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Abstract. The Strong Law of Large Numbers due to Marcinkie- 
wicz and Zygmund is carried over to simply connected step 2-nilpotent 
Lie groups. Moreover, for such groups, we prove analogues of the 
classical theorems of Hsu-Robbins-Erdos, respectively Baum-Katz, 
giving information on the rate of convergence in Laws of Large Num- 
bers. 

I. hUr~duction. Sirnply connected step 2-nilpotent Lie groups are groups 
which arise as follows: Let E, -1: Rd x Rd + Rd(d 2 0) be a skew-symmetric 
bilinear map such that [[Rd, Rd], Rd] = {O). Then G = Rd, equipped with the 
multiplication 

is a group of the above-mentioned type. Clearly, e = 0 and x-I = -x. The 
best-known (noncommutative) examples are the Heisenberg groups Hd given by 

and 

[x, v]. = (0,0, (dl) ,  y(2)) - ( ~ ( ~ 1 ,  y(l)))  E Rd x R6 x R = Hd, 

where 

X = (x(l) , X(2) , X(3)), y = (y(l), JJ('), y(3))~Rd x Rd x R = Hd. 

The so-called groups of type H ,  which arise in the context of composition 
of quadratic forms, all belong to this class (cf. Kaplan [S]). See also Folland 
and Stein [33. 

For G = R, it was shown by Hsu-Robbins-Erdos that in the Law of Large 
Numbers 'complete convergence is equivalent to the finiteness of the second 
moment. Baum and Katz strengthened the Marcinkiewicz-Zygmund Law of 
Large Numbers in the sense that there is not only strong convergence, but 
convergence of certain series which implies complete convergence. Both theo- 
rems due to Nsu-Robbins-Erdos, respectively Baum-Katz, may be interpreted 
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as results concerning the rate of convergence in the corresponding Laws of 
Large Numbers. 

In this paper we will prove an analogue of the Marcinkiewicz-Zygmund 
Law of Large Numbers (which contains the Kolmogorov Strong Law of Large 
Numbers for random variables with expectation as a special case) for simply 
connected step 2-nilpotent Lie groups. Moreover, we carry over the theorems 
of Hsu-Robbins-Erdos, respectively Baum-Katz, to this context. 

2. Preliminaries and motation. For real-valued functions f, g, the notation 
f 5-g means that there is a constant K > 0 such that f (x) < K g ( x )  for 
a 1  x. 

Let G be a simply connected step Znilpotent Lie group. Let V, = [G, G ]  
be the center of G, and Vi a complement of &, i.e. 

The notation x = (x', x") E G will always be understood with respect to (I), i.e. 
xr€V1, x f f ~ V 2 .  For a > 0, XEG put 

Sa (x) = (ax', a2 xu). 

Clearly, 6, is an automorphism of G. A homogeneous gauge on G is a con- 
tinuous function I . I : G + [0, as [ satisfying 

(cf. Goodman [4]). By a compactness argument we have 

(2) I -XI 5 1x1 
(cf. Goodman [4], Lemma 2) and . 

An example is 
I, 2 114 1x1~ = ( I I ~ ~ I I ~ +  tlx II . 

By Goodman 141, Lemma 1, all homogeneous gauges 1 .  I are equivalent time. 
1 . 1  5 1-11 5 1.1). 

Let p > 0, c E G, and let X be a G-valued random variable. Since 

it follows that 
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A sequence {X,,],+ of random variables is said to converge completely to 
the random variable X if for every E > 0 

By the Borel-Cantelli Lemma, complete convergence implies a.s. convergence. 

3. The Msrcinkiewicz-Zygmuad Law of Large Numbers. The following 
lemma is well known: 

LEMA 1.- W e  have llx'll, 5 1x1. 

Now we prove the following analogue of the classical Marcinkiewicz- 
Zygmund Strong Law of Large Numbers (see e.g. Chow and Teicher [2], 
Theorem 5.2.2): 

THEOREM 1. Let G be a simply connected step Znilpotent Lie group, and ( - ( 
an arbitrary homogeneous gauge on G. Assume XI, X,, . . . are i.i.d. G-valued 
random variables defined on some eommun probability space (8, a, P). ThenJor 
any p ~ l O , 2 C  

for some C E  G ig EjXIIP < co. i f  so, then in the case 1 < p < 2 we have 

while c" and, in the case 0 < p < 1, also c' can be chosen arbitrarily. 

For the proof of the case 1 < p < 2 we need the following lemma, which is 
similar to Kronecker's Lemma (6. Chow and Teicher [2],  Lemma 5.1.2). 

LEMMA 2. For any sequence (a,),3 c Rd and {b,),al c 10, a[ such that 
b,+l 2 b, (n 2 I), b,+ oo (n -+ a), and 

we have 
1 II 

P r o  of. For E > 0, choose N E N such that 
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Then, by summation by parts, we get 

for n large enough. 

