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Abstract. The control process that minimizes the quadratic per- 
formance functional associated with a quantum system whose evolu- 
tion is described by a Hudson-Parthasarathy type stochastic differen- 
tial equation in Fock space is explicitly computed. A "noisy" infinite- 
-dimensional Riccati equation appears for the first time and it is shown 
to have a unique solution. The solution to the control problem is used 
to derive the Fock space analogue of the Bucy-Kalman filter. The 
soIution to an associated optimal trajectory problem is also obtained. 

1. Introduction to stochastic calculus in Fock space. Using the ideas of the 
fundamental paper of Accardi et al. [I], Hudson and Parthasarathy construc- 
ted in [ll] a simple noncommutative stochastic calculus in boson Fock space 
that was shown to include the classical Brownian motion and Poisson proces- 
ses. Their theory has been parficularly useful in the study of phenomena related 
to quantum optics and the study of the dynamics of quantum particles in the 
presence of noise (see [4] and [5 ] ) .  We present here a brief summary of the 
basic ideas and results of the Hudson-Parthasarathy calculus that we are going 
to use, as found in [12]. 

Suppose that H ,  is a complex separable initial Hilbert space describing 
events (projection operators) and observables (self-adjoint operators) concern- 
ing a system. For H = P ( ( -  co, co), C) let 

be the symmetric (or boson) Fock space describing events and observables 
concerning a noise process (or heat bath). We use H o a r  to describe events and 
observables concerning system plus noise. 

The span of the exponential vectors 
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where f E H, is dense in r with respect to the inner product {$ (f), 1(1 (g)), = 

exp (f, g ) H .  We assume that inner products are linear in the second and 
antilinear in the first component. The set 

is linearly independent and its span is dense in H o @ T .  
Let /3 denote the D-algebra of Bore1 measurable subsets of [0, a]. The 

notions of time and adaptedness are introduced through the concept of 
a .LO; co)-valued obsertrabfe which is defined as a spectral measure on 
(LO, m), P) whose values are projection operators on H such that 
t ([0, m)) = I ,  the identity operator on H .  We assume that time is 
a [O, m)-valued observable 4. with no jump points, i-e. {({t)) = 0 for every 
t 2 0. To define the notion of adaptedness, let Do c H ,  and A c H be linear 
manifolds such that ([s, t ] )  f E A whenever f E M for all 0 < s < t < co. Let 
also, for each t 2 0, Htl denote the range of c([O, t]) and l e t h  andfI, stand for 
[([O, t ] )  f and [([t, + m))J respectively. A family X = (X( t . )  I t 2 0) of ope- 
rators from H , @ T  to H , @ T  is called an adapted process with respect to the 
triple ( < , D o ,  A) if for all t>O, V E D ~ ,  and ~ E A :  

(i) dom(XM) 3 span {v@$(f 1 I v ~ o , , f ~ A ) ;  
(ii) x(~)v@$(ft3~Ho@r(Ht,) ;  
(iii) X(t)v@rlr(f) = (x(sv@rlr(ftI))@$(J;t)- 
In addition, X is said to be regular if for every V E D ~  and f E A the map 

t E [O, co) + X (t) v@$ (f ) is continuous. 
For a [0, a)-valued observable 5 we define a 5-martingale to be a map 

rn: t E LO, co) -+ m, E H such that, for every t, mt E Htl and 5 ( [0 ,  s]) m, = m, for 
s < t. This notion will play a key role in the solution of the Fock space filtering 
problem through a suitable formulation of the concept of orthogonal Brownian 
motions. If rn, m' are t-martingales, then there exists a complex valued measure 
((m, m')) in [O, a) which has finite variation in every bounded interval and 
satisfies 

((my mr))([O, t]) = {q, mi), for all t-2 0. 

Iff, g~ H and m is a {-martingale, we denote the r-martingales t +f,l and 
t + gtl also by f and g, respectively, and we denote the corresponding measures 
by ((f ,  g ) ) ,  ( ( f 7  m)) and (@? g)). 

For a 5-martingale m we define, for each t 2 0, linear operators 
a ' ( d ,  r + r  on span{$(f) I f EH} by 
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The basic regular adapted noise processes in HOOT with respect to which 
stochastic integration will be considered are the following: 

A: = {A; ( t )  = i@a' (m,) 1 t 2 0) (creation process), 

A, = ( A ,  ( t )  = 1 8 a  (m,) I t 2 0 )  (annihilation process), 

where i denotes the identity operator on H,.  
For each t 2 0, A: ( t )  and A,(t) are dual operators. The process 

. . 3, = { B ,  (t) = A, ( t )  + A: (t) I t 2 0) 

is a standard Brownian motion formulated in the language of Fock space 
theory (see [ll] and [12]). 

