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CONVERGENCE OF WEIGHTED AVERAGES 
OF ASSOCIATED RANDOM VARIABLES 

BY 

PRZEMYSLAW M ATULA (LUBLIN] 

Abstract. We study the almost sure convergence of weighted 
averages of associated and negatively associated random variables. 
Our theorems extend and generalize strong laws of large numbers for 
positively and negatively associated sequences. We also present ap- 
plications of our results to almost sure central Iimit problem. 

1. Introduction. Let (X,),, be a sequence of random variables defined on 
some probability space (8, d ,  P). A finite family (XI, .. ., X,) of random 
variables is called associated if 

for any real coordinatewise nondecreasing functions f, g on Rn such that this 
covariance exists. It is called negatively associated if for any disjoint subsets 
A, 3 c (1, . . ., n) and any real coordinatewise nondecreasing functions f on RA 
and g on RE 

An infinite family of random variables is associated (negatively associated) if 
every finite subfamily is associated (negatively associated). These concepts of 
dependence were introduced by Esary et al. [5] and Joag-Dev and Proschan [7]. 
Basic properties of associated and negatively associated random variables may 
be found in [5], [7], [9] and [lo]. 

Let (a,),,, be a sequence of positive numbers. We set b, = ak and 
assume that 

(1) a,Jb,-+O and b ,+m a s n + m .  

Let us also define S, = zl=, X, and S: = EL=, akXk. 
In this paper we are interested in almost sure convergence of a sequence 

(S,* -ES,*)/b, to zero as n + a. This problem for positive random variables 
with uniformly bounded expectations was considered in [ 6 ] .  In the case a, = 1, 
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we have the strong law of large numbers which, for positively and negatively 
dependent random variables, was studied in [4], 181 and [9]. Our goal is to 
extend and generalize some of the results obtained in [4] and [g]. The con- 
dition (2) used in our main theorem is due to Etemadi [6], but in general our 
result cannot be obtained from his. 

2. Results. 

THEOREM 1 .  Let (X,), be a sequence of associated random variables with 
finite second moments, and a sequence of positive numbers satisjying (1). 
Assume that 

j = l  j=1  

Then as n n m, (S,* -ES,h)/b, -+ 0 almost surely. 

Setting a, = 1, k E N ,  we get b, = n and S,  = S,*. Thus Theorem 1 yields 
the following corollary: 

COROLLARY 1 (Theorem 2 of Birkel [4]). Let (X,),,, be a sequence of 
associated random variables with finite second moments. if 

then (X,),,, fulJils the SLLN, that is (S,-ES,)/n + 0 almost surely as n -r co. 

The following example shows that our Theorem 1 is more general than the 
mentioned result of Birkel [4]. 

EXAMPLE 1. Let be a sequence of independent random variables 
with the same standard normal distribution. We set 

Xn = I ( -  m,4 ((ti + . . . + <,)/&) for arbitrary u e R. 

(X,),,, is a sequence of associated random variables. In paragraph 2.1 of [12] it 
is proved that for j < n 

where @ denotes the standard normal distribution. Let us observe that for 
n/16 < j d n/4 we have 

For u < 0 and x < u, from the above it follows that 
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Therefore 

cov (X, ,  X.) 2 0 (u) (cp (fi u/2) - 0 (MI) > 0 
and 

Li141 

Cov (X,, Sj) 2 Cov (Xi, X j )  2 C . j  
i=Lf / l6]  

for some constant C. Consequently, (3) is not satisfied. But as in [12] we 
claim that 

Thus (2)  is satisfied and, for every U E  R, we have 

= 0 almost surely. 

Our condition (2) is the same as condition jb) used by Etemadi [6] but 
the following example demonstrates that our result cannot be obtained from 
Theorem 1 of [6]. 

I 

EXAMPLE 2. Let ((,),,, be a sequence of i.i.d. random variables such that 
, El,  = 1 and Eti  = 2 (e.g. exponential with parameter 1). For  EN let us put 

It is easy to see that (X,),,, is an associated sequence such that 

EX, = n+ ( n - l ) 2 - " + l  and Var (X,) > nZ for n  E N .  

Therefore neither Theorem 1 of [6] nor Theorem 2  of [4] is applicable in this 
case. But let us observe that for i < j we have 

Thus we get 

We conclude from Theorem 1 and the above inequality that 

1 " l  
- -(I, - EX3 + 0 almost surely as n -, oo . 
logn ,, , k 

Now let us state an analogue of Theorem 1 in the case of negatively 
associated random variables. This theorem extends some of the results ob- 
tained in [a]. 
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T ~ R E M  2. Let (X,),,, be a sequence of negatively associated random vari- 
ables with finite second moments, and (an),,N a sequence of positive numbers 
satisfying (1). Assume that 

Then as n n GO, (S: -ES,*)/b, + 0 almost surely. 

