
PROBABILITY . 
AND 

! MATHEMATICAI. STATISTICS 

VoL 17, Faac. 1 (1991), pp 1-20 

M-ESTIMATION FOR LIINEAR REGRESSION 
W H  INFINITE VARIANCE 

Abstract. The limiting behavior of M-estimates for a Iinear model 
when the regressors and/or errors have heavy tailed distributions is 
given. By hermy toil we mean that the distribution is in the domain of 
attraction of a non-normal stable distribution or, equivalently, that the 
tail probabilities are regularly varying at infinity with exponent 
a E (0, 2). These results are applicable to both least squares and least 
absolute deviation estimators. The limiting distribution of the mini- 
mum dispersion estimate is also derived and its performance is com- 
pared with that of the M-estimate. 

I. Introductio~. In this paper, the limiting behavior of M-estimates for 
a Iinear model when the regressors and/or errors have heavy tailed distribu- 
tions is given. Consider the Iinear model 

(1-1) = X:B+Zi, i = 1 ,  ..., n, 

where Xi = (Xil, . . ., Xid)', i = 1, . . . , n, are independent and identically dis- 
tributed (iid) random vectors with joint distribution function F (written 

iid 
I more concisely as (Xi):,  - f'), f l =  (jl, . . . , Ba)' is the parameter vector, and 

iid 
, {Zi)y='=, -- G are the errors. The regressors (Xi);='=, and errors (Zi);, are also 

assumed to be independent. The M-estimate f l  of fl  is defined as any minimizer 
of the objective function 
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with respect to 4 = (4,, . . . , #,)', i.e. $ is a solution to the following equations 

where $ (x) = g' (x) . 
The distribution F of the regressors will be heavy tailed by assuming that 

F is in the domain of attraction of a multivariate stable distribution with index 
tx~(0, 2). This implies, in particular, that the regressors have infinite variance. 
In some situations, a similar condition will be imposed on the distribution of 
the errors, only with index y ~ ( 0 ,  21. 

In Section 2 we consider the case of a simple linear regression model 
(d = l), where the inderlying distribution F of the independent variable X is 
in the domain of attraction of a stable law. The weak convergence of the 
M-estimate is established under mild regularity conditions on the score func- 
tion I,$ (x). In particular, if a, is the 1 -n-I quantile of the distribution of IXJ, 
then a, $-D) converges in distribution to a random variable which is defined 
as the minimum of some stochastic process. 

In Section 3 we specialize to the class of loss functions given by Q (x) = lxlAy 
A 2 1 with A = 2 and A = 1 corresponding to the least squares (LS) and least 
absoIute deviation (LAD) loss functions, respectively. For this class of loss 
functions, it is easier to describe the interplay between the loss function and the 
heaviness of the tails of F and G on the performance of the M-estimator. For 
example, if the tails of the error distribution are heavier than those of the 
regressor, then the LAD estimate performs better than the LS estimate. 

Section 4 extends the results of Sections 2 and 3 to the multiple linear 
regression setting. In addition, M-estimates are discussed when a location pa- 
rameter p, is incorporated into the modeI. 

Another popular method of estimation, at least when G has a stable dis- 
tribution, is to minimize the dispersion of the errors (see for example Blattberg 
and Sargent [2]). In Section 5, we derive the limit distribution of the dispersion 
estimator for the simple linear model and compare its performance with that of 
the Mestimate. 

As mentioned earlier, the limit random variable of the normalized 
M-estimator can be described as the minimizer of some stochastic process. If 
the distribution of the errors and the stable index of F are known, then it is 
possible to generate replicates of the minimizer of this stochastic process by 
repeated replication of the stochastic process. However, in the typical situation 
both F and ol are unknown. To overcome this difficulty, a bootstrap procedure 
can be implemented to approximate the sampling distribution of the M-es- 
timate. Provided one chooses a bootstrap sample of size m, with m,/n + 0, the 
bootstrap estimate of the sampling distribution of the M-estimate is consistent. 
This result is similar in spirit to that obtained by Athreya et al. El] and is 
discussed in Section 6. 
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2. Simple Pweaa regressiom. Let (II;., Xi), i = 1, . . . , n, be observations from 
the simple linear model 