The stochastic integral from 0 to t of a regular adapted process X 
with respect to the noise process N E {A:, A,} is the linear operator 
f , ~ ( s ) d ~ ( s ) :  H , @ r  + Ho@T defined on span { v B $ ( f )  I u s D o ,  f E A )  with 
matrix eiements 

t I 

(1.1) (v@$ (f), JX(s)dN@)u@$ (9) ) = j <vO$JCf 1, X I ~ ) ~ @ $ ( Q ) ) ~ P I ~ ) ,  
0 0 

where p = (( f, m)) or ({m, g)) according to whether N = A; or A,. 
If Y is another regular adapted process, then the joint matrix elements of 

X (s) dNl  (s) and f, Y (s) dN,  (s), where IVi c {A:, , A,,}, i = 1, 2, are given by 

where pi, p, and p,, are defined by the following tables: 

If X is a regular adapted process and z is a complex-valued measure of the 
form ((m, rn')), where rn, na' are t-martingales, then 
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while for two such measures T,, z, and a regular adapted process Y 

. . 
Moreover, for N E (A: , A,) and z = ({m', m")) 

t 

(1.6) ( j ~ ( s ) d ~ ( s ) v ~ t l , c n ,  I y ( s ~ a ~ u ~ ~ $ ( ~ ) )  
0 0 

t S 

= 1 (x (4 DO$ If 1 9  j Y ( z )  d t  Iz) W@ $ ( g ) )  d~ (4 
0 0 

+ j ( j x ( z ) w ( z ) v w ( f ) 3  ~ ( s ) m ~ t ( e j ) d ~ ( s ) ,  
0 0 

where p = ((m, g)) or ((f, m)) according to whether N = A: or A,. 
An adapted process X  = ( X ( t )  I t  2 0) defined as a stochastic integral by 

t 

x ( t )  = L (3) dr (s) + L, (s) dA, (s) + L, (s) dA: (s) 
0 

can be written in differential form as 

dX = (dX (t) I t  2 01, 

where dX (t)  = L,  ( t )  dz ( t )  + L, ( t )  dA, ( t )  + L, (t) d ~ , f  ( t ) .  

As a consequence of (1.2), (IS) ,  and (1.6) the products of the stochastic differen- 
tials of the basic noise processes are given by the following quantum lt6's table: 

where zmi = ((mi, mi)>, i = 1 , 2 .  
We remark also that if X and Y are adapted processes, then 

and that adapted processes commute with the stochastic differentials of the 
basic noise processes A, and A:. 
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Moreover, if T, is a positive measure on [O, m] absolutely continuous 
with respect to Lebesgue measure dt with Radon-Nikodym derivative drJdt, 
and if { I ( t ,  s)/t (respectively, s) 2 0) is for each s (respectively, t) a regular 
adapted process, then in the sense of equality of matrix elements we have 

which iiplies that 
t f 

(1.9) d 1 (t , s) dz ,  (s) = 3, ( t  , t) dr, ( t )  + j dR (t, s) dz, (s) . 
0 D 

Finally, we denote the dual of an operator K by K* while the unique 
positive square root of a positive operator K is denoted by K1I2. If K is positive 
and invertible, then K-'I2 denotes the square root of K - l .  The real part ReK 
of K is defined by (ReKx, y )  = Re (Kx, y). 

2. The optimal control problem. We suppose that the evolution of the state 
of a physical system (for example, the position of a quantum particle) is de- 
scribed by a Hudson-Parthasarathy stochastic differential equation of the form 

dX (t) = - [(FX + Gu + L) (t) d ~ ,  (t) + (@X + G) (t) dAL (t) + (YX + Q) (t) dAm (t)] , 

where z, = ((m, m)) is a positive measure on 10, co) absolutely continuous 
with respect to Lebesgue measure dt. Here and in what follows we use the 
notation and terminology established in Section 1. Equation (2.1) can equiva- 
lently be written in the integral form 

T 

(2.2) X (tj = C + j (FX + Gu + L) (s) dz, (s) 
t 

+ (@X + a) (s) d A,f (s) + (YX + e) (s) d A, (s) . 

We assume that the coefficients of (2.2) satisfy the following conditions: 
(a) ADAPTEDNESS. F, G, L, @, 6, Y ,  e, u are stochastic processes adapted 

with respect to the triple (5, Do, A), where the time observable 5 is as in Sec- 
tion 1. 

(b) BOUNDEDNESS. For every t E [ O ,  TI ,  F (t), G (t), L(t), @(t), a (t), !P (t), 
e (t), u (t), CE B ( H o @ r ) ,  the space of bounded linear operators from HOOT to 
itself, and 

sup IIJ'(t)ll < a, -.., SUP llu(t)ll < a. 
O < t d T  O < t < T  
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(c) STRONG CONTINUITY, For every h E H,@T, the maps t + F ( t )  h, 
t + G ( t )  h ,  . . . , t + u( t )  h are continuous in 10, TI. 

(d) TAMENESS coNDrnoN. Do,  A, @, !P are such that 

is dense in H,Or and for every s 2 0 and adapted process 

W = {W{t)€ B ( H , @ r )  I t >, s} with sup (1 W(t)( (B(HoBr)  < m, 
s $ t i T  

. . 

th& solutio~ K = { K ( t )  I s < t < T )  of the equation 

satisfies 

The tameness condition will play a role in the proof of Lemma 2.1. 

