, I <21/00)



" particular, for any real number ¢t and any sequence {t,} of real numbers con-
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for every j whenever n is sufficiently large. Choose a neighbourhood M of the

identity in G such that
&
lg (x, y)l < Z\/tp(y)

whenever xe M. Then, using assumption (i),

kn

lim sup %P(IU,,,]l =& ) < lim sup Z P(lUn JI \f‘ (p(y))

n—+cww j=1 r—>ow j=

hmsup Z P(lg(ana }’)| > \/ (,D(V)>

n—oo j=1
kn
<limsup ) P(X,;¢M)=0

n—ow j=1

Therefore
2 kn
limsup s, 2 Z E(UZ; 1(U, | = &0,)) < o )hmsup Y. P(U,;l = ¢0,) =0,
n—w i= n—so j=1

where c:= 2sup,.¢lg(x, y)| < co.

Now apply the main result of Utev [7] to the triangular array of real-
-valued random variables {U, ;: j = 1 2,....k; n=1,2,...} to deduce that,
if @ (y) > 0, the distribution of o, * Z U,, .j converges weakly to the standard
normal distribution as n — co; note that the uniform mixing condition on the
U, ;s needed to apply Utev’s result is implied by the corresponding assumption
(iv) on the X, /s. Consequently,

E [exp (i(, * Z U,)9)] »exp[ 3]
uniformly in teK as n— o forJeach compact subset K of the real line. In
verging to f,
A E [exp (i(o;! i Un)t,)] > exp[—4£2]  as n-o.
i=

Let t, = 0,. Then t,— ./¢@(y) and we obtain

kn
2) Elexp(i ), U,j)] »exp[—30(»] as n— oo.

j=1

This holds for each yeG such that ¢(y) > 0
If y is such that ¢(y) =0, then Var(z U,;)—0, so
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where 5 denotes convergence in probability, and

K
Elexp(i Y U,j)] > 1=exp[—30()] as n— .
j=1
Hence (2) holds for all yeG.
Now choose a neighbourhood N of the identity in g such that
{x, y> = exp(ig (x, y)) for all xe N. Then

kn kn ' kn
[E(S,., y>—Eexp(i Zl-Un,;)I <E[ Zl Xpjs y)—exp(i Y, 9 (X, V)
. j= i= j=1

kn o
+|E [{exp (i -,1g(X"’j’ M)} {t—exp(—i ;1 Eg(X,.;,
<2 _k" P(X,;¢N)+|1—exp(—i % Eg(X,; y)| =0 as n— .

i= i=1

The proof of the theorem is completed by application of the Lévy-Cramér
continuity theorem. m

3. The functional central limit theorem. Denote by D:= D ([0, 1], G) the
Skorokhod space of G-valued cadldg functions defined on the unit interval
[0, 1] in the real line. We endow D with the Skorokhod topology. If ¢ is
a metric which gives the topology of G, then the Skorokhod topology can be
defined on D in the same way as in Billingsley [1] or Parthasarathy [5] simply
by replacing the metric on the real line by ¢ where appropriate. If %,, denotes
the o-field of Borel subsets of D relative to the Skorokhod topology, then much
of the theory of probability measures on (D, %) and their weak convergence
can be developed along the same lines as for the case when G is the real line.

Before stating the functional central limit theorem we need some further
terminology.

DerINITION 2. We shall call a stochastic process S:= {S(¢): te[0, 1]}
a Wiener-type process on G if § has independent increments, the sample paths
of S are almost surely continuous, S(0) = e (the identity of G), and S(t) has
a symmetric Gaussian distribution for every t.