iid iid 
where {Zi)f= - G and (Xi):=, - F. It is further assumed that F belongs to the 
domain of attraction of a stable law with index 0 < o: < 2 (denoted by F E  (a) 
or X i ~ 9 ( a ) ) ,  i.e. there exist a slowly varying function L(x) at a, constants 
0 < p ,  q 6 1, p+q = 1, and ct~(O,2), such that 

I (2.2) I - F ( x ) - p x - " L ( x ) ,  F(-x)-qx-"L(x1 a s x - t m .  
I 
j Then the partial sums x:=, Xi, suitably centered and scaled, converge in dis- 

tribution to a stable distribution. The scaling constants are given by 

I 
Now for a given loss function ~(x) ,  the M-estimate fl  of the regression 

coefficient p is defined as any minimizer of the objective function 

which may also be found as a solution to the equation 

where Il, (x) = et (x). The traditional derivation of the asymptotic distribution of 
the M-estimator is to first show that it is consistent and then to expand g'(#) in 
a Taylor series around the true regression parameter P. Replacing by 
fixi + Zi , we have 

L€ the remainder term R,, is o,(n112), then, under suitable moment conditions on 
i Il,(Zi), $'(Z,), and Xi, the asymptotic normality of 

follows directly from the central limit theorem and the strong law of large 
numbers. In the heavy tailed case, however, a, plays the role of n1I2 and R, is 

I . not o,(aJ. In fact, if a, is the correct scaling for 6-#?, then, for any integer k, 
I the k-th term of the Taylor expansion of (2.4) divided by an is 
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To overcome these obstacles with a Taylor series expansion, we work directly 
with the objective function - viewing it as a stochastic process indexed by #. 
This approach is the same as the one employed in Davis et al. [ 5 ] .  

To carry out this program, note that the parameter estimate fl  which 
minimizes (2.3) also minimizes x:=, [Q (Zi - (4 - f l )  Xi) - p (Zi)] , which can be 
rewritten as 

Building the normalization a, into our pkameterization, we define the se- 
quence of stochastic processes wn(~)  on R by 

Then, for each fixed a, 6, = a, (p- f l )  minimizes the stochastic process W, (u) 
in (2.5). If one codd show that the stochastic processes Wn(u) converge in dis- 
tribution to a limiting process W(u), then one would expect that, under reaso- 
nable conditions, ti, would also converge in distribution to 12, the minimizer of 
W(u). This is the content of the following two theorems. 

THEOREM 2.1. Let {(x, Xi)}:=, be observations from model (2.1), where 
i id  iid 

{Xi};= F with F satiSfYing (2.2), {Zi}7=1 G, and the two sequences {Xi)$  
and {Z,)!, are independent. Let Q (.) be a loss fknction whose score function 
$ (x)  = e' (x )  satisfies : 

(a) $I.) is Lipschitz of order zl, 

for some constant 2, > max (a - 1 ,O)  and some positive constant C; 
(b) E I$ (Z1)l'* < co for some z, > a;  
(c) E$(Z1)=O $ a 2  1. 

Then on C(R), W,(u) converges in distribution to 

where (Z,) ,  {a,), {rk) are sequences of random variables as given in Proposi- 
tion A.l of the Appendix. (C(R) denotes the space of continuous functions on R 
and convergence is defned as ungorm convergence on compact sets.) 
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Proof. The convergence of the hite-dimensional distributions is straight- 
forward using Propositions 8.1-A.3 in the Appendix. It thus suffices to show 
that Wn(.) is tight on C [ - M ,  MI for any M > 0 (see Proposition 4.18 in 
Resnick El31 or Theorem 23, p. 108, in Pollard [ll]). For M > 0 fixed we see 
by the mean value theorem that, for all u,  V E [ - M ,  MI, 

Since l@)-Zil < (luJ v lul)a;l IXtl < M a i l  IX,I, this last term is bounded by 

From Proposition A3 it follows that 
n 

a; Xi $ (23 = Op (1) and ' IXiI1+" = Op (I) 
1=1 i =  1 

so that the above bound is lu - vl 0, (1). The tightness of Wn (.) on C [- M, MI 
is now immediate. 

