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AND 

MA'rHEWTICAL STATISPICS 

AN INTERACmNG FREE FOCK SPACE A N D  ARCSINE LAW 

Abstract. Motivated by previous investigations of the interacting 
central limit theorem for the quantum Bernoulli process and of the 
stochastic limit of quantum electrodynamics, we construct some exam- 
ples of interacting free Fock s p m  which realize the fxst non43aus- 
sian (neither free, nor Bose nor Fermi or q-deformed) examples of 
quantum independent increment processes: the mixed momenta am 
not expressible as products of pair correlations. We give general rules 
to compute the vacuum expectation of products of creation and an- 
nihilation operators. By these rules, my moment of fidd operator 
becomes computable. We also obtain the precise expression of the 
distribution of the field operator. This is not the Wigner semi-elliptical 
law (even if we start from the free Fock space) but in some sense its 
reciprocal, that is the arcsine law. 

1. Introduction. Interactingfiee Fock (IFF) space was motivated originally 
by investigation of the stochastic limit of the quantum electromagnetic field 
(see [l] and [2]). Later, some example of IFF space appearsin consideration of 
central limit behaviour of the quantum Bernoulli process (see [3]). In [4], IFF 
space is studied systematically. 

It is well known that the usual free Fock (let us say UFF) space over 
a given (pre-)Hilbert space Z is the (pre-)Hilbert space 

On the n-th space #@", the usual tensor Hilbert structure is defined. Such 
a Fock structure comes from the free central limit theorem and is studied by 
many authors (see C7-J and the references therein). 

Remark. In the present pitper, we shall not distinguish a pre-Hilbert 
space from its completion, just we say Hilbert space. 

Similar to the UFF case, the IFF space, suggested by the central limit 
theorem of quantum Bernoulli process and the stochastic limit of quantum 



electromagnetic field, over a given Hilbert space H is defined as 
m 

(1.2) r,(iP):= &1@ Q s,, 
n =  1 

where #' = 2, for any n 2 2, algebraically X, = &'On but on which a dif- 
ferent scalar product is defined. 

In order to be precise, we shall restrict ourselves in this paper to the 
following case : 

(i) 2 : = I? (M, dp), where M is a measurable space, and p is a a-finite 
measure on M; 
. - (ii) there exists a sequence of measurable functions (A, (xi, x,, . . . , x,)),", , 

(A,: Mn + R+ is called an n-th interacting function) and two sequences of posi- 
tive numbers {b,, a,},"= such that, for any n E N,  

where (and in the following) we adopt that O/O : = 1; 
(iii) the n-fh Hdbert space 3, is obtained by introducing on the vector 

space Sari the scalar product 

where F,, G,E&'@", Q means the algebraic tensor product, and on %, the 
usual procedure is assumed to be done, i.e. take the quotient space and make 
completion with respect to the scalar product defined by (1.4). 

Of course, if we take Il,(x,, x,, .. . , x,) as f (xl).. . f (xJ for some positive 
measurable function f E I? (M, dp), the IFF space 4 (I.? (M, dp)) becomes 
a UFF space. 

In the present paper, first of all we introduce basic concepts concerning 
IFF space and diduss some of its general properties. Then, in Section 3, we 
investigate the IFF space over the Hilbert space l?([O, 17) with interacting 
function 

&(xlr X2, x,) = XI,(X~~ X2,  . * - ,  xn), 
where 

(i) 0 < T < + co, and if T = + a, for any n E [O, T) the intervals [a, TI 
and (a, T'I are understood as [a, + oo) and (a, + a ) ,  respectively; 

(ii) by A, we denote the subset of [0, an in which x, < x, < ... < x,. 
In this case, we give rules to calculate the vacuum expectation of the 

function of creation and annihilation operators. As an application of the gene- 
ral rules, we show that, for any t~ [0, TJ and any continuous function t, the 
distribution of the field operator with test function { x ~ ~ , ~  has the probability 
density function 

1 
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where q, : = So Ill2 (s) ds, and for v,  = 0 the above distribution is considered as 
the one-point distribution at zero. In particular, for any t ~ ( 0 ,  Tj, the dis- 
tribution of the field operator with the test function Xro,*] has the probability 
density function 

This is nothing else but the density function of the arcsine law (or distribution). 
A quantum stochastic calculus theory on IFF space is investigated in [5] 

and some othkr inkacting Fock spaces are discussed in [6] .  

