LAWS OF LARGE NUMBERS ON SIMPLY CONNECTED STEP 2-NILPOTENT LIE GROUPS

BY
DANIEL NEUENSCHWANDER (BIEL)

Abstract

The Strong Law of Large Numbers due to Marcinkiewicz and Zygmund is carried over to simply connected step 2-nilpotent Lie groups. Moreover, for such groups, we prove analogues of the classical theorems of Hsu-Robbins-Erdös, respectively Baum-Katz, giving information on the rate of convergence in Laws of Large Numbers.

1. Introduction. Simply connected step 2-nilpotent Lie groups are groups which arise as follows: Let $[\cdot, \cdot]: \boldsymbol{R}^{d} \times \boldsymbol{R}^{d} \rightarrow \boldsymbol{R}^{d}(d \geqslant 0)$ be a skew-symmetric bilinear map such that $\left[\left[\boldsymbol{R}^{d}, \boldsymbol{R}^{d}\right], \boldsymbol{R}^{d}\right]=\{0\}$. Then $G=\boldsymbol{R}^{d}$, equipped with the multiplication

$$
x \cdot y=x+y+\frac{1}{2}[x, y]
$$

is a group of the above-mentioned type. Clearly, $e=0$ and $x^{-1}=-x$. The best-known (noncommutative) examples are the Heisenberg groups \boldsymbol{H}^{d} given by

$$
\boldsymbol{H}^{d}=\boldsymbol{R}^{2 d+1}=\boldsymbol{R}^{d} \times \boldsymbol{R}^{d} \times \boldsymbol{R}
$$

and

$$
[x, y]=\left(0,0,\left\langle x^{(1)}, y^{(2)}\right\rangle-\left\langle x^{(2)}, y^{(1)}\right\rangle\right) \in \mathbb{R}^{d} \times R^{d} \times R=H^{d}
$$

where

$$
x=\left(x^{(1)}, x^{(2)}, x^{(3)}\right), \quad y=\left(y^{(1)}, y^{(2)}, y^{(3)}\right) \in \mathbb{R}^{d} \times R^{d} \times R=H^{d} .
$$

The so-called groups of type H, which arise in the context of composition of quadratic forms, all belong to this class (cf. Kaplan [5]). See also Folland and Stein [3].

For $G=\boldsymbol{R}$, it was shown by Hsu-Robbins-Erdös that in the Law of Large Numbers complete convergence is equivalent to the finiteness of the second moment. Baum and Katz strengthened the Marcinkiewicz-Zygmund Law of Large Numbers in the sense that there is not only strong convergence, but convergence of certain series which implies complete convergence. Both theorems due to Hsu-Robbins-Erdös, respectively Baum-Katz, may be interpreted
as results concerning the rate of convergence in the corresponding Laws of Large Numbers.

In this paper we will prove an analogue of the Marcinkiewicz-Zygmund Law of Large Numbers (which contains the Kolmogorov Strong Law of Large Numbers for random variables with expectation as a special case) for simply connected step 2-nilpotent Lie groups. Moreover, we carry over the theorems of Hsu-Robbins-Erdös, respectively Baum-Katz, to this context.
2. Preliminaries and notation. For real-valued functions f, g, the notation $f \leqslant g$ means that there is a constant $K>0$ such that $f(x) \leqslant K g(x)$ for all x.

Let G be a simply connected step 2-nilpotent Lie group. Let $V_{2}=[G, G]$ be the center of G, and V_{1} a complement of V_{2}, i.e.

$$
\begin{equation*}
G=V_{1} \oplus V_{2} . \tag{1}
\end{equation*}
$$

The notation $x=\left(x^{\prime}, x^{\prime \prime}\right) \in G$ will always be understood with respect to (1), i.e. $x^{\prime} \in V_{1}, x^{\prime \prime} \in V_{2}$. For $a>0, x \in G$ put

$$
\delta_{a}(x)=\left(a x^{\prime}, a^{2} x^{\prime \prime}\right) .
$$

Clearly, δ_{a} is an automorphism of G. A homogeneous gauge on G is a continuous function $|\cdot|: G \rightarrow[0, \infty[$ satisfying

$$
\begin{gathered}
|0|=0, \quad|x|>0 \quad(x \in G \backslash\{0\}), \\
\left|\delta_{a}(x)\right|=a|x| \quad(a>0, x \in G)
\end{gathered}
$$

(cf. Goodman [4]). By a compactness argument we have

$$
\begin{equation*}
|-x| \lesssim|x| \tag{2}
\end{equation*}
$$

(cf. Goodman [4], Lemma 2) and

$$
\begin{equation*}
|x \cdot y| \lesssim|x|+|y| \quad(x, y \in G) . \tag{3}
\end{equation*}
$$

An example is

$$
|x|_{1}=\left(\left\|x^{\prime}\right\|^{4}+\left\|x^{\prime \prime}\right\|^{2}\right)^{1 / 4} .
$$

By Goodman [4], Lemma 1, all homogeneous gauges $|\cdot|$ are equivalent (i.e. $\left.|\cdot| \leqslant|\cdot|_{1} \lesssim|\cdot|\right)$.