Proof of Theorem 1. 1. The "only if' part may be proved similarly to 
that in the classical situation (cf. Chow and Teicher 121, p. 122): Since 

by (4), it follows from the Borel-Cantelli Lemma that 

which implies E IXl. clP < ao by Corollary 4.1.3 of Chow and Teicher [2]. So 
EIX1.clP < a. 

2. Assume 0 < p < 1, E IX IP < m, and let c E G be arbitrary. By consid- 
ering Xj- c instead of Xj, we may without loss of generality assume c = 0.  By 
Lemma 1 and the classical Marcinkiewicz-Zygmund Strong Law of Large 
Numbers we have 

n 

(5)  n - l / p ( C ~ ~ ) ' + ~  (n+ao) ,  
j =  1 

so we have to prove 

This is equivalent to 

n 1 
n-'"(C xj)"+,n-'"( 2 [xi, x,])" 0 (n + m). 

j=  1 lsixjdn 



Laws of Large Numbers 171 

The first summand tends to 0 as. by Lemma 1 and the classical Marcinkie- 
wicz-Zygmund Strong Law of Large Numbers. So it remains to show 

But for this we have 

by kemma'l ahd the classical Marcinkiewicz-Zygmund Strong Law of Large 
Numbers, which proves (7), and thus (6). 

3. Assume 1 6 p < 2, E IX,IP < coy and again without loss of generality 
c = 0, EX; = 0. Let c" E V2 be arbitrary, Hence, as above, in order to prove (4), 
it remains to show (7). Define the V2-valued random variables 

Z, : = 2. .1',+, where -4, = In- 'IP I I (  C xj)' 11 G 1). 
j= 1 

Without loss of generality, we may assume that there is a G-valued random 
variable X on (Q, B, P) which is distributed like XI and independent of 
{X,)n2 By Lemma 1, E IIX1lI < ao, so since for every projection p onto some 
coordinate subspace of V2 

for some fixed K > 0 as., the Theorem in Chatterji [I] yields 

where a, is a Vz-valued random variable on (Q, a, P) consisting of the com- 
ponents 

E (P @"I I P (&I? P (5721, . ., P ( Z -  1)) as. 

By Lemma 1 and the classical Marcinkiewicz-Zygmund Strong Law of Large 
Numbers, there is as. an N (random) such that a.s. 
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$8) 2, = Zn (n 2 N) 
and . , 

E(ZnIX1, X2, ..., X,-l) = E(ZnIX1, Xz, ..., X,-J = 0 (n 2 N) 

(since EX; = 0); hence. as. 

Thus, by (8) and (9), 

By Lemma 2, putting 
n - 1  

bn:=nl lp  and ~ : = ~ , z , = [ C X ~ , X , , ] " ,  
j =  1 

we obtain (7). 
4. The fact that c' is uniquely determined in the case 1 6 p < 2 follows 

from (5). 

4. Rates of convergence. We will use the following consequence of the 
Hijlder Inequality: 

LEMMA 3.  Assume x l ,  y l ,  x2 ,  y,, . . . , xn, yn E G. Then for some K > 0 not 
depending on p, q 

P roof. By Holder's Inequality, 

for p, q > 1, lip+ l/q = 1. Now q -+ 1 yields the assertion. rn 

First we carry over the theorem of Hsu-Robbins-ErdBs (cf. Chow and 
Teicher [2] ,  Corollary 10.4.2): 

THEOREM 2. Let G be a simply connected step 2-nilpotent Lie group, 
1 .  I a homogeneous gauge on G, and assume ( X n ) , 2 1  are i.i.d. G-valued random 
variables. Then 

w 

t 10) C ~ ( l a . - ~ ( f i ( ~ ~ . c ) ) l s ~ ) < r n  for every p > O  
n= 1 i =  1 

i$ 
~ 1 ~ ~ 1 ~  < C O ,  CI = -EX;.  
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Proof. As in the proof of Theorem 1, we may assume without loss of 
generality that c = 0, EX; = 0. We first prove the "if" direction: By Lemma 3, 

+(~/f i )  (n-' max IlXjll n-' llx$ll]li2 
IGjSn j=  1 

= K Z ~ ) + K ~ + ( K / ~ ~ , / - .  