THEOREM 2.2. If e(.) is convex and satisJies the conditions of Theorem 2.1, 
and W(.) attains a unique minimum at u* a.s., then 

For the proof see Lemma 2.2 of Davis et al. [5]. 

Remark 2.1. If the loss function e (x) is chosen to be strictly convex, then 
the limiting process W(u) will be strictly convex a.s., and thus Q is unique a.s. 

The distribution of the limiting random variable Q depends on the choice 
of the loss function et), the error distribution G, the skewness parameter p, and 
the stability index u of F. Even if all of these parameters are known, tabulating 
the distribution of Q via simulation is a formidable task. Nevertheless, resam- 
pling methods can be implemented to approximate the sampling distribution of 
a,, (8- /3) (see Section 6). 

3. Special case when e (x)  = 1x4" A 2 1. In this section we specialize to the 
class of convex loss functions given by e (x)  = 1x15 A 2 1 .  We first concentrate 
on the case when e is strictly convex, i.e. 1 > 1, and then we will return to the 
LAD (A  = 1) case at the end of the section. 

For A > 1, the score function $ (x)  = kc<" = rl lxlL-l sgn x (where s(') 
= Isl' sgns), and hence condition (b) of Theorem 2.1 becomes E IZ1I("')" < co 
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for some z, > a. This necessarily implies that EIZll'A-lla < m. NOW, if the 
distribution of Z1 is also heavy tailed, say 2, ~ g ( y ) ,  then one should choose 
I small enough to lessen the effect of the exceptionally large residuals. In fact, 
condition (b) of Theorem 2.1 is met, and hence the conclusion of Theorem 2.2 
holds, when 1 is chosen such that A- 1 < y/a. On the other hand, if this in- 
equality is reversed, then the correct scaling for B-P will be of smaller order 
than a,. In other words, if possible, one should always choose li such that 
11- 1 < y/u. 

iid iid 
. 'THEOREM 3.1. &t Q (x) = IxlA, R > 1, (Xi& - F E 9 (a), (Zi)7=, - G E 9 (y), 

where 0 < u < 2 and 0 < y < 2. Further, assume that E [XiZ$"l>] = O if 
y/(A-1) 3 1. Let a, and 6, be the 1 -n-l quantiles of the distributions of 
IX,I and IZll, respectitrely, i.e. 

Then if A > y/u+ I, we have on C(R)  

where 
n 

W, (u) = C [(cnZi - ua;' xil" 1cnZilA], 
i =  1 

c, = a:/(" I) b,' , and S(y/(A- I)) and S (ol/rl)  are independent stable random 
variables with indices y/(A- 1) and u/L, respectively. Moreover, 

Note that c, + 0, so that the scaling ancn goes to infinity at a slower rate 
than a,. 

Proof. By inequalities 1.4 and 1.5 of the Appendix, we have 
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Since XI and Z1 are independent, IXllj~ 9(or/j), and IZ1l"-j~ (?/(A -j)), it 
follows that 

and hence c, = a:/('-') b i l  + 0. Now, for the case K > 2, 

i= 1 
- . = max (ci-', ( b , ~ , ) ' - ~  a i 2 )  Op(1) 

= max (ci- ', aid/(" '1) 0, (1) = o, (1). 

Similarly, for 1 < b + 1 < A < 2, we have 

Therefore, 
n 

In the case when a < A, the convergence of the finite-dimensional dis- 
tributions of W,  (u) is easily established since Xi Z,<" l )  E 9 (y / (A-  I)), and 
y/(A - 1) < a. In particular, a point process argument, similar to the one used in 
Davis and Resnick [6], shows that 

where S (y/(d - 1)) and S (a/A) are independent stable r.v.'s with indices y/(A - 1) 
and a/A, respectively. Note that no centering is needed here since u/A < 1. 