By modifying the proof of Proposition 7.1 of [llj, or of Proposition 26.1 
of [12], we can show that under conditions (a), (b), (c), (d) above, equation (2.2) 
has a unique regular ( 9 ,  D o ,  A)-adapted solution X = ( X ( t )  1 0 < t < T). 
This is accomplished using a Picard iterations type argument by showing that 
the sequence {X,],"=, of regular (t, Do, A)-adapted processes defined recur- 
sively by 

T 

( t )  = (Gu + L) (s) dz, Is) + o (s)  dA; (s) + Q (s) dA,  (s),  X o  ( t)  = C + 2 (t), 
t 

and for n =  1,2, 3, ... 

has the property that for each h E span {v@y (f) I v E Do, f E A] the sequence 
{ X ,  (t)h),"= , converges uniformly in [0, TI. The limiting process X can be 
shown to be the unique solution of (2.2). We notice that this solution depends 
on the control process u. 

By generalizing the ideas of classical stochastic control theory we associate 
with (2.1) and (2.2) the quadratic performance criterion 

where h E span { u @ y  (f) 1 v E Do, f E A )  is arbitrary and the processes Q, R, 
M satisfy the following conditions: 
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(a) M = &@IEB(H,QT) ,  a 3 0. 
(b) Q and R are ( 5 ,  Do,  A)-adapted processes with Q ( t ) ,  R (t)  E 3 (H,@T), 

Q(t), R(t) 2 0 for each t~ [O, TI, and 

(c) R has an inverse R-I = (R-I (t) ( 0 < t d T} which is also 
(t, D o ,  A)-adapted and such that, for every t G [0, TI, R -  (t)  E B (H,@T),  
~ - l ( t )  > 0 and 

. .. , sup 1IR-I (t) ll~(~,,er) < m. 
O < t < T  

{d) For each ~ E H , @ T  the maps t-,Q(t)h, t+R(t)h,  and t+RP1(t)h 
are continuous in LO, TI.  

Our goal is to find the control process u = {u(t) 1 0 < t < T )  that mini- 
mizes (2.3). In the case when Q = I, the identity process, the problem is equiva- 
lent to that of finding the control process u that will minimize the L:m-norm of 
X (.) h and the energy inner product (u  (t) h, R (t) u (t)  h )  . This viewpoint is 
particularly appropriate when X = {X (t) ( 0 ,< t ,< T )  represents the devia- 
tion from a desired trajectory, and the overall objective is to keep the system as 
much as possible "on target" 

In general, the sizes of Q and R represent the cost of having large values of 
X (deviations) and u (control force or energy) on the average over the time 
interval [0, TI,  while M represents the cost of having a large initial deviation. 

We notice that (2.1) is solved backwards in time. This is particularly suita- 
ble when one tries to solve the Fock space analogue of the Bucy-Kalman 
filtering problem by reducing it to a control problem as demonstrated in Sec- 
tion 4. 

For early work on the control and filtering problems associated with 
quantum dynamical systems we refer to the papers of Belavkin [6]-[8]. 

As in the classical stochastic control, the solution of the control problem 
(2.1), (2.3) utilizes an appropriate infinite-dimensional Riccati equation. In the 
classical theory the Riccati equation is deterministic (see [3] and [!I]). How- 
ever, in the Fock space control problem considered here, there is a need for 
a "noisy" Riccati equation, and to the author's best knowledge this is the first 
time that such a need has arised. 

LEMMA 2.1 (Riccati). There exists a unique regular positive ( 5 ,  Do, A)-adap- 
ted process P = {P(t) 1 0 < t d T )  de$fined on all of HOOT such that for every 
h i ,  h 2 ~ H o O r  

1 

(2.4) ( P  (t) h,,  h,) = ( M h , ,  h , )  + ([J ((F + Y@)* P + P ((P+ Y@) + @* P@ 
0 

+ Q - PGR- G V )  (s) d z ,  (s) + (8" P + PY) (s) dA, (s) 



228 A. B o u k a s  

Proof.  Equation (2.4) can be written as 

(2.5) d P { t )  = [ ( F s Y @ - G R - ~ G * P ) ( ~ ) ~ T , ( ~ )  +@(t )dA,C( t )  

+ Y ( t )  dAm (t)]  * P ( t )  + P ( t )  [(F + Y @ - GR - G* P)  ( t )  d ~ ,  ( t )  
+@(t)dA,f  (t)+ Y (t) dA,(t)]  

-I- @* P 8  ( t )dz , ( t )+ (Q + PGR-I G* P)(t) d.t,(t) 

or, equivalently, as 
.. . 

(2.6): P (1) = K ( t ,  01 iwK (r, OI* + j K (r, S )  [Q + PGR - G* 4 (s) K ( t ,  s)* dr, (s), 
0 

where K ( t ,  s) is the unique solution of the Hudson-Parthasarathy equation 

(2.7) dK ( t  , s) 

= [(F + Y@- GR- G* P)  ( t )  dz,  ( t )  + Qj ( t )  dA; ( t )  + Y ( t )  dA,(t)]* K ( t ,  s), 

Indeed, by (1.8) and (1.9), equation (2.6) implies 

t 

+ K ( t ,  s)  . (Q + PGR - G* P) (s) a dK ( t  , s)* dz, (s) 
0 

t 

+ [ d K ( t ,  s ) - ( Q + P G R P 1  G* P ) ( s ) . d K ( t ,  s)*dz,(s).  
0 

Replacing d K  ( t ,  0), dK ( t ,  O)*, dK ( t ,  s), and dK ( t ,  s)* by (2.7) and using quan- 
tum It8's table (1.7) to compute the products of differentials we see that the 
right-hand side of (2.8) is the same as that of (2.5). 