2. h m e  discussions on general IFF spaca In this section, we give some 
general properties of IFF space over a certain Hilbert space I? (M, p). Some of 
them have been studied in [4]. 

DEFINITION 2.1. The vector 

is called the vacuum of the IFF space G(%'). For each g E se", the linear opera- 
tor A+@),  defined by 

for any n~ N and G, E Sn, 

is called the creation operator (with the test function g~&'). In particular, for 
any 919 ..-, g n ~ & ,  

Remark. By our assumptions on the interacting functions, for any g E S 
the creation operator A+ (g) brings the null element of the (n+ 1)-st space to 
zero, and therefore the creation operator is well defined. 

We have proved in [4] the following result: 

LEMMA 2.2. For any g ~ 2 ,  the creation operator A+ (g) maps Sn into 
&'n+l and is bounded on each Sn: 

Given a test function g EX, the creation operator A+ (g) is not necessarily 
bounded on the IFF space T, (S) (of course, it is bounded on each SJ and the 
boundedness depends on the sequence of the interacting functions {A,},"=, . But 
the discussion in (41 makes sure that A+ (g) is an operator densely defined 



on the IFF space T , ( 2 ) ,  and the set 

is included in 9 ( A +  I ~ ) ) ,  the domain of A+ (g). 
Since A+ (g) is an operator densely defined, its essential adjoint exists; it 

will be denoted by A(g) and called the annihilation operator (with the test 
function g E 8'). For any g~ 2, the annihilation operator A (g) has the fol- 
lowing properties: 

and moreover, for any n = 1 ,  2, ..., WEN, Fm-l~Sm-l, G,E%~,  

On the IFF space, although the creation operator is defined as that on 
UFF space, the annihilation operator takes a different form and it depends 
strongly on the interacting functions. In fact, we have 

LEMMA 2.3. For any n E IV, the annihilation operator A (f) on the (n + 1)-st 
space Sn+ is bounded md for the bound & - IJ f 11 and for any Gn+, E Xnc 

where (and in the following) the O-th interacting function A, is defined to be 1. 

Remark. The proof is essentially the same as that of the lemmata (2.4) 
and (2.5) of [4]. 

In the following, we consider creation and annihilation operators only on 
To (i.e: we do not distinguish the operators themselves from their restrictions on 
To), and therefore they are the adjoints of each other. 

Now we try to understand the vacuum expectation of a product of many 
creation and annihilation operators: 

where m E N, E E (0, lIm9 f1 , . . . , fnr€ S and, for any E' E (0, 11, 

As a consequence of the following facts: the creation operator sends Xn 
into Hn + , , and the annihilation operator sends Xn into Xn + and brings So to 
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zero (in the following we shall call them the basic facts) we know that (2.6) is 
equal to zero if rn is odd. Thus we need only to study 

Again due to the basic facts we know that the quantity (2.8) differs from zero 
only if EE (0, 1)2+", where (0, I)? is the subset of (0, 1)'" determined by the 
following properties : 

ti) z::, 6 (k )  = n; 
(ii) for any k E . {I, . 2, . ,-. ,-Zn), 

. - 
((j 3 k: EC~) = 1)I 3 I{j 3 k: E C ~ )  = 011. 

Remark. The condition (i) means that in (2.8) there are n creation opera- 
tors and n annihilation operators; the condition (ii) means that, for any 
k~ (1, 2, . . . , 2n), among the operators ANk) (f,), (fk+ ,), . . . , Ae(2n) ( fZn) 
the number of annihilation operators is not greater than the number of crea- 
tion operators. 

In [4] (see idso [23) we have proved that each E E  (0, I)$" determines 
exactly one non-crossing pair partition {(I,,, r,,))f = on the set ( 1 ,  2, . . . , 2n) 
(which is described by the usual non-crossing principle: for each k < h, if 
1, < rky then r,, < P,) such that 

Moreover, one of the two sets { E , ) ; = , ,  {r,}z=l can be assumed to be ordered 
and we shall assume that 1, < I, < . . . < I,; {l,}~=, (respectively, {r,,);= l) will be 
called the left (respectively, right) index-set of the non-crossing pair partition. 