The tightness of {W,) on C(R) is immediate since the W,'s have convex 
sample paths (see Remark 1 of Davis et al. [5]) .  Thus Wn converges in dis- 
tribution on C(R) to 

which has a unique minimum at 
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This, combined with the strict convexity of W, (u), proves (3.1) in the case a < y. 
For ol > A, 

and hence 

Since the limit process has a unique minimum at li = 0, the second case of (3.1) 
follows. 

Remark 3;1. The scaling constants for p-fl grow at a slower rate for 
A 2 y/ct + 1 than for 1 c y/a + 1. Hence one should choose, using prior infor- 
mation about or and y if possible, a loss function with R < y/u+ 1. 

Re m ark  3.2, For certain choices of A, such as R > max (o l ,  y/a+ I ,  u/(ol- y)}, 
is not even consistent. (In this case, anc, + 0.) 

By combining the results of Theorems 2.1, 2.2 and 3.1 with A = 2, the 
asymptotic behavior of the LS' estimate can be summarized as follows. 

COROLLARY 3.1. Under the assumptions of Theorem 3.1, the least squares 
estimate fi, of /3 has the following asymptotic behavior: 

where 

s (4 = Z, dl, r;lb, ~ ( a / 2 )  = c r;:lQ and s ( y )  = 2 5 62k r;:h 
k =  1 k =  1 k =  1 

are stable r.v.'s with indices a,  0112 and y, respectiuely, S(y) is independent of 
S(a/2). (% sequences (dik)?= and (rik)F= , i = 1 ,  2, are independent copies of 
the sequences (6k)F=l and {rk)F=l described in Proposition 14.1.) 

A version of this corollary was established by Daren Cline (personal com- 
munication) by using more analytic methods. 

Remark 3.3. In the case when F E 9 ( 2 )  and y < 2, there exists a sequence 
in = nh(n), where h t )  is a slowly varying function such that 
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(see Feller [lo]).  Thus, with c, = ii,l12/b; l ,  we have 

= -224 b ; l ~ ~ z ~ + ~ ~  CIX: n+ 5 m - Z U S ( ~ ) + U ~ ,  
1= 1 i =  1 

which implies 
P 

i nK1  (BLs-B).;., S(Y) .  

Remark 3.4. In the case y = a and E 1x1" = E IZIa = m, we have XI 2, 
€$(a) (Cline [3]), If d,, is the I -nhl quantile of X1 Z 1 ,  then &/a, + co, 
i,,/b, -, oo (see Davis and Resnick [6]), and hence 

n 

Wn(u) = [ l a , i ~ 1 Z i - u ~ - 1 X , l a - l a n 4 Z i 1 ~  
1=1 

n n 
9 

= - 2 u K 1  Xi Zi + u2 a; X; n2m - 2uS (a) + u2S (a/2), 
i = l  i= 1 

where S(a) and S(a/2) are independent stable r.v.'s with indices a and a/2, 
respectively. Thus 

We conclude this section with a discussion of the LAD estimate (i.e. g (x )  = 1x1). 
In this case, 

n 

K (u) = C [IZi -uaL xil - lzill, 
i= 1 

and the natural candidate for the limiting process is 

which is well defined when a < 1, because I W(u)l < Lm=, I u l K  ' l a  < m a.s. If 
a 2 1, additional assumptions on the behavior of 2, near zero are required in 
order to ensure that the defining sum for W converges. 

THEOREM 3.2. Let {Xi) F E l (a) and ( Z i )  G be two independent se- 
quences of random variables with 0 < a < 2. Assume that either 

(a) u < 1;  or 
(b) u > 1, E IZIIV ca for some .z < 1 -a and Z1  has median 0; or 
(c) a = 1 and E(lnlZlt) > -a. 
Then 
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Moreover, if W(.) has a unique minimum u.s., then 

where is the LAD estimate of fl, and ti minimizes W t ) .  