3. Some applications. Theorem 1 provides a very useful tool for proving the 
so-called strong version of the central limit theorem (see [Ill, [I23 and the 
references therein). In this section we state a result of this kind for associated 
random variables. 

In what follows let a: = ES; and denote by @ the standard normal dis- 
tribution. We shall also need the following coefficient: 

THEOREM 3. k t  (XnInEN be a sequence of associated zero mean random varia- 
bles such that S, hm bounded continuous density for every  EN. Assume that 

(6) ~ ( n ) = O ( e - ~ " )  for some R>0,  

(7) inf ai/n > 0, 
 EN 

(8) 

Then 

sup E 1X.1 < a. 
,EN 

1 " 1  
lim-x-I(- , , , , (SJak)=@(u) = 1  for all U E ( - C O , C O ) .  
n + r n l ~ g n ~ = ~  k I 

As in [l l] (Remark 3) one can easily get the following equivalent form of 
Theorem 3. 

COROLLARY 2. Under the assumptions of Theorem 3 

(10) P[lim sup I - 1 C " 1  -I ,-,,u, (SJak)-@(u) = O  = l .  
- m < u < m  logn,=, k I I 

4. Proofs* 

LEMMA 1. Assume that X I ,  . . ., X, are associated zero mean random ~ar i -  
ables with Jinite second moments. Then, for every E > 0, 

P [max(lS1l, . . ., IS,I) B E] < 8 ~ - '  ES;. 

P r o  of. Applying Corollary 5, formula (17), of 1101 we get 

P [max(O, S1, S2, .. ., S,) 2 E] < E - ~  E [max(O, S,, S2, . .., S,)]' < E - ~  ES;. 

Repfacing random variables XI, . . ., X, by -XI ,  . . ., - X, which are also 
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associated we obtain 

P[max(O, - S 1 ,  S,, ..., -S,) >, E] < 
Hence 

P Cmax (lsll, . . ., ISnl) 2 E ]  < P [max (0, S,, S,, . . ., S,) 2 ~/2] 

P r o  of of Theorem 1. Without loss of generality we assume that 
EXk = 0, k EN. Since b, 4 oo, for each k~ N we may define n k  such that 

b,, G Z k  < bn,+l .  
Let us observe that 

alIk + 1 I-- < - < I  
bn,+l Zk 

and by (1) we have bnk/2k -+ 1 as k + m. Therefore there exists a constant 
M > O such that, for every  EN, 

It is easy to see that if nk 2 j, then 2-k 6 bF1. 
Let E > 0 be given; then we have 

The Borel-Cantelli lemma implies that b,' S:k + 0 almost surely as 
k + m. Thus it suffices to prove that 

b k l  ' max ISf -S&I + 0 aImost surely as k + m. 
n k C i S n , + l  

Let us note that b k l  < 2M2b,,+,; therefore, applying Lemma 1 to random 
variables a ,+ lX , ,+ l ,  . .., ~ k + , X , + , ,  we get 

m m 

P [ b , l  rnax IS?-S.*,I 2 E] < 8 ~ - ~  C b ; 2 ~ ( ~ , * , , , - ~ , * , ) 2  
k=l ~ k < i Q n k + l  k = l  

This completes the proof of Theorem 1. 



342 P. Matuia 

Proof  of The  orem 2, The proof of Theorem 2 goes the lines of the 
proof of Theorem 1 and is based on Lemma 4 of [8 ]  instead of Lemma 1, so we 
omit details. 

We need the following version of Lemma 2.2 in [lj. 

LEMMA 2. Suppose X and Yare  associated random variabies with bounded 
continuous densities. Then there exists a constant C > 0 such that 

sup(P[X < r, Y g  y ] - P [ X  i x]  P [ Y C  )I]) g C(Cov(X, Y)) l i3 .  

. X.Y 

Proof  of Theorem 3. We shall apply Theorem 1, so we start with 
estimating the covariance of I ( -  ,,,, (Siloi) and I ( -  ,,,) (Sj/aj) for i < j .  In the 
consecutive inequalities, Ci > 0 denotes an absolute constant. 

We have 

$ C, (cov (SJoe sj/Crj))ll' 

Let us observe that by (6) there exists a constant C3 independent of i and 
j such that for any i < j we get 

Assumptions (7) and (8) together with Theorem 1 of [2] yield 

C4 .n<a :6C5 .n  for every  EN. 

Therefore we get 

(12) C0v3(I(- m,u) (si/ci) ,  I (  - m,u) ( s j / o j ) )  6 ~6 (i/j)'I3 a 

From (12) it follows that 

By Theorem 1 we have 

1 " l  
(14) - z - ( I ( -  ,,,, (SJak)- P [Sk/ak < u] )  + 0 almost surely 

logn,=, k 
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Now observe that our assumptions, by Theorem 2.1 of [3], imply 

(15) SUP IP [S,/o, < u] - @ (u)l < C7 - n - 1 / 2  log2 n. 
- w < u <  rn 

Thus 

From (14) and (16) we obtain the assertion. 
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