Theorem (2.12) of [4] states that for any E E 10, 1)F there exists a function 
of n variables 

(where {E,, rh)!=l is the left-right index-set of the EE{O, I)$") such that the 
quantity (2.8) is equal to 

n 

(2.9) P (dy 1). . . P (dyn) n (& 6'b frh bh)) ' (i1h7 rh}; = 1 ; yl, . . - 3  YR). 
h =  1 

Moreover, the function K is determined uniquely by the E E (0, I)? (or, equiva- 
lenty, by {I,,, r,);=,) and the first n interacting functions A,, A,, .. ., A,. 

Now we shall give some principles to compute the vacuum expectation of 
the product of creation and annihilation. This is equivalent to determining the 
function K in (2.9). 

It is well known that creation and annihilation operators on the usual 
(uninteracting) Boson, Fermion and free Fock spaces (over a certain Hilbert 
space &) have an important property: for any mEN, g,, ..., g , ~ #  and 



E E ( O ,  lIm, the vacuum expectation of the product 

vanishes certainly in the foHowing two cases: 
(i) m is odd; 
(ii) m = 2n for some  EN but E E  {O, 1)2R\{0, I}?. 
In the case of E E (0, I)? with the left index-set {1,}!= the vacuum expec- 

tation of (2.10) takes the form 
n 

(2.1 . I-) - .. f ( { ~ ~ , r h } ~ = i ) ~ < @ , A ( ~ d A + ( ~ ~ ~ ) @ ) ,  
Ilh,rhI: ;:= l € ( ~ . ~ .  2.1 h= 1 

where (here and in the sequel) {p.p.Zn) means the totality of all pair partitions on 
the set (1, 2, . . . , 2n). The factor f ({I,, r,)z= ,) depends on the Fock structure: 

(i) f (( l , ,  r,);=,) = 1 if we consider the Boson case; 
(ii) f({ik, rh);= = (- ~)II{'h*~h)t= 111 if we consider the Fermion case, where 

ll{I,, rh);=l 11 is the index of the permutation 

(iii) in the W F  case, 

1 if ( l , ,  r,)& E {n-c.p.p.2n), 
f ({ih, rh}:=J = 0 otherwise, 

where (and in the following) by {n-c.p.p.2n) we denote the totality of all 
noncrossing pair partitions on the set {I,  2, . . . , 2n). 

Roughly speaking, in all the above three cases, any (2n- 1)-point function 
is equal to zero and any 2n-point function equal a finite sum of products of 
R two-point functions. In other words, under the vacuum state, creation and 
annihilation operators have the (mean-zero) Gaussianity property. 

Now let us consider the IFF space. It is clear that, under the vacuum state, 
creation and annihilation operators do not, in general, have the above prop- 
erty. For example, in the case of n = 2, the expression 

is equal to 

S P P ( d ~ )  6 2  . g,) (4 (#I . g,) (Y) a 2  (x, Y ) ,  

and it is in general impossible to represent it in a form like 

(since the second interacting function R2 is not necessarily a function with 
separable variables), where by Yn we denote the n-permutation group. There- 
fore, under the vacuum state, the creation and annihilation operators do not, in 
general, have the Gaussianity property. 



An interacding fiee Fock space 155 

But, on IFF space, under the vacuum state, the creation and annihilation 
operators have some properties similar to the Gaussianity. In order to see this 
let us introduce some notation. 

D E ~ O N  2.4. For each n E Z ,  m, k E N, and a function f defined on the set 
{n + 1, n+Z, . . . , n+ m), the f k-shiji off is a function defined on the set 
(n+ l f  k, n + 2 f  k ,  ..., n+mf k ) :  

(u: f)(hf k):= f (h) for all h ~ { n + l ,  n+2,  ..., n f m ) ,  

With this notation we . - can state a simple result: 

LEMMA 2:5. For each  EN, p < n and EE(O, I}$" (with the left-right index- 
-set (l,, P,,):=~), if we define a map er, which takes values in (0, I), by 

then 

P r o  of. First of all, we have to show that 2nf I, - r, - 1 is even. In fact, by 
the non-crossing principle, if ld€(lp, r,), then it is certainly true that r d ~ ( l p ,  rp), 
Therefore, r,- lP+ 1 (< 2n) is always even, and so is 2n + 1,- rp- 1 = 
= 2n-(rp-I,+ 1). 