Suppose a-> 0. W; have 

by Corollary 10.4-2 of Chow and Teicher [2], and 

by Theorem 10.4.1 of Chow and Teicher [2] (with a = 2, p = y = 1; it is easy to 
see that the theorem is also valid in the case EX # 0, a: > 1). For Tt3) we get 

m m 

(13) P (G3) 2 g) < C nP(IIX; 11 2 an) 
n = l  n =  1 

Again by Corollary 10.4.2 of Chow and Teicher [2] we have 

Now without loss of generality E [lX;ll > 0, for otherwise (12) proves the "if" 
direction. Since 

inequalities (llH14) yield the assertion. 
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As far as the "only if" part is concerned, first observe that, by (10) and the 
Borel-Cantelli Lemma, 

hence by the classical Marcinkiewicz-Zygrnund Law of Large Numbers it 
follows that EX; = - c'. Now we show that E jX,12 < oo. For this, it suffices to 
prove, by Corollary 10.4.2 of Chow and Teicher [2], that E llXyll < m. Ob- 
serve that 
. - 

n n 

Now we may proceed as in the proof of Corollary 10.4.2 in Chow and Tei- 
cher [2]: Put h = dim V,, let (ZJ.)., be an independent copy of the process 
(X,,},, I, and put Y, = (X ,  - c)- (Xn . c). Then, by (15), the symmetry of x ,  and 
IK:vyYs Inequality (cf. Chow and Teicher [2], Lemma 3.33, we get 

for some constant L > 0; hence for y = L/,/%, by (10) and (16) we get 
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The expression [. . .] tends to 1 as n + co by (lo), and 

so E 11 Y;'II < CO, and thus, by Lemma 10.1.1 of Chow and Teicher [2], 
E ]I(X, c)"ll < m. Since EX; = 0, it follows that 

so E IIX;'I1 < a. Hence we have ElXl12 < a. 
Now we formulate an analogue of the Baum-Katz Theorem (cf. Chow and 

Teicher [2] ,  Theorem 5.2.7): 

THEQREM 3. Let G be a simply connected step 2-nilpotent Lie group, 1 . 1  
a homogeneous gauge on G, and assume that (Xn),,B me i.i.d. G-valued random 
variables, Suppose 0 < p < 2, E lXllP < a, and let CE G be such that c' = - EXl 
in the case 1 < p < 2. Then if ap 2 1, we have 

for every p > 0. 

Pro of. The proof is the same as in the classical case (6. Chow and Teicher 
[2], p. 130): Again, without loss of generality, c = 0, EX; = 0. By Theorem 1, 

max 16n-i1p(nXj)l*0 ( n - , ~ ) .  
ldi<n j= 1 

Thus, by (2)  and (3), we obtain 
i 

(17) max 18.- in ( n xj)l = max lan-llp ((- n xj) .  n xj)l 
n+l<i<Zn j=n+l n+l<iCZn j=1 j=1 

Case 1: clp = 1. Put 
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Since the random variables 

are independent, it follows from (17) and the Borel-Cant& Lemma that 

max 1 x ~ I  3 2"" ef) > p P n + l < i i ~ ~ + l  j=2.+1 

. - 
m I m i 

- - I zan gf) 2 j P ( max I n Xjl 2 2=('+ Q') dt 
a= 1 ldidL2L_I j = 1  

, ( 1 ~ g 2 ) - l i ~ - l ~ (  man ~ f i  xjl 3 ~ g ' i ) d x  
1 I d i d L x J  j,l 

" 1 i 

3 (2 log 2)- - P ( max I fl XI 2 ena). 
Pt 1h1Sn j= l  

Case 2: ap > 1. Put 

= 2 - a 2 p / ( = p -  1) e- 

Since for n 2 l 

NP (n + l y p / ( a P -  1 )  2 n u P l ( a ~ -  1 )  + - n l / ( a ~ -  1 )  2 n a ~ / ( a p -  1 )  + n l / ( a p -  1 )  
ap- 1 

7 

the random variables 

max I Xj1)naI ' na~J(a ' -1 '+16i  j=L,,ap/(ap- I),+ 1  
< n a p l ( a ~  - 1) + n1l(aP - 1) 

are independent and, by (17), 

max .-a/(ap- 1 )  
~ ~ P / ( K P  - 1) + 1 < i I ll Xjl 

j =  LnaP/(aP- 1)J + 1  
<,UPI(=P- 1) +ni/(ap- 1) 

i 

d max n - a l ( a ~ - l )  I n xjl * O  (n  + a), 
n = ~ / ( = ~  - 1) + 1 < 2 n a ~ l ( = ~ -  1) j =  L~-P/(=P- 1)Jf 1 



Laws of h a e  Numbers 177 

so, by the Borel-Cantelli Lemma, 

max I ~j J .I > ,-- .=I(=P- 1) 

n= 1 
$.EP/(-P- 11 + . l f l a ~ -  1) 

-. 

mar I n xjI 2 (t + I)"/(~P- l' e) dt ! P'l<i<Ltl /(*p-lU jEl 

2 A C nep- P (  max I n x ~ I  2 2a1("p- ' ) p '  (2n)") 
n =  1 l Q i Q n  j=1 

for some constant A > 0. 
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