We call {@,,: 0<s<t<1} a continuous semigroup of continuous non-
negative quadratic forms on G if each @5, is a continuous nonnegative quadratic
form on G, (s, t)— @,,(y) is continuous for each yeG, and

3) @52 (1) + @eu V) = @5 ()

whenever 0 <s<t<u<1 and yeG. =

Note that because of (3) we can write

Pru(V) = 0u(¥)—0:(3), where @,(y):= @o,.(3)-
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Given a Wiener-type process S:= {S(t): te[0, 1]} on G, there exists
a corresponding continuous semigroup of continuous nonnegative quadratic
forms such that

E[KS(®—5(s), y>1 =exp[—3 0., ()]

for 0<s<t<1 and yeG. The converse is also true; see Bingham [2]. (In
particular, there exists a nontrivial Wiener-type process on G whenever there is
a nondegenerate Gaussian measure on G, or, equivalently, whenever there is
a continuous nonnegative quadratic form on G which is not identically zero.)

DEFINITION 3. In the above situafion the distribution of § will be called
a Wiener-type measure with continuous semigroup of continuous nonnegative
quadratic forms {¢,,; 0<s<t<1}. m

1,2,...} of G-valued

Given a triangular array {X,;: j=1,2, ..., =
{S,(0): 0 <t <1} with

random variables, define the stochastic process §,:
sample paths in D by

n

[tkn]

Sn(t):z Z Xn,j:
j=1

where, for each real number r, [r] denotes the largest integer not exceeding .
We can now state the functional central limit theorem.

TueEOREM 2. Let {X,,;: j=1,2,..., k,; n=1, 2, ...} be a triangular array
of G-valued random variables and suppose that ¢, = @o,, where {¢,,:
0<s<t< 1} is a continuous semigroup of continuous nonnegative quadratic
forms on G. Suppose that the following conditions hold as n — oo for every neigh-
bourhood N of the identity in G and for every yeG:

kn

(@ Y. P(X,;¢N)—0,

j=1
(11) |Eg (Xll,js .V)| - Os

j=1
v [zkn] 2
(i) E[(Y 9Xup ) 1= 0.(») for each te[0, 1].

i=1

Suppose also that
(iv) supy,()—»0 as j— oo.

Then, as n — oo, the distribution of S, converges weakly on D to the Wiener-type
measure with continuous semigroup of continuous nonnegative quadratic forms
{ps: 0<s<t<1}. =

The proof of Theorem 2 will use the standard technique of proving the
appropriate convergence of finite-dimensional distributions and establishing
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weak conditional compactness of the distributions of the processes {S,} on D.
The first of these steps is accomplished by Lemma 3 below. First, however, we
require some preliminary results.

LemMA 1. Let {X,;: j=1,2,...,k;; n=1,2,...} be a triangular array of
G-valued random variables satisfying the assumptions of Theorem 2. Define
U,ji=g(Xnj> ¥)—Eg(X,;, y). Then, for each yeg,

[tkn]

EI(2, Un)']= 0.0)

uniformly in te[O 1] as n— . Consequently,
[tkn]

E[( Y Uu)1-e.0)—0,0)

j=Iskn]l+1
uniformly in 0 <s<t<lasn—>o0. &
Proof. By Lemma 3 in Bingham [2], the convergence in assumption (3) of
Theorem 2 is in fact uniform in ¢. Therefore
[#kn] [tkn]

[tknl
ELY, Un)1—0.0)l < [E[( zg(xn,, N 1=0.0)+(X, Bo (Xus, y)

[thn] k

<[EI(Y, 9 W-0.0)+(3 Eg(Xos M)

j=1

which tends to O uniformly in ¢ as n— oo. This proves the first part of the

lemma.
Let 0 <s<t<1. Then

[("kz"] 0.
~e(F v el S vl v E vl

so the second result will follow from the first if we show that

[skn] [tkn]
E[(X U )( X Un)]—0
j=1 j=Iskn]+1

uniformly in s, ¢t as n— oo.
For any positive integer r

[skn] [tkn]

@ E[(YXU)( Y U
ji=1 j=[skn]+1
Iskn] [skp]+r—1 [sknl ftknl

=E[(3 Un)(_ ¥ UnJ+EL(L Und(_ 2. Unil

j=[skn]t1 j=[skn]+r
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[skn] 2 [skn}+r—1 29\1/2
<ELXU)IEN X Uw)])
j=1 j=Iskn]+1

[thn]

F2, 0 (E [(z v 1E[ Y U

j=I[skal+r

Here we interpfet empty sums as 0 and we have used the inequality given in
Lemma 1 on p. 170 of Billingsley [1].