Proof.  The proof is nearly identical to the argument given for Theo- 
rem 4.1 in Davis et al. [ 5 ] ,  and hence is omitted. 

4. Mdtivariate regressors and unknown Pmation. In this section, we de- 
scribe how the results of the preceding two sections for the simple linear model 
can be extended to the multivariate linear model, 

where f l =  IS1, . . . , jd)', Xi = (Xil, , . .) Xid)', i = 1, . . . , n, are in Ed. We con- 
sider the asymptotic behavior of the M-estimator under the following two 
types of heavy-tailed conditions. 

ASSUMPTION 1. F is d-variate regularly varying, i.e., there exists a sequence 
an + co and a Livy measure p on ( R ~ ,  B(P)) such that 

(4 is vague convergence on Rd\(O, 0, . . . , 0)) or, in polar coordinates, 

where S is a probability measure on the (d-1)-dimensional unit sphere 
d 

sd-I = ((tl, ..., td)€Rd, C t? = 1) 
i= 1 

(see Resnick [13]). 

ASSUMPTION 2. The components of XI are independent (F = F1 . . . F,) 
with F j € 9 ( a j ) ,  j = 1, ..., d. 

The M-estimate f l  minimizes the objective function 

with respect to q5 E Rd. As before, we build the parameter normalization into the 
objective function and treat this new object as a stochastic process. Under 
Assumption 1, the normalization will be the same for each of the coefficient 
parameters, and the relevant stochastic process is given by 
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where U E ~ .  Then, for each n, ri,* = a,@-#I) minimizes Wil)(s). Under As- 
sumption 2, each component of the parameter vector may require a different 
normalization, so that the required stochastic process is 

H 

Wk2)(u17 ..., ud) = f ~ ( Z ~ - u ~ a i ~ X ~ ~ -  . . . - ~ ~ a i l X ~ ~ ) - ~ ( Z ~ ) ] ,  
i= 1 

where 

anj = infix,: P (lXljl > x) < l/n), pj = Iim P(X1j > xb 
r - r m  P(IXljl > x)' 

Then if d,* = (li,*l, ..., gad)' minimizes W,, the j-th component is equal to 

an] (Bj - Pj). 
The following results are straightforward generalizations of the arguments 

given in Theorems 2.1, 2.2 and 3.1 for the simple linear model. 

COROLLARY 4.1. Assume that the Ioss function ~ ( x )  satisJies conditions 
(a)-(c) of Theorem 2.1, where under Assumption 2, a : = max (al, . . . , ad). On 
c @"I, 

5B 
W ~ ) ( U )  + W(i)(u) for i = l , 2 ,  

n+oo 

where under Assumption 1, 

and under Assumption 2, 

Here {rkI), . . . , { r k d } ,  (8kl},  . . . , {d,), {Z,}, d {h} y e  independent sequences 
d 

of random variables (vectors) where for each i, {rki) = {rk}, and {aki)  = (6,) 
({rk}..pnd (4) are as defined in Proposition A.l with p = pi), { Z k }  111 6, and 
{qk} S (S is the distribution given in (4.2)). Furthermore, ifthe lossfunction Q (-) 
is convex and W(.) has a unique minimum Q € W d  a.s., then 

COROLLARY 4.2. Let Z ,  E 9 (y),  0 < y < 2, Q (x)  = fxlR, R > max (a, y/a + 1) 
and deJine 
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where c, = uA1("-l)b,l and b, is the ( l -n-l)-quantib of IZ,I. Then, under 
Assumption 1 ,  

where 

d 
{Sj (~;'(n - f))] j=  and {Sj (tl/A)}:= are ~to~hustically independent, each is a stable 
vector with intensity measure given by the vague limits of 

nP ( b ~ l  X i Z j L - I )  E.) and n ~ ( a ; " ( l ~ ~ 1 ' ,  . . . , IXldllZ) E -1, 
respectively. Moreover, since W ( s )  has a unique minimum at B = (til, . . . , l id) with 