Again by the non-crossing principle, the restriction of the given E E (0, I}$" 
on the set (1, 2, . . . , 2n)\{lP, lp+ 1, . . . , r,} permits a unique non-crossing pair 
partition 

((Ih? r&)w1.2 . . . . . n ) \ { d : ~ ~ < ~ d ~ r ~ ] '  

So the assertion is proved. 

Let us examine now the quantity (2.8) for EE(O, I)?. It is obvious that 
I, = 1, r, is even and 

'1 

&l{1,2 ,..., , I )€  (03 l}:=. 

By the non-crossing principle, r ,  + 1 must be a left index, say Ida. Moreover, we 
know that rdl - ldl + 1 = rdl -rl is even, rdl + l is a left index, and 

By repeating the argument, having obtained the pieces 

where r, + 1 = id,, rdl + 1 = Id2, . . . , rdi- + 1 = Id, since the rdi + 1 must be a left 
index, say we have the next piece 

ldi+ir idi+l+l, ..-, rdi+1. 

Thus, in fact, we have proved 



LEMMA 2.6. Each E E  (0, 119 determines uniquely an m < la, 1 6 n,, .. ., 
n, < n, and E ? E ( O ,  1}2;L' (i = 1, 2, ..., m) such that 

Moreover, for any i = 1, 2, . .. , m, if we denote by {GI, rk7)F2,'-"' the i@t-right 
index-set associated with ei E (0, l)F1+ 1-2ni, then r';' = 2ni+ - 2ni. 

This result shows that the restriction of EE{O, 112; on the set 
{2n, + 1, 2nj+ 2, . . . , 2n,+ l) has the same properties as the shift of the restric- 
tipn <!his shift is an element of (0, l )" ,"~+I-~"j ) .  Therefore, we shall not distin- 
guish between the restriction itself and its shift. Taking into account these 
arguments, we prefer to rewrite (2.8) in the form 

r dm 

(2.14) ( m ,  fi kch) t s j  5 A ~ ( ~ )  (gh) . . . n ~ ~ ( ~ 1  (gb B )  , 
h =  1 h=Inr h = l a ,  

where 
(i) 1 < m < n, dj < n (j = 1,2, . . . , m), dm = n, and they are determined 

uniquely by the given E, . . 
(11) Edl = r l +  1, ld2 = rdl + 1, .. ., Id, = rd'd,-i + 1. 

Re m ark. In the language of diagrams, each s E (0, 1) 2; permits to draw 
a unique non-crossing diagram with vertices (1, 2, . . . , 2n). Any edge in the 
diagram connects two vertices I,, rh (h = 1, . . . , n). The decomposition (2.14) 
means that the diagram determined by E E  (0, 1)y  can be decomposed into 
m pieces with the following properties: 

(i) there is no edge connecting two vertices from two different pieces; 
(ii) in any piece, the first vertex is paired with the last vertex; 
(iii) the restriction of the full diagram (determined by the given E E (0, 112,") 

on each piece gives a non-crossing diagram on the corresponding vertices. 

In the following, we shall call an E E  (0, 1)y totally connected if r, = 2n, 
and call the decomposition (stated in the above) the totally connected decom- 
position of the given E E  (0, I)?. 

Now we are ready to state what we call the factorization principle. 

LEMMA 2.7. For each E E  {0, I}$'', the expression (2.14) is equal to 

(2 1 q (b, fi Ph) b,,) B )  - (9,  3 (gh) @) . . . (0,  3 A ~ ( ~ )  (g,,) 0 ) .  
h=  1 h = l a ,  k = la", 

Proof. By the definition of creation and annihilation operators, for any 
vector G in a certain Hn, any f, f,, . . . , fn E H ,  and any e E (0, I)", the action of 
the operator n; = , (fh) A (f) on the vector G is equal to that of the opera- 
tor Hi=, Adh) (fd on the vector A (f) G, i.e. 
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Hence, the quantity (2.14) is equal to 

rdm - 1 

(2.16) (9,  fi A"' (g& - 5 A ' ( ~ ) ( ~ & .  . . fl klhl (9,) [ 3 (g& a]}.  
h = l  h=la l  h=la,-r h = l a ,  

In (2.16), since { E d , ,  ldm + 1, . . . , rd,) is a totally connected piece deter- 
mined by the e, the vector Hzhm Am(g,J @ must be a number, i.e. it belongs to 
H0 = C. This argument guarantees that (2.14) is equal to 

By repeating the above argument to the first scalar product in (2.17) and 
applying the induction, we complete the proof. 