Now _
oo T kel s [then] [shnl+r—1 R
©) E[( ¥ U)]1=E[Y Uw— Y U.)]
= Iskn]+# i=1 j=1
[thn] [kl +r—1

<EIF U122 Y U))

Note that [sk,]+r—1 = [(s+(r—1)/k,) k,] and, by the first part of Lemma 1, it
follows that the expression on the left-hand side of inequality (5) is bounded
above by a finite constant that does not depend upon n, r, s, nor t. The same is
therefore true of the coefficient of ,(r)/? in the last line of inequality (4).
Consequently, because of the mixing condition (assumption (iv)), the last ex-
pression in inequality (4) can be made less than an arbitrary positive ¢ for all
n, s, t by choosing r sufficiently large. Fix such an r.
To complete the proof it is therefore enough to show that

[sknl+r—1

B[( Y U.)]-0

J=Iskn]+1

uniformly in s as n — co. But |U, ;| < ¢:= 2sup,|g(x, y)| and, for any ¢ > 0,

[sknl+r—1 2 Iskp]+r—1
E[( Y U 1<&+0cPP( Y Unl>¢
j=Iskm]+ 1 j=Iskd+1
[skn]tr—1
<&+ Y P(U, > ¢M).
j=Iskn]+1 -

The last sum is dominated by Zf’; 1 P(U,,;| > ¢/r), which, as can be seen from
the proof of Theorem 1, goes to 0 as n — co. Because ¢ was arbitrary, Lem-
ma 1 is now proved. =

LemMA 2. Let {X,;: j=1,2,...,k,; n=1,2,...} be a triangular array of
G-valued random variables satisfying the assumptions of Theorem 2. Let
Y1, ¥, €G. Then

[tkn] [vkn]
E[( ¥ 9&upydt Y 0Xni v2)°] = @oc00)+ @un(v2)
j=[skn]+1 j=uka]+1

uniformly in 0<s<t<u<v<lasn— . =




A functional central limit theorem 193

Proof. Write

Unjit=9(Xnj, y1)—Eg Xy, y)) and VW, ;:=g(X,;, y))—Eg(X,;, v,).
The difference between

[tkn] [vknl

E[( Y 9Kupyd+ Y g(Xup )]
J=Isknl+ 1 J=lukad +1
and
T Itknl [vknl 2
E[( X Uyt X TW))
J=Iskp]+1 J=luknl+1
is dominated by
[tkn] [rknl 2
[ Z lEg (Xn,j’ yl)l + Z |Eg (Xn,js J’z)l]
J=Iskn]+1 J=Tlukn]+1

which, by assumption (ii), converges to 0 uniformly in s, ¢, u, v as n— oco.
Therefore, it is enough to show that

[tknl [vkn]

E [( Z Un,j + Z V;l,j)z] - (ps,t (yl) + (pu,u (yz)

Jj=[sknl+1 Jj=lukn] +1
uniformly as n— co. Since

[thn] [vkn]

2
E[( X Uwt+ Y V)]
J=[sknl+1 J=lukn]+1
[tkn] 2 [vkn] 2 [tkn] [vkn]
=E[( > U.)+( X W)J]+2E[( 3 U.)( X VWl
J=Isknl+1 j=lukn}+1 j=lIsknl+1 j=[uknl+1

it is enough, by Lemma 1, to show that

[tkn] [vkn]
E[( 2 U X Vj]-0
Jj=[skn]l+1 Jj=Muknl+1

uniformly in s, ¢, u, v as n — oo. But this follows by using an argument similar
to the one in the last part of the proof of Lemma 1. =