Let $p>0, c \in G$, and let X be a G-valued random variable. Since

$$
E|X \cdot c|^{p} \leqslant E(|X|+|c|)^{p}
$$

it follows that

$$
E|X|^{p}<\infty \Rightarrow E|X \cdot c|^{p}<\infty .
$$

A sequence $\left\{X_{n}\right\}_{n \geqslant 1}$ of random variables is said to converge completely to the random variable X if for every $\varepsilon>0$

$$
\sum_{n=1}^{\infty} P\left(\left|X_{n}-X\right|>\varepsilon\right)<\infty
$$

By the Borel-Cantelli Lemma, complete convergence implies a.s. convergence.
3. The Marcinkiewicz-Zygmund Law of Large Numbers. The following lemma is well known:

Lemmi 1. We have $\left\|x^{\prime}\right\|, \sqrt{\left\|x^{\prime \prime}\right\|} \lesssim|x|$.
Now we prove the following analogue of the classical MarcinkiewiczZygmund Strong Law of Large Numbers (see e.g. Chow and Teicher [2], Theorem 5.2.2):

Theorem 1. Let G be a simply connected step 2-nilpotent Lie group, and $|\cdot|$ an arbitrary homogeneous gauge on G. Assume X_{1}, X_{2}, \ldots are i.i.d. G-valued random variables defined on some common probability space (Ω, \mathscr{B}, P). Then for any $p \in] 0,2[$

$$
\begin{equation*}
\delta_{n^{-1 / p}}\left(\prod_{j=1}^{n}\left(X_{j} \cdot c\right)\right) \xrightarrow{\text { a.s. }} 0 \quad(n \rightarrow \infty) \tag{4}
\end{equation*}
$$

for some $c \in G$ iff $E\left|X_{1}\right|^{p}<\infty$. If so, then in the case $1 \leqslant p<2$ we have

$$
c^{\prime}=-E X_{1}^{\prime}
$$

while $c^{\prime \prime}$ and, in the case $0<p<1$, also c^{\prime} can be chosen arbitrarily.
For the proof of the case $1 \leqslant p<2$ we need the following lemma, which is similar to Kronecker's Lemma (cf. Chow and Teicher [2], Lemma 5.1.2).

Lemma 2. For any sequence $\left\{a_{n}\right\}_{n \geqslant 1} \subset \boldsymbol{R}^{d}$ and $\left.\left\{b_{n}\right\}_{n \geqslant 1} \subset\right] 0, \infty[$ such that $b_{n+1} \geqslant b_{n}(n \geqslant 1), b_{n} \rightarrow \infty(n \rightarrow \infty)$, and

$$
\frac{1}{b_{n}} \sum_{j=1}^{n} \frac{a_{j}}{b_{j}} \rightarrow 0 \quad(n \rightarrow \infty)
$$

we have

$$
\frac{1}{b_{n}^{2}} \sum_{j=1}^{n} a_{j} \rightarrow 0 \quad(n \rightarrow \infty)
$$

Proof. For $\varepsilon>0$, choose $N \in N$ such that

$$
\frac{1}{b_{n}}\left\|\sum_{j=1}^{n} \frac{a_{j}}{b_{j}}\right\| \leqslant \frac{\varepsilon}{3} \quad(n \geqslant N) .
$$

Then, by summation by parts, we get

$$
\begin{aligned}
\frac{1}{b_{n}^{2}}\left\|\sum_{j=1}^{n} a_{j}\right\| & =\frac{1}{b_{n}^{2}}\left\|\sum_{j=1}^{n} b_{j} \frac{a_{j}}{b_{j}}\right\| \leqslant \frac{1}{b_{n}}\left\|\sum_{j=1}^{n} \frac{a_{j}}{b_{j}}\right\|+\frac{1}{b_{n}^{2}}\left\|\sum_{j=1}^{n-1}\left(b_{j+1}-b_{j}\right) \sum_{i=1}^{j} \frac{a_{i}}{b_{i}}\right\| \\
& \leqslant \frac{\varepsilon}{3}+\frac{1}{b_{n}^{2}}\left\|\sum_{j=1}^{N-1}\left(b_{j+1}-b_{j}\right) \sum_{i=1}^{j} \frac{a_{i}}{b_{i}}\right\|+\frac{\varepsilon}{3} \leqslant \varepsilon
\end{aligned}
$$