we have 

Unknown location. An intercept term can also be included in the model 
without much d=culty. For the linear model with intercept Po, 

the M-estimate (to, $) of (/lo, f l )  minimizes 

with respect to +o and 4. For brevity we assume that the distribution of 
Xi satisfies Assumption 1. Let 

where uo = n1l2 (4, -Po), and u = an (#- 8). The minimum of W,* occurs at 
fro = n112(fio-#lo), Ei, = a ,@-p) .  If a') has a Lipschitz continuous derivative 
$('), then R,, = o,(l).  To see this note that 
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= C [h(Zi-ailX:u)-h(&)], 
where i = i  

and hence 

= 0, (1). 

If t,b(.) also has a Lipschitz continuous derivative $ I ( . )  and E($(Z1)I2 < m, 
then on C (R) 

where Z is a normal r.v. with mean zero and variance E$~(Z,). The limit 
process is minimized at 

Z/E$' (Zl) - N (0, w2 (Zl)/tE$' (Z11I2). 
Also, as before, 

and since W(-) and Z ( - )  are independent, we have 

where Z and ei are independent. 
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5. Iteast dispersion estimation. In this section we consider the least disper- 
sion estimate for the simple linear regression model, 

iid iid 
where (Z,]q= - G E 9 (7) and (Xi):, , - F E 3 (a) with 0 < a, y c 2. We say 
that a linear estimate f l  = z:, ci &, where cl, . . . , c, are functions of 
XI,  . . ., X., is unbiased if zyl c i X i  = 1 a.s. (If the mean of 4 exists and 
EZ,  = 0, then such an estimate is unbiased.) The summability constraint on the 
cGs implies that 

Given XI,  . . . , X,, the dispersion or relative dispersion of $- P (see Cline and 
Broskwell [4] and Davis and Resnick [6 ] )  is given by 

lirn PCIP-BI > z  I Xi,  -..,x,) 
= lim p(IC,,cizi(  > z l XI, - - - ,  XJ 

z + m  P(lz~l > 2) z + m  P BZll > 2) 

where the last equality follows directly from the proposition on p. 278 of Feller 
[lo]. The least dispersion estimate flLD is then defined as the estimate which 
minimizes the dispersion of $-P among all linearly unbiased estimates. In 
other words, /jLD = xy=, ci 4, where the cis minimize xy=, Icily subject to the 
constraint 'j'=, c, Xi = 1 a.s. 

One may interpret the dispersion as the asymptotic scale (raised to the 
y power) of $-8. In fact, if the 2;s have a symmetric stable distribution, then 
the dispersion is equal to the y power of the scale of f l - p  conditional on 
XI, . . ., X,. Moreover, for any linear unbiased estimate we have 

for all large z (for all z if Z1 has a symmetric stable distribution). 
The least dispersion estimate has an explicit form given by 

where z, satisfies: IX,.I = maxis, IXjl. Blattberg and Sargent [2] discuss the 
merits of this estimator relative to LS and LAD. The following theorem gives 
the asymptotic distribution of BLD. 

THJ~REM 5.1. FOP the simple linear model given in (5.1) whme EZ1 = 0 if 
y > 1, we have 
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where the sequences (a,) ,  (dk}, and {rk} are as defined in Proposition A.1. Note 
that in the y > 1 case, the limit random variable is a ratio oftwo dependent stable 
random variabIes with indices a (y  - 1) ~ P l d  CI (y - 1 ) / y ,  respectiuely. 

Remark  5.1. While the least dispersion estimate and the M-estimate use 
the same scaling a,, the iirnit distribution for the least dispersion estimate is 
more tractable, at least if y is known. The limit distribution in Theorem 5.1 
remains valid even if Z, 6 9 (y). For example, the conclusion of the theorem 
holds if 2, E 3 (7) is replaced by E IZ,IS < oo for some 6 > or (y  - 1). This makes 
the choice of y less critical. In this case, however, the LD estimate no longer 
has the interpretation as the linear unbiased estimate which minimizes the 
asymptotic scale of j-8. 