We can now prove the required convergence of the finite-dimensional
distributions. Note that, for any positive integer k, the dual group of G* can be
identified with G*. ' A

LemMa 3. Let {X,;: j=1,2,..., k,; n=1, 2,...} be a triangular array of
G-valued random variables that satisfies the assumptions of Theorem 2. Then, for
every positive integer k and points 0 =1, <t, <t,<...<t, in [0, 1], the
distribution of the G*-valued random variable (S,,(t,), S,(t,), ..., S,(t,)) converges
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weakly to the Gaussian distribution with characteristic function

1 k k
. (yla Vasees yk)'_')exp|:_§ '21 (ptj—l.tj( Z.ym)ila (yls Vas oo yk)EGka
i= m=j

which is the appropriate finite-dimensional distribution for the limiting Wiener-
-type measure in Theorem 2. m

Proof. Choose a positive integer k and points ¢, <t, <...<t,in [0, 1].
Define a local inner product g, on G*xG* by

k
gi(x, y): Z g(x; y)

for all x =(xy, X5, ..., X)€G y = V1, Y2y -5 y)eG*, where g is the local
inner product already fixed on G x G. Define

(Xnp €5 ..., 0 for 1<j<[t k],
(e, Xnje,....,e) for [t k] <j<[tyk,],

(e,....e, Xnj) for [t-1k,] <j<[t.k,l
L(e, ..., €) for [t k,]<j<k

We now apply Theorem 1 to the new triangular array of G*-valued random
variables {X,;: j=1,2,..., k,;; n=1,2,...}. This array satisfies assumptions
(i) and (iv) of Theorem 1 for G*-valued random variables as immediate con-
sequences of the corresponding assumptions for the original array. Also

gk(Xn,ja )’) = g(Xn,ja ym) fOI' [tm 1 k ] <] [t ]9

where t, = 0, so assumption (ii) holds for {X, ;} with g, in place of g. It remains
to prove the appropriate version of condition (iii); namely that

kn
E[( Z gk(xn,js y))z] e 'p(Y)= ¢Il (yl)+¢t1,tz(y2)+ +qotk—_1,tk(yk)

i=1

as n— oo, This follows, however, from Lemma 2 (extended from two to k
summands) and the fact that

kn [tlkn] [tan]
Y 6Xnps =Y 9XKuio y)+ Y, 9Xnp ¥+
j=1 j=1 j=[t1kn]l+1

[tkn]

D Y 10 SR A §

J=[te-1kn] +1
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From Theorem 1 we can now deduce that the distribution of

kn
Z X"-.i = (Sn (tl)! Sn (tZ)_Sn (tl)! ey Sn (tk)_Sn (tk—l))
=1

converges weakly on G* to the symmetric Gaussian distribution with continu-
ous nonnegative quadratic form .

By straightforward algebraic manipulation of the characteristic functions,
this is seen to be equivalent to the conclusion of Lemma 3. m

The following lemma will be used to establish the weak conditional com-
pactness of the distributions of the processes {S,} on D.

LeMMA 4. Let the assumptions and notation be as in Theorem 2 and let p,
denote the distribution of the process S, on D. For each positive integer m and
1=0,1,2,...,mlet B,:= [lk,/m] and o, = B,—1 + 1. Suppose that the following
condltlon holds where U, ; = g(X,j, y)—Eg(X,;, »):

For every ye G, £ >0 and n > 0 there exist integers my and n, such that

6 P(max max U, £) <
(6) (1<l<m¢zx <k< i |JZ;“ JI U
whenever m = my and n = ng.

Then {u,} is weakly conditionally compact and if p is the weak limit of any
subsequence of {u,}, then u(C) = 1, where C is the subspace of D consisting of all
continuous G-valued functions on [0, 1]. =