As we have seen in the IFF case, the 2n-point function in general cannot 
be reduced to a product of n 2-point functions. The factorization principle 
shows that the 2n-point function can be reduced to a product of some scalar 
products and each scalar product is the vacuum expectation of a certain prod- 
uct of creation and annihilation operators. Moreover, each product of creation 
and annihilation operators has the totally connected property. Thus, in order 
to understand the precise form of the 2n-point function, one needs to have 
a rule to compute the vacuum expectation of totally connected type products of 
creation and annihilation operators. In the next section, we shall give a general 
method to calculate the vacuum expectation of totally connected type products 
of creation and annihilation operators in some special case and, as application, 
the distribution of the field operator will be investigated. 

3. The IFF s p c e  &(I?( [O,  TI)) with A, = x , ~ .  In this section, we inves- 
tigate the IFF space T,(C ([0, TI)) with the interacting functions {x,,,)."= In 
order to distinguish our special case from the general case, we shall use a+ and 
a, instead of A+ and A, respectively, to denote creation and annihilation opera- 
tors. 

By definition, for any n EN, E, G, E s,, 

(3.1) <Fn, G,) : = 1 (Fn GJ (x,, . . . , x,J xAn (xl, . . . , x,,) dx, . . . dx,. 
[%TIn 

For any test function f E L2 ([0, TI), the creation operator a+ (f) brings, by 
definition, the n-th space Zn to the (n + 1)-st space #,+ For any F, E Z n ,  

is a function of n+ 1 variables and, more precisely, 

It is easy to see that the creation operator a+ (f) is a bounded operator 
and its norm is less than or equal to the I?-norm off: So the annihilation 
operator a (f) : = (a+ (f ))* is bounded. 



LEMMA 3.1. For any  EX,  EN and Gn+I€Hn+l, 

in particular, for any f l ,  . . . , f, E X,  

T 

= S (Tfi) Ix)a+ CSz xcX,q) a+ (f3 x ( = , ~ ) .  . .a+ (f,xlxPn) @ dx.  
0 

Proof. Once (3.3) is proved, by noticing that, for any y E [0, TI, 

we get immediately the first equality of (3.4). Then, starting from this and 
noticing that in our case, for any element Fn in the n-th Hilbert space X,, 

= KF,. xd, is true, we find the second equality of (3.4). Therefore, we need only 
to prove (3.3) in order to complete the proof of the lemma. 

For any F,E Xn,  

xK(xl, .. . , x , ) x ~ , ( x ~ ,  . . . , x , ) d x l . .  . dx,. 

So the assertion is obtained. 

By the discussion in Section 2, to calculate the vacuum expectation of 
a product of creation and annihilation operators, we need only to give a rule to 
compute 

for E E (0, I}? totally connected. 

LEMMA 3.2. For any n EN, fl , . . . , f2, E X, and E E (0, I)? totally connected, 
(3.6) is equal to  
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Proof. Denote by {I,,, r,)!,, the non-crossing pair partition on 
(172, . . . ,2n}. Since we consider the totally connected case, r ,  must be equal to 
2n, and this implies that I,, < 2n- 1 for any n 2 2. 

For n = 1 the lemma is obvious. For n = 2 and E E  (0, 112; totally con- 
nected the expression (3.6) becomes 

which, by definition, is equal to 

and this is clearly equal to 

Suppose that the lemma is satisfied for all integers less than or equal to 
n- 1. We shall consider two cases: I,, = 2n -2 (i.e. rn = 2n - 1) and 1, < 2n- 2. 