Remark  5.2. For y  > 1, the least dispersion estimate PL, may be expres- 
sed as a weighted least squares estimate. Using the weights, 

I 

flLD minimizes 

As expected, the weights increase for heavier tails of the noise (y decreasing). 

6. Baotstmpphg the M-estimate. Direct application of the results in the 
preceding sections for making inferences about the parameter vector is dif- 
ficult without having more detailed information on the distributions of the 
regressors and noise. For example, in the simple linear model situation of 
Theorem 2.2, a 95% confidence interval for fl  is given by 

where ~ 0 . 0 ~ ~  and u , . , ~ ,  are the 0.025 and 0.975 quantiles of the limit random 
variable ii. Unless F is completely known, even the normalizing constants 
a, are difficult to estimate. The scaling problem may be obviated by using 
random normalization. Since 

D 
an- Mn : = a; m a  {lXl 1, . . . , lXnl} nzm r; lIa, 

it is easy to see that 

(6.1) 
9 ~ ~ ( # l , - p ) ~ ~ ~  IT:= ir:Ia. 
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The remaining task is then to compute the quantiles of the distribution of u". If 
one can simulate from the distribution of the noise, and the a and p parameters 
of F are known, then it is possible to simulate replicates of ti, and hence 
compute the relevant quantiles. However, in the case when the distribution of 
the noise and the parameters of F are unknown, bootstrapping methods may 
be used to approximate the distribution of M,, (Bn -b). 

To implement the bootstrap in this context, let (x, Xi) be observations 
from the simple linear model (2.1) and suppose bn is the M-estimate of /? under 
the loss function @.which is assumed to satisfy the assumptions of Theorem 2.1. 
~ e n o t e  the estimated residuals by 

2 = x i = 1 ,  ..., n, 
and let 

n 

fn(z7 = (n-I I= 1 1(2i < ~ ) ) ( n - l  i = 1  I{X~ < XI) 

be the product distribution based on the empirical distributions of (Z1, . . . , 2,) 
and (XI, . .. , XJ, respectively. Next, a random sample ((ZF, XT), i = 1, .. ., m,) 
is generated from the distribution Pn from which we get bootstrap replicates of 
the r s  given by 

The bootstrap replicate Bgn of Bn is then computed as the M-estimate based on 
the obervations (Y:, XT), . . . , (Y&. Xh), i.e., pgT;. minimizes xz, p (Yr - q5XT). 
If M: denotes the maximum of IXTI, . . . , IX:nl, then it is shown in Davis and Wu 
[9] that, provided m, -+ co and m,Jn + 0, 

B 
where + is convergence in probability relative to the weak topology on the 
space of probability measures on R and O = (Xj]j"= l,  = {Yj}y=l. 

This section contains the technical complements to Sections 2-5. Much of the 
requisite background material on point processes, as we1 as notation and defini- 
tions, can be found in Davis and Resnick [a, Resnick [13], and Davis et al. [5] .  

iid iid 
P R O ~ O N  A.1. Let {Xi)% - F and (Zi )$ l  - G be idpendent  sequences 

where F E 9 (a), 0 < a < 2. Set 



Linear regression with illjinite variance 17 

Then 

in the space M ,  {[ - ma m] x ([- ma m]\O)} of Radon point measures on 

where (Zk), {ak), irk) are independent sequences of random variables, { Z k ) r =  
i id 
.Y G, { a k )  are iiid with, P (ak ,= , 1 )  = p = 1 - P (ak = - 1) with p given in (2.2), and 
rk = El + :. . + fika where Ei9s are iid exponential r.v.'s with mean 1. 

The proof is clear from Resnick [13]. 

PRows~no~ A.2. Let g ( x ,  y)  = [Q (x + y)- Q (x)] 1 (lyl > 61, S > 0; then 

The proof is clear from Proposition A.1. 