Proof. The condition (6) in Lemma 4 is essentially the same as (6.13) in
Bingham [2] and in the same way, using assumption (ii) of Theorem 2 in place
of the approximate martingale condition, we can show that it implies the
second condition of Proposition 3 in Bingham [2]. That Proposition therefore
implies the present result, because by Lemma 3 we know that for each t€[0, 1]
the distribution of S,(t) converges weakly. =

Proof of Theorem 2. In view of what has already been shown, the
proof of Theorem 2 will be complete if it can be verified that the cond1t10n 6)
given in Lemma 4 holds. -

Fix yeG and let ¢ > 0. For o, < k < B, define

k
T.:= Y U,;, A:=[T]| <3¢ for every o; <j <k, |T| > 3e],

j=a

where, as before,
U"J:= g(X'l,j! y)_Eg(Xn,ja J’)

Then, for any positive integer r,

pi—1

() P(max [Ty>3)<P(G|>0+ Y P(4n0T~Tl >2])

ar<k<p; k=a
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pri—r—1
<P(Tlzo9+ ) P(G+r—Tl=9)
k=ay;
Bi—r-1 Bi—1
+ Y P(ANLT,—Td e+ Y PANIT~ Tl > &])
k= k=p—r
pi—r—1
P(Tpl= e+ ) P(TG+—Tl>¢)
k=11
Br—r—1 - T ’ pfi—1
+ Z PANP(Ty,— T Z o)+, (0)+ Y PANIT,— Tl > ¢))
k=a k=p—r
ﬂ1—r—1
SP(Tlzo9+ ) P(G+—Tl>e
k=11
+ max P(Ts—Tisd = O+, )+ max  P(|Tp—T;| = ¢).
a<ksp—r—1 ﬁ[ r<ksph—1

Given 6 > 0 choose r large enough to make y,(r) < 4 for every n. Then for
this fixed r we prove that, as n— oo,

8 r max P(Tp,—TJ = z-:)—>0
Bi—r<k<p—1

For each positive integer n and 0 < s <t <1 define

[tkn]

F..0:=E[( % U]

j=lsknl+1
Since
. 1
©) max P(T,—TJl>e<—- max E[T;,—T),
Bi—r<k<p—1 € p—r<ksp-1

it s enough to show that the right-hand side of inequality (9) goes to 0 as
n — oo0. But, if the right-hand side of inequality (9) did not go to 0, there would
be an # > 0 and a sequence of points {s,} such that

IIm—r/k,<s,<lm and F(s, l/m)>n for all n.
But then s, — I/m; so, by Lemma 1,

Fn (Sm l/m) = Qum,lm (J’) =0

which yields a contradiction. Therefore (8) must hold.

Next, as U,; =g (X,;, y)—Eg(X,,;, y), if we choose a neighbourhood
N of e in G such that |g(x, y)| < &/(2r) whenever x€ N, then assumption (ii) of
Theorem 2 implies that, if X, ;e N and n is sufficiently large, then |U, | < &/r.
Therefore |U, ;| > ¢/r implies that X, ;¢ N when n is sufficiently large. Hence,
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for large n,
fi—r—1 fi—r—1 k+r
Y P(G,—Tiz9= Y P( Y Un>¢
k=a; k=ay J=k+1
Bi—r—1 k+r
< )Y X P(U.i=em
k=ar j=k+1
TZ.PlU,Ul TZP(anéN)
o ji=a j=u
Assumption (i) now gives
fr—r-1
(10) limsup Y P(Tier—Ti>8)=0
n-*co k=a;