We interpret (2.6) through its matrix elements form 

where h,,  h,~span{v@y(f) I V E D ~ ,  f EA) and the existence of K ( t ,  s)* fol- 
lows from the fact that K ( t ,  s )  is defined on span { v Q y  (f) I  ED,, f E A )  
which is dense in HOOT. 
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Based on (2.6) we define the iteration scheme 

t 

+JK,(t,s)(Q+P,GRIG*P,)(s)K,(t,s)*dzm(s) for n > ~ ,  
0 

where K,(t, s) is the solution of the equation 

(2.10) d ~ , ( t , s )  

= [ (F -I- Y @ - GR - G* P,) (t) d ~ ,  (t) + @ (t) dAL (t) + Y' (t) dA, (t)] * K ,  (t  , s) , 

K , ( s , s ) = I ,  s d t < T ,  

where, by the tameness assumption, K ,  (t, s) E B (H,@T) for every t, s. 
Since M, Q ( t )  2 O and R- ' ( t )  > 0, (2.9) defines in each step a positive 

operator P,(t) on all of H O W .  
We will now show that, for all t E[O, TI and n = 1, 2 ,  . .. , we have 

0 < P, ,  (t)  < P,  (t). To that end we notice that (2.9) can be written, as in the 
proof of the equivalence of (2.5) and (2.6), in the form 

= [(F + Y Qr - GR - G* P,) (t)  dz, (t)  + @ (t)  dA& (t)  + Y (t)  dAm (t)] * P, + I ( t)  

+ P, + 1 (t) [(F + Y @ - G R  - G* P,) (t) d ~ ,  (t) + @ (t)  dAL ( t )  + Y ( t)  dA, (t)] 

+ a* (t)  Pn + 1 ( t)  @ (t) d ~ ,  ( t )  + (Q + P, GR - G* P,) (t) dz, (t). 

Letting A, (t) = P,+, (t) - P, ( t )  and using (2.1 1) we obtain 

(2.12) dA,(t) 

= [(F+ Y@-GR-I  G*P, , ) ( t )d~ , ( t )+Qr( t )dAL (t)+ Y(t)dA,(t)]* A,(t) 

+ A, (t)  [(F + Y@ - GR- G* PJ (t)  dz, (t)  + @ (t)  dA: (t)  + Y (t)  dA, (t)] 

+ (@* A, @) (t)  d ~ ,  (t) - (A,-, GR - G* A,- ,) (t) dz, (t) ,  A, (0) = 0. 

Thus 

which, in view of the positivity of R-I (s), implies that A, (t) < 0, thus proving 
{P, (t)),", to be a positive decreasing sequence, which therefore converges 
strongly to a nonnegative operator P (t)  on H , @ r .  As a strong limit of adapted 
processes the process P = ( P  (t) 1 0 < t < T }  is itself adapted. 
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Moreover, letting n -, Q in (2.10) and (2.9) we obtain (2.6). Thus P 
solves (2.4). 

Now, if PI and P, are two such solutions, then letting A( t )  = P ,  ( t )  - P ,  ( t )  
we obtain 

dA ( t )  = A (t) [(F + UV@ - GR- G* P,) ( t)  dz, ( t )  + @ ( t )  d A i  ( t )  + Y ( t)  dAm (t)] 

+ [ (F + Y@- GR-I G* P,)(t)dr,(t)+ @(t)dAL ( t )  + Y ( t )  dA,(t)]* A( t )  

+.,I@* A@) ( t )  azm(t) - (AGR-I G* n ) ( t )  d t ,  ( t ) ,  A (01 = 0 .  
. .. 

Thus, as in (2.12) and (2.13), A ( t )  < 0, i.e. P ,  ( t)  < P ,  (t). Interchanging P ,  
with P ,  we obtain the same result. Thus P,  ( t )  < P ,  (t), and so PI ( t )  = P ,  ( t)  for 
every t E [0,  TI, which proves the uniqueness. rs 

THEOREM 2.1. The performance criterion (2.3) associated with the Hudson 
-Parthasarcathy stochastic differential equation (2.1) is minimized by the control 
process u = R-I G* ( g  - PX) ,  where P is the solution of (2.4) and g is the solution 
of the equation 

(2.14) a g ~ t )  = ( ( - P G R - I  G*+Q* Y * + F * ) ~ - @ *  P C F + P Y D - P L ) ( ~ ) ~ T , ( ~ )  

+ (Y * g - Pa) ( t )  d A; (t) + (@* g - Pp) (t) dA, ( t) ,  g (0) = 0. 