In the case of 1, = 2n-2, by Lemma 3.1, the expression (3.6) is equal to 

Notice that ( l , ,  r , , ) ; ~ :  is the non-crossing pair partition on the set 
{ I ,  2, . .. , 2n-3, 2n) which is still totally connected. Therefore, by the induc- 
tion assumption, (3.9) becomes 

By changing the order of integrals, (3.10) takes the form 

and this is exactly what we want to prove. 



In the case of In < 211-2, by the non-crossing principle, we know that 
rn = I,, + 1. Therefore, (3.6) is equal to 

x ae("+2) ( f r ,+z ) .  . . fZn) @) d y .  

Now, applying the induction assumption to the vacuum expectation in (3.11), 
we infer that it is equal to 

Since the (r,, + 1)-st test function is&+ X [ O , ~ )  X(y,Tl ,  we can rewrite (3.12) in the 
form 

which is equal to 

x a&"+ 1 )  f 2 )  a ~ ( 2 ~  - 1 )  (L,+ 1  X[O,X)  x ( y , q )  (fin + 2 x [ o , ~ ) )  - * . (fin - 1  x [ o , ~ ) )  @> d ~ .  

It is obvious, by Lemma 3.1, that for any X E  [0, a 

x d ( r n + l )  a~(rm + 2 )  ae(2n - 1)  (5, + 1  X ~ 0 . x )  x@, TI) ( S , + 2 ~ 1 0 . x ) ) .  - -  (fin - 1 xr0.x)) @> d~ 

Thus, by induction, the proof is completed. 

Remark. In the sequel, we shall call the method presented in Lemma 3.2 
the totally connected principle. By combining the totally connected principle 
with the factorization principle, the vacuum expectation of any polynomial of 
creation and annihilation operators can be calculated. Moreover, since on the 
IFF space both creation and annihilation operators are bounded, we know 
that any continuous function of these operators can be calculated, and so, 
equivalently, can be calculated any element in the C*-algebra generated by 
creation and annihilation operators. 
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As an application of the totdy connected and the factorization principles, 
the distribution of the field operator can be computed. The second part of this 
section is devoted to this problem. 

By the general result given in the preceding section, we know that for any 
test function ~ E I ? ( [ O ,  a), for any  EN, the vacuum expectation of 
(a(c)+a+ (c))2n-1 is zero, i.e. with respect to the vacuum state, all the odd 
powers of the field operator have expectation value zero. 

For any ~E[O, TI and any function defined on [0, T ]  such that 
t ~ ~ 0 . t )  E 12 K O ,  TI), let us 

.- - 

(3-15) ug,, (=f):= (a ,  (a C l ~ r o , t ) )  + a+ ( t ~ r o , t J ) ~ ~  8) .  

It is clear that ut,,, ( t )  = 1 and u < , ~ ( O )  = 0 for all n E N. In the following, we shall 
assume that t ~ ( 0 ,  q. 

Let us put 
t 

PI,:= Jlel2(~)ds ,  
0 

and it is obvious that if t], = 0, then u ~ , ~  (t) = 1 and u ~ , ~  (t)  = 0 for all nE N and 
all t~ [O,  TI. 

It is easy to see that 

I ug.0 ( t )  = 1, U ~ , I  ( t)  = vt for all t E (0, TI. 

For any la 2 2, we expand ( a ( < ~ ~ ~ , ~ ~ ) + a +  ( t ~ [ ~ , ~ , ) ) ~ "  in a sum of products of 2n 
creation and annihilation operators: 

From the discussions in Section 2 we know that many terms on the right-hand 
side of (3.16) have vacuum expectation of value zero. More precisely, 

(3.17) u<,n (t)  = C (a, ae(l) (5X[o,t)). . . (gX[o,t)) @ ) . 
&E(o,  1)y' 

LEMMA 3.3,For any  EN and t ~ ( 0 ,  a, { ~ ~ , ~ ( t ) ) z = ~  satisfies the system of 
diflerence-difierential equations 

n t 

(3.18) ug,.+~ (t)  = 1512 (s) u<,~(s) '  uC,,-k(t) d ~ ,  ug,O (t)  = f , Ug.1 ( t)  = fit. 
k=O 0 

Proof. As we have seen, each ~€10, I )?  determines exactly one 
non-crossing pair partition ( I , ,  r,)!=, on the set (1,2, 3, . .. , 2n). By the 
non-crossing principle, r, E (2, 4 ,  . . . ,2n). Now we split the set (0 ,  I)$' into 
n parts according to all possible values of the first right index r,: 