Since 6 was arbitrary, (7), (8) and (10) imply that

(11) hmsupP( max |Z U, =3¢ < 211msup max P( |Z U

nil =
qSkSP j=¢g, usksh

Let A be a constant such that ¢ < A < co. Then

B
(12)  max P(|Z U,|=ze

ausk<pr

< max P|ZU,,J| A)+ max P(A>|ZU,,j|

a<k<p a<k<p i=

<% max E[(Z U,,J,)]+ ps E[(Z U,)* 1(|Zl: U, < 4)]

a<k<p <k<p j= =k
Let s, be such that

(I-1))m<s,<lm and max E [(i U,)’] =F, (5,5 I/m).

k< h j=k

Then
F, (s, Ym) <|F (s, Ym)—(@ym ) ~ @5, )| + @y () — @5, ()

< an (Sy» I/m) “(Got/m 0 —os, (}’))I + Oym (V) — Oa-1ym(Y) = Oym (y)— ®a-1ym(y)

as n— o0 by the uniform convergence of F,, which was proved in Lemma 1.
Thus

(13) lim sup Z i max E[(Z ) ]< 2. ()

2
n—oo I= 1 al<k<ﬂ! A

which can be made as small as we like by choosing 4 sufficiently large.
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Write 4,¢0:= @ym()—@¢-1ym(y). We now prove that

B

(14) limsup max E[(}, U,,,j)41(|)ﬂj U, | < A4)] <3(4,0)
i=k

now “SksSh =k

Suppose that inequality (14) is false. Then there exists é > 0 such that the
maximum on the left is at least 3(4, )* + & for infinitely many n. For each n let
t,€ [(I—1)/m, I/m] be such that the maximum on the left-hand side is attained
at k = t, k;. We shall derive a contradiction. In order to do so, we can assume
without loss of generality that ¢, —» te[(I—1)/m, [/m] as n— .

Define

XI . X",]' for tnkn'“<'-j“‘<*-ﬂl=
" e otherwise,

Uji=9X5 5 y)—Eg (X ;5 ¥).

We claim that, as n— oo,

b
(15) Y. U,; converges weakly in distribution to A"(0, @¢ym(¥)),

Jj=a1
the normal distribution with mean 0 and variance ¢, ;,(y). To prove this we
can apply Theorem 1 to the triangular array {U, ;: j=«a, ..., fsn=1,2,...}
of real-valued random variables, taking G as the real line R. Assumption (i)
holds for {U, ;} as a consequence of assumptions (i) and (i) for {X;}.

Note that
U, < 2suplg (x, y)| =:¢ < 0.

xeG

Take a local inner product gz on R x R = R? such that gg (¢, &,) = &, &, for
|£,] < c and all ¢,€eR. For any £eR we have

E[gr Uy §)] = CE[U,;1=0,

so assumption (ii) of Theorem 1 holds, and

b1 i3}
E[(Y 9z (Uss O] = EE[(Y Un )]~ E00ym)

j=o j=u

as n — 00, so assumption (iii) holds with the quadratic form & & @, (). The
mixing condition for the U, ’s is implied by the corresponding condition for
the X, /’s. Therefore the claim (15) is valid.
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Consequently,

B b
lim sup max E[(2 U,,,j)4 (Y U, < A4)]
n—ow USkSh i=k =k

< A)] < 3(@1ym (Y))Z < 3(4,0).

B B
=limsupE[( ) U;,,j)41(| Y Uh,;

n—ow j=a j=a

But this contradicts the choice of the sequence {t,}, so inequality (14) is proved.
Using (14), we have

1 b1
(16) llmsup 42 max E[(Y U,; |Z U,j| < A4)]
now &y=1usSksh i=k =K
<33 Uor <o 4,05 4,0 <> (max 4
\84I=Zl( 19)° < ( max ch)l;1 19 < z(max 4,0)0, ().

By the (uniform) continuity of t+— ¢,(y), the last expression in inequality (16)
goes to 0 as m — o0. Combining this with (11), (12) and (13) we see that the
premises of Lemma 4 are satisfied, so Theorem 2 is proved. m
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