Moreover, the minimum value is 

(2.15) minJ (u )  = (Ch ,  P ( T )  C h )  -2Re (Ch ,  g ( T )  h )  f <b ( T )  h,  h ) ,  
u 

where 
t 

(2.16) b( t )  = j [(a* Pa-g* G R P 1  G*g-2Re(g* Yo)-2Re(g* L))(t)dz,(t) 
0 

- 2Re (g* CF) ((t) dA2 (t)  - 2Re (g* g) ( t )  dA,  (t)] 

P r o o f .  Let h ~ s p a n ( v @ y ( f )  I VED, ,  f E A )  and for ~ E [ O ,  TI define 

(2.17) H ( t )  = { X  (t) h , P (t)  X ( t)  h ) - 2Re ( X  ( t )  h , g ( t )  h )  + ( b  (t) h , h )  . 

B y  (1.8) we have 

dH (t)  = ( a x  ( t)  h , P (t)  X ( t )  h )  

+ ( X ( t ) h ,  [dP(t).X(t)+P(t)-dX(t)+dP(t)-dX(t)] h )  

+ (dX (t)  h,  [dP (t)  . X (t) + P ( t )  . dX (t)  + dP (t)  . dX (t)] h )  

- 2Re ( d X  (t)  h,  g ( t )  h )  - 2Re ( X  ( t )  h,  dg ( t)  h )  

- 2Re (dX (t)  h , dg (t)  h )  + (db (t) h , h )  . 
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Replacing dX (t), dP (t), dg (t), db (t) by (2.1), (2.4), (2.14), 12-16)> respectively, and 
using (1.7) to multiply the stochastic differentials dA,, dA;,  d ~ , ,  after several 
cancellations we obtain 

By (2.181, using P (0) = M ,  g (0) = 0 and h (0) = 0, we obtain 

- {X (0) h, MX (0) h). 

Moreover, by (2.1 81, 

+ ((PGR-I G* g)(t) h, X (t) h) - ((g* GR-I  G* g) (t) h, h) ]  dz, (t). 

Now, 

J (u) = [(Ch, P (T) C h )  - 2Re {Ch, g (T) h) + <b (T) h,  h )  

On the right-hand side of (2.21) we replace J(u) by (2.3), and in view of 
(2.19) we replace the second brackets by (2.20) to obtain after cancellations 

J(u) = (Ch, P(T)  Ch) -2Re {Ch,  g (T) h) + (b(T) h, h) 
T 

+ J [(u (t) h, (Ru)(t) h) + (X(t)h, (PGR- G* P)(t)X(t) h)  
0 
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which is minimum when the integrand is zero for all h and t ,  i.e. when 

A separate place in classical stochastic control literature is reserved for the 
linear regulator problem in which the noise coefficients in (2.1) are independent 
of-X;.The Fock space analogue of that problem is described in the following: 

COROLLARY 2.1 (linear regulator). The performance criterion (2.3) associated 
with the Hudson-Parthasarathy stochastic dz8erential equation 

dX (tl = - I(FX + Gu) (t)  dz, ( t )  + a ( t )  dA,f ( t)  + Q ( t )  d ~ ,  (t)] , 
(2.22) 

X ( T ) = C ,  O g t g T < c ~ ,  

is minimized by the control process u = R-I G* (g-PX) ,  where P is the solution 
of the deterministic Riccati equation 

and g is the solution of 

dg ( t)  = (- PGR- G* + F*) ( t )  g ( t )  dz, ( t )  

and the minimum value is 

min J (u) = (Ch ,  P (T )  Ch)  -2Re {Ch, g (T) h )  + ( b  (T)  h, h ) ,  
u 

where 
t 

b (t)  = [(rr* Pa -g* GR-I G* g) ( t)  dz,(t) 
0 

- 2Re (g* a )  ( t)  dA: ( t )  - 2Re fg* a)  ( t)  dA, (t)] . 

Proof.  The corollary follows from Theorem 2.1 by taking in (2.1) the 
equalities L = @J = !P = 0. a 

The control process u obtained in Theorem 2.1 is of feedback or closed- 
-loop type since it utilizes the solution X to stabilize the system. In the linear 
regulator case we can show that there exists an open-loop control process u (i.e. 
one that does not use X) that is as good as the feedback control process u of 
Corollary 2.1. In fact, we have the following 
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THEOREM 2.2. Let K = ( K ( t )  = -(R-' G* P)( t )  [ 0 < t G T ) ,  where P is 
the solution of (2.23) and let D = ( f l ( t )  I 0 4 t < Tj be the solution of the equa- 
tion 

(2.25) dQ(t)  = -(F+GKGK)(t)g(t)dz,(t), f l ( T )  = I ,  

where I is the identity operator on H,@r. The open-loop control process 

(2.26) 
T 

uo = (uo (t) = K ( t )  9 ( t )  [C + 1 Q- (s )  ((GR - G* Q) (s) d ~ ,  (s)  + o (s)  d ~ , f  (s) 
. . t 

+d(s)d~.(s))] l 0 4 4 i T), 

where g is the solution of (2.241, is an optimal control process for the linear 
regulator problem of (2.22) and (2.3). 