(3.19) (0 ,  117 = U (0 ,  l )Tk =: (J { E E  {0, I)?: r1 = 2k). 
A= 1 k = l  

I 1  - PAMS 17.1 



Thus we find that 

and, by the factorization principle, (3.20) is equal to 

(3.21) C C <@, a(tko,t))a"(Z)(t~ro.t)). . 
k =  1 t ~ { ~ , l ) ~ : ~  '1 

a"'"" 11' (Sxros)  a+ ( t f io , t ) )  @) 

By the totally connected principle, the first scalar product in (3.21) is equal to 

For each k = 1 ,  2 ,  . . . , n + 1, as E runs over 10, 1 } $ " ~ 2 ,  its restriction on the set 
{2k + 1 ,  2k + 2,  . . . , 2n + 2) runs over all non-crossing pair partitions on the set 
(2k + 1, 2k+ 2, . . . , 2n +2); its restriction on the set (2 ,  3, . . . , 2k- 1 )  runs 
over all non-crossing pair partitions on the set (2,3, . , . ,2k - 1). Thus, we find 
that 

n + l  t 

 heref fore, the assertion is proved since ugmo ( t )  = 1 and ucVl ( t )  = qt are obvious. 

Now we investigate the generating function of ( ~ ~ , ~ ( t ) ) ~ ~ .  In order to 
obtain a non-trivial generating function, we need the following comparison 
theorem: 

LEMMA 3.4. For any t ~ ( 0 ,  T'l and n E N, 

where c, is the n-th Catalan nunaber. 

P r o  of. It is clear that for any t E (0, TI, n E N, 0 <  US,^ ( t )  < ugPn (T)  =: un, 
we have 
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By induction, 
n t 

.. . - 

By the pope% of the Catalan numbers, we know that Els, c, - c,,-, is nothing 
but and therefore the assertion of the lemma is obtained. 

Notice that the series znw=o xn cn has a positive radius of convergence, and 
so does the series Z,,x"~~,~(t). 

In the following, we take 5 as a continuous function (in fact, the most 
interesting case is 6 = 1). For any t ~ ( 0 ,  n, let US define 

LEMMA 3.5. For any t ~ ( 0 ,  TI the generating function S(t, x )  is equal to 

in its interval of convergence. 

Proof. It is clear that 

By Lemma 3.4, we have 



Define 
t 

then from (3.24) we obtain a differential equation 

Integrating the two sides of equation (3.25) we obtain 
. - 

where c is a constant. Moreover, for any x # 0, from (3.25) we get 

Applying this formula to (3.26) we have 

By the condition R(0, x) = 0, it follows that c = 0. Therefore, any solution 
of (3.25) must satisfy the algebraic equation 

The solution of equation (3.28) takes clearly the form 

Again, by the condition R(0, x) = 0, we have 

Thus, the generating function S,(x) can be easily computed by the formula 

Notice that St(0) = 1, so (3.30) is valid also for x = 0. 

THEOREM 3.6. For any t ~ ( 0 ,  TI,  the random variable 

cg.t : = a (~xIo,~)) +a  + (tx[o.t)) 
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is absolutely continuous and its density function is given by 

In particular,for ( = 1, the random variable c, : = a ( x ~ ~ , ~ ) ) +  a+ ( x ~ ~ , ~ ) )  is absolute- 
ly continuous and its density function i s  given .by 

P r o  0.f. Siilce the random variable el! is bounded, its distribution is deter- 
mined by its moments, i.e. by its generating function. Therefore, to prove the 
theorem it is sufficient to show that the generating function determined by the 
density function L<,, is the same as St at least on a small interval around the 
origin. 

It is obvious that for any  EM 

Let us put 

41 

5 x2"- (x )  ax = 0.  

We have to prove the following formula: 

In fact, 

By changing the variables 

the integral on the right-hand side of (3.34) takes the form 

Moreover, by using the shorthand notation 



and doing a simple calculation, one can rewrite (3.35) as 

Therefore, the generating function of LC,, is equal to  

where the equality in (3.37) is nothing but the Taylor formula. 
. - 
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