PROPOSITION A.3. Under the assumptions of Theorem 2.1, for any E > 0 we 
have 

l i r n % ~ ( ~ ~ , ( ~ ) - ~ , ( f ) l  > E) = 0, 
6-*0n+m 

where f (xa Y) = L?(x+y)-e(x). 

Proof. We have 

where l(?)-zil < lul a; IXil. It follows easily from pp. 89-91 of Resnick [12] 
that 

Also the partial sums zyT a; ' Xi Q (Zi) mverge in distribution without cen- 
tering since the distribution of X i Q ( Z i )  is in 9 ( u ) .  For 0 < a < 1, centering 
is not required, while for 1 < a < 2, assumption (c) in Theorem 2.1 implies 
E(X1 Q (Zl)) = 0. For u = 1, it is straightforward to check that assumption (b) 
also implies 

2 - PAMS 17.1 
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so that centering is not needed in the u = 1 case since X I  $(Z, )  is in the 
domain of attraction of a symmetric Cauchy distribution. It follows, by ap- 
plying standard point process arguments to (A.1), that 

- B  41 

+ ( C Jk r k  11= $ (Zk), C Bk ri l l a  $ (Zk) i (r; lla > S)), n+ m 
k =  1 k =  1. 

whence 

Denoting the above limiting random variable by U,, we obtain the following 
formula for its characteristic function: 

(A.2) E exp ( i tUd) = exp ( - JJ (1 - eiLxM"3 G (dz) v (dx)) 
l r l  <a 

= exp (- J] [ l -  cos (tx$ (z)) - i sin (a$ (z))] G (dz) v (dx)), 
1x1 < 6 

where v(.) is the Livy measure of a stable random variable. Now 

11 [1 -cos (tx$ (z))] G (dz) v (dx) = j It$ (z)la 1 (1 - cos u) v (du) G (dz) 
1x1 <s IuI <Blt@(~)l 

< Itla 1 I $  (z)la G (dz) j (1 -cosu) v (du), 

and since (1 - cosu) is integrable with respect to v (du) on (0, co) and 1 I $  (z)la G (dz) 
is finite, the double integral converges to 0 as S -, 0. When 0 < a < 1, sinu is 
integrable with respect to v, and thus the second term in the double integral 
converges to 0 as 6 -, 0. If a 3 1, 

jj sin [tx$ (z)]  G (dz) v (dx) = jj [sin (tx$ (2)) - tx$ (z)] G (dz) v (dx), 
1x1SB 1x1 <a 

and since (sin [tx$ {z)] - a$ (2)) i(lx1 < 1) is integrable with respect to 
G(dz) v (dx), the integral in (A.2) converges to 0 as 6 + 0. We conclude that, for 
all E > 0, 

n 

hlK~[l ~ ; ' X ~ $ ' ( Z ~ ) I ( U ; '  lXil < 6)1 > E ]  = 0. 
d - 0  n-w i = l  

The following inequalities were used in the previous sections. We state 
these without proof. 

INEQUALITY 1.1. For any fixed R > 2, there exists a constant C depending 
on d only, such that for any z E R and for any fixed R > 2 there exists a constant 
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C depending on A only, such that for all Z E R  

INEQUALITY 1.2. For any fixed 11 > 2 there exists a constant C depending 
on A only, such that for any Z E R  

INEQUALITY 1.3. If 1 < A < 2, then there exists a constant C such that 

lll+zl"l-1~1~-LZ1 < Cl~l~+~, 
where b + 1 <  I < 2. 

INEQUALITY 1.4. If 1 > 2, then for any x, y E R  we have 

(!X+ y l A -  I ~ l ~ - ~ y l ~ - a ~ ~ + - l ~ l  G c [ ( Y I ~ - ~  1x1 +yZ1~lb2]. 

INBQUALITY 1.5. If R < 2, then for any x, ~ E R  we have 

I 1 ~ + ~ f " ~ l ~ - I ~ l ~ - A ~ x ~ ~ - ~ ) 1  $ CI~l~+llxl~-l-~. 
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