Proof. Let Y = ( Y ( t )  I 0 < t < T )  be the solution of the equation 

d Y ( t )  = - [(F Y+ Gu,) ( t)  d.cm ( t )  

(2.27) 
+ (GR- G" s) ( t)  dzm ( t )  + a It) dA2 (t)  + e ( t )  dA, ( t ) ]  , 

Y ( T )  = C ,  0 6 t < T, 

or, equivalently, of the equation 

(2.28) d Y ( t )  = - [(F ( t)  Y ( t )  + (GKQ) (t)  Z ( t))  dz, ( t )  

+(GR-'G* g)(t)dz,(t)+a(t)dA: ( t)+e(t)dA,(t)] ,  
where 

Y ( T ) = C ,  O G t G T ,  
T 

Z (t) = C + j D - ' (s) ((GR - G* g) (s) dz, (s) + a (s) dA: (s) + g (s)  dAm (s)) . 
t 

We notice that i2 ( t )  Z ( t )  is also a solution of (2.28) since, by (1.8), 

d (St ( t )  Z (t)) = dO ( t )  - Z ( t )  + D ( t )  . dZ (t)  + dS2 ( t )  . dZ (t)  

= - ( F  + GK)  (t)  D ( t )  dzm ( t )  Z ( t )  

- f l  ( t )  S2 - ' ( t)  ((G R - ' G* g) (t) d z, ( t )  + 0 ( t )  dA; ( t )  + g ( t )  dA, (t)) 

+ (F + GK) (t)  Q (t) d ~ ,  (t) -9- ( t )  ((GR - G* g) ( t)  dzm (t)  

+ fl It) dA,+ (0 + e (t)  dA, (0) 
= - (F + GK)  (t)  Q ( t )  Z ( t )  dz, (s) 

- (GR-I G* g)  ( t )  dz, ( t )  - o ( t )  dA; ( t )  - Q ( t)  dA, ( t )  + 0 (by (1.7)) 

= -(Fit) Q (t) Z ( t )  dz,(t) + (GK) (t) fl(t) Z ( t)  d.c, (4 
+ (GR - G* g )  ( t )  dz, ( t )  + ~7 ( t)  dA,f ( t )  + e ( t )  dAm (t)) 

4 - PAMS 16.2 
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and 
a ( p c  = r.c = c. 

Thus Y (t)  = fi ( t )  Z ( t )  and (2.28) becomes 

which is the same as (2.22) with u replaced by R-I G* (8- P X ) .  
Thus Y = X, where X is the solution of (2.22) corresponding to the op- 

timal feedback control process u found in Corollary 2.1, and so the value of the 
performance functional (2.3) for the open-loop control process u, of (2.26) is the 
same as that for the closed-loop optimal control process of Corollary 2.1. H 

3. The orbit tracking problem. Theorem 2.1 can be used to solve the prob- 
lem of finding the control process that will drive the output of a physical 
system close to a desired trajectory in an optimal fashion. 

Specifically, we assume that the evolution X = { X ( t )  I 0 d t d T) of 
a physical system is described by the Hudson-Parthasarathy stochastic dif- 
ferential equation (2.1), and that the desired trajectory is described by an adap- 
ted process 

where a, P, y are adapted processes and a ( t ) ,  (t) ,  y ( t ) ,  6 E B ( H , @ r )  for each 
t E EO, TI. We consider the problem of finding the control process u that mini- 
mizes the orbit tracking functional 

for every h E span { v @  y ( f )  I v E D o ,  f E A ) ,  where Q, R, M, z, are as in Sec- 
tion 2. The solution is provided by the following 

PROPOSITION 3.1. The orbit tracking functional J of (3.2) is minimized by the 
control process 

where P = ( P  ( t )  I 0 < t < T )  is the solution of (2.4), g = { g  ( t )  I 0 < t < T )  is 
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the solution of the equation 

and the minimum is 

(3.4) min:J (u) = ((C - 6) h , P ( T )  (C - 6)  h )  
U 

where -2Re<(C-d)h, g ( T ) h ) + < b ( T ) h ,  h ) ,  

- 2Re (g* (Y U + Q + y ) )  ( t )  dA, (t). 

Proof.  Let Y = X-U. Then (2.11, (3.11, and dY = dX-dU imply 

d Y ( t )  = - [(FX + Gu + L + a) ( t )  dz, ( t )  

which is of the same form as (2.1). The proof is completed by a direct appeal to 
Theorem 2.1. m 

Of particular importance is the minimization of the orbit tracking func- 
tional (3.2) in the case when U = {U ( t)  I 0 < t < T }  is the unique unitary 
solution of .the Hudson-Parthasarathy equation 

dU ( t)  = (iK -$NN*) - U (t)  dz, ( t )  - Fn\T* . U (t)  dAL ( t )  + N . U (t)  dA,  ( t ) ,  
(3.6) 

U ( T )  = I ,  

where 1 is the identity operator on HOOT, K = K@1d7 N = N@1d, 
W = @@I~EB(H,@T), with Id denoting the identity operator on T, is 
unitary, and a is self-adjoint (see Section 7 in [ l l ]  and Section 26 in [12]). In 
that case we can prove the following 

PROPOSITION 3.2. With X and U as in (2.1) and (3.6), respectively, the orbit 
tracking functional (3.2) is minimized by the control process 
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where P = (P(t) I 0 d t < T )  is the solution of (2.4), g = (g( t )  I 0 < t  < T) is 
the solution of the equation 

+(Y*g-P(@U+a-  WN* ~ ) ) ( t ) d A ;  (t)  

+ ( @ * s - P ( Y U + Q + N V ) ) ( ~ ) ~ A , ( ~ ) ,  ~ ( o )  = 0 ,  

and the minimum is 

(3.8) m i n J ( u ) = ( ( C - I ) h , P ( T ) ( C - I ) h )  
U 

where 
-2Re ( ( C - I ) h ,  g V ) h > + < b ( T ) h ,  h ) ,  

-2Re (g* 'P (@U + o- W N *  U)) -2Re (g* (FU + L +(iK - ~ N N * ) u ) ) )  ( t )  d~, , , ( t)  

- 2Re (g* (8U + 0 - WN* U))  ( t )  dA: ( t )  - 2Re (g* (Y U + Q + NU))  (t)  dA, (t).  

Proof.  Let Y = X - U .  Then by (2.1) and (3.6) we have 

dY( t )  = - [((FX + Gu + L ) ( t )  + (iK - ~ N N * )  . U ( t )  dz, (t)) 

+ ( ( 8 X  + a) ( t )  - WN* . U ( t))  dA; ( t )  + ( ( Y X  + e) ( t )  + N . U ( t))  dA, ( t)]  

= - [((FI.'+ Gu) ( t)  + (FU + L) ( t )  f (iK - ~ N N * ) )  . U (t) dz, ( t)  

+ ((@ Y+ 8 U  + C) ( t)  - WN*) U ( t )  dA,f ( t )  

Y ( Y ) =  C - I ,  

which is of the same form as (2.1) and the result follows directly from Theo- 
rem 2.1. rn 

4. The noise filtering problem. The filtering problem is that of the optimal 
estimation of the state of a system based on noisy observations of it. 
A well-known method of solution of the linear filtering problem is that of 
showing that it is dual to a control problem with duality exhibited through 
a Riccati type equation ( [ lo] ,  Section 9). 

In Section 1 it was pointed out that if 5 is a [0, m)-valued observable and 
m is a 5-martingale, then the process 

B, = ( B ,  ( t )  = A, (t)  +A: ( t)  I t  2 0) 
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is a standard Brownian motion written in the language of quantum probability. 
If p is another c-martingale such that, in the notation of Section 1, 
((m, p)) = 0, then we say that the Brownian motions B, and B, are ortho- 
gonal. If ({my G ) )  = 0 and for every t 3 0 

d ( < m ,  m)) 10, t l  = d ((P, P)) LO, t l  , 
then we say that the Brownian motions B, and 3, are compatible. The exist- 
ence of at least two nontrivial (-martingales m and p with the above compat- 
ibility property implied by the following 

LEMMA 4.1. Let denote the Bore1 a-algebra of [0, a), Iet H = P(R, C),  
and le t ,  P ( H )  denote the set of projection operators from H to itselj: De$ne 
<: /?+ P ( H )  by t ( E )  = x ~ ~ ( - ~ ~ ' I ,  where - E  = {-x I X E E ) ,  x denotes charac- 
teristic function, and 1 is the identity on H.  De$ne also m: t~ [0, m) 4 ~ , E H  
and p:  t € [ O ,  co] + ~ , E H  by  m, =  XI-,,^, and ,ut = , y [ ~ , ~ ~ .  Then ({m, p)) = 0 
and, for every t 2 0, d ((my m)) LO, tl = d ( ( P ,  P ) )  LO, t l .  

P r  o of. It is easy to see that is a [0, co )-observable. Moreover, for each 
t > , O  

0 t 

, P = j ds = 0, (m,, m,) = J ds = t = jds = { p t ,  pt), 
I-t.Oln[O.tl t o 

and for 0 6 s 6 t 

Thus ((m, P ) )  = 0 and d ({m, m)) LO, t ]  = d ((p, P)) [0, t ]  = dt, where 
dt is the usual time differential. H 

Generalizing [ll], Section 5, we assume that all processes appearing in 
this section are adapted with respect to the triple (l, Do, A), where g is 
a [0, a)-observable, Do c H, ,  where H ,  is a separable Hilbert space and 
where, given two compatible r-martingales m, p, a manifold A c H is such that 
for every 0 $ s < t < co and f EA we have (([s, t ] )  f EA and ~ e ( { m ,  f)) 
= Re((p, f )) = 0. For example, if (, m, p are as in Lemma 4.1, we can take 
A to be the real manifold of all bounded purely imaginary functions in 
LZ (R ,  C). This requirement implies by (1.1) and (1.2) that the noise processes B, 
and 3, are uncorrelated in the sense that, for all t 3 0, u E Do and f E A, 

and have zero expectation in the sense that, for all t 2 0, U E D ~  and f €A, 
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for all processes X, X Z for which foX(s)dB,(s), Eb Z(s)dB.(s) and 
I so Y* (s) dBm (s) make sense. The Fock space analogue of the classical linear 

filtering problem is formulated and solved in the following 

THEOREM 4.1 (Bucy-Kalman). Let T E  [0, co] and suppose that the state 
@ = {@(t) I 0 < t < T )  o f a  system is described by the Hudson-Parthasarathy 
equation 

(4.1) d@(t)  = @(t)A( t )d . r , ( t )+u( t )dB, ( t ) ,  8 ( 0 )  = @,, 0 < t < T, 
.. . 

and is available only through an observation process Il = { f l ( t )  I 0 < t d T }  
d e$ned by 

14.2) W t )  = @ ( t )  K ( t )  d ~ ,  ( t)  + Q ( t )  d ~ ,  ( t ) ,  n (0) = o,  
where B, and 3, are compatible Brownian motions and Y, A, CT, K, q are adapted 
processes with Y (t), A (t), cr(t), K(t), Q (t),  8, E B (Ho@r). 

Then thefiltering process y = { y  ( t )  1 0 6 t < TI which is defined linearly in 
terms of the observation process I7 by 

(where, for each t ,  u ( t ,  * )  = {u ( t ,  s) I 0 < s < t }  is adapted and such that, for 
every h e B ( H , B T ) ,  jb llu(t, s)hl12hm(s) < m) and which minimizes at each 
t E [0 ,  17 the filtering error 

for every v E Do, f E A, is the solution of the equation 

dy 0) = [ (A (0- K 0) te* el-' (0 K* (0 P(t))  Y ( t )  

+ @ ( t)  K f t )  (Q* el- ' (0 K* ( t )  P (t)] dzm ( t )  

+ e (t)  (e* el-' ( t )  K* (t) P ( t)  dB, ( t) ,  
(4.5) 

Y (0) = 0 ,  

where P = {P( t )  I 0 < t < T )  is the solution of the deterministic Riccati equa- 
tion 

dP ( t )  = [A* ( t)  P ( t)  + P ( t )  A ( t )  +(a* a)  ( t )  
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Remark. Equations (4.1), (4.2), and (4.3) are interpreted as the duals of the 
Hudson-Parthasarathy equations 

d@* ( t )  = A* ( t )  @* (t) dz, (t) + LT* ( t )  dBcr ( t ) ,  di* (0)  = @$ , 
d l l * ( t ) = K * ( t ) @ * ( t ) d ' ~ , ( t ) + ~ * ( t ) d B , ( t ) ,  IT* (0 )=0 ,  

and 

. . 
respectively.: 

Proof of T h e o r e m  4.1. For each ~ E C O ,  TI let X = { X ( s )  I 0 < s < t) 
be the solution of the equation 

(4.7) dX  (s) = [ - A  (s) X (s)  + K (s) u (t, s ) ]  dz ,  (s) ,  X ( t )  = I 

By (1.7) and (1.8) we have 
t t 

j @ ( s ) - d X  (s)  = @(s).X(s)lL-Id@(s).X(s), 
0 0 

which by (4.7) and (4.1) implies that 

from which we obtain 
t t 

(4.8) 8 (t) = Go X (0)  + @ (s)  K (s) u ( t  , s) dz,  ( s )  + 1 a (s) X (s) dB, (s). 
0 0 

By (4.8), (4.3) and (4.2) we obtain 
t f 

(4.9) @ ( t )  - Y (0 = 8, X (0) + j LT (s) X (s) dB, (s) - J Q (s)  u ( t ,  s) dB, (s) ,  
0 0 

and so for each h = v @ y ( f )  with V E D , ,  f € A ,  by (1.1), (1.2) and the com- 
patibility of B, and 3, we obtain 
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In view of (4-10) the filtering problem reduces to the control problem of 
finding the process u = {u (s) ef u (s ,  t) I 0 < s G t) that minimizes the per- 
formance criterion 

where X is defined by (4.7). By Theorem 2.1 we obtain 

where P = {P(s )  I 0 d s < t )  is the solution of the deterministic Riccati equa- 
tion 

dP (s) = [A* (s) P (s) + P (s) A (s) + (a* c) (s) 

In view of (4.12), equation (4.7) can be written as 

(4.14) dX (s) = [ - A  (s) + K (s) (Q* Q )  - ' (s) K* (s) P (s)] X (s) dz, (s),  X ( t )  = I .  

As a function of t the solution X = {X (s) ef X ( t ,  S )  I 0 < s < t )  of (4.14) 
satisfies the adjoint equation (see [2] and [ l o ] )  

or in the integral form 

whicki yields 

t 

+ d17 (s)-(Q* Q)-' (s) K* (s) P (s). 
0 

Replacing d17(s) by (4.2) and then using (1.1) and (1.4) we can apply 
Fubini's theorem to the double integral on the right-hand side of (4.17) 
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to switch the order of integration. By (4.12) and (4.3), equation (4.17) im- 
plies 

t 

. . + I d n ( s ) * ( ~ * e ) - ' ( s ) K * ( s ) P ( s ) .  
0 

Consequently, we obtain 

(4.19) dy 0) = CA - K (Q* el- ' It) K* (t1 P (t)l Y (0 d ~ ,  (t) 

+ dn (t). CQ" el - (4 K* (t) P (t), y (0) = 0 ,  

which using (4.2) becomes 

14.20) d~ (t) = [(A - K (t) (Q* Q ) -  (t) K* (t)  P (tj) ( t)  

.+ @ (t) K (4  (e* el- ' It) K* (t) P (t)] d ~ ,  lt) 

+ e (0 ' (e* el- ' tt) K* (0 P (4  dB,,, (0, y (01 = 0. 
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