for n large enough.
Proof of Theorem 1. 1. The "only if" part may be proved similarly to that in the classical situation (cf. Chow and Teicher [2], p. 122): Since

$$
\begin{aligned}
\delta_{n^{-1 / p}}\left(X_{n} \cdot c\right) & =\delta_{n^{-1 / p}}\left(\left(-\prod_{j=1}^{n-1}\left(X_{j} \cdot c\right)\right) \cdot \prod_{j=1}^{n}\left(X_{j} \cdot c\right)\right) \\
& =\delta_{(n /(n-1))^{-1 / p}}\left(\delta_{(n-1)^{-1 / p}}\left(-\prod_{j=1}^{n-1}\left(X_{j} \cdot c\right)\right)\right) \cdot \delta_{n^{-1 / p}}\left(\prod_{j=1}^{n}\left(X_{j} \cdot c\right)\right) \\
& \xrightarrow{\text { a.s. }} 0 \quad(n \rightarrow \infty)
\end{aligned}
$$

by (4), it follows from the Borel-Cantelli Lemma that

$$
\sum_{n=1}^{\infty} P\left(\left|X_{1} \cdot c\right|>n^{1 / p}\right)<\infty
$$

which implies $E\left|X_{1} \cdot c\right|^{p}<\infty$ by Corollary 4.1.3 of Chow and Teicher [2]. So $E\left|X_{1} \cdot c\right|^{p}<\infty$.
2. Assume $0<p<1, E\left|X_{1}\right|^{p}<\infty$, and let $c \in G$ be arbitrary. By considering $X_{j} \cdot c$ instead of X_{j}, we may without loss of generality assume $c=0$. By Lemma 1 and the classical Marcinkiewicz-Zygmund Strong Law of Large Numbers we have

$$
\begin{equation*}
n^{-1 / p}\left(\sum_{j=1}^{n} X_{j}\right)^{\prime} \xrightarrow{\text { a.s. }} 0 \quad(n \rightarrow \infty), \tag{5}
\end{equation*}
$$

so we have to prove

$$
\begin{equation*}
n^{-2 / p}\left(\prod_{j=1}^{n} X_{j}\right)^{\prime \prime} \xrightarrow{\text { a.s. }} 0 \quad(n \rightarrow \infty) \tag{6}
\end{equation*}
$$

This is equivalent to

$$
n^{-2 / p}\left(\sum_{j=1}^{n} X_{j}\right)^{\prime \prime}+\frac{1}{2} n^{-2 / p}\left(\sum_{1 \leqslant i<j \leqslant n}\left[X_{i}, X_{j}\right]\right)^{\prime \prime} \xrightarrow{\text { a.s. }} 0 \quad(n \rightarrow \infty) .
$$

The first summand tends to 0 a.s. by Lemma 1 and the classical Marcinkie-wicz-Zygmund Strong Law of Large Numbers. So it remains to show

$$
\begin{equation*}
n^{-2 / p}\left(\sum_{1 \leqslant i<j \leqslant n}\left[X_{i}, X_{j}\right]\right)^{\prime \prime} \xrightarrow{\text { a.s. }} 0 \quad(n \rightarrow \infty) . \tag{7}
\end{equation*}
$$

But for this we have

$$
\left\|n^{-2 / p}\left(\sum_{1 \leqslant i<j \leqslant n}\left[X_{i}, X_{j}\right]\right)^{\prime \prime}\right\|=O\left(\left(n^{-1 / p} \sum_{j=1}^{n}\left\|X_{j}^{\prime}\right\|\right)^{2}\right) \xrightarrow{\text { a.s. }} 0 \quad(n \rightarrow \infty)
$$

by Lemma 1 and the classical Marcinkiewicz-Zygmund Strong Law of Large Numbers, which proves (7), and thus (6).
3. Assume $1 \leqslant p<2, E\left|X_{1}\right|^{p}<\infty$, and again without loss of generality $c=0, E X_{1}^{\prime}=0$. Let $c^{\prime \prime} \in V_{2}$ be arbitrary. Hence, as above, in order to prove (4), it remains to show (7). Define the V_{2}-valued random variables

$$
\begin{aligned}
& Z_{n}:=\left[n^{-1 / p} \sum_{j=1}^{n-1} X_{j}, X_{n}\right]^{\prime \prime} \\
& \bar{Z}_{n}:=Z_{n} \cdot \mathbb{1}_{A_{j}}, \quad \text { where } A_{j}=\left\{n^{-1 / p}\left\|\left(\sum_{j=1}^{n-1} X_{j}\right)^{\prime}\right\| \leqslant 1\right\} .
\end{aligned}
$$

Without loss of generality, we may assume that there is a G-valued random variable X on (Ω, \mathscr{B}, P) which is distributed like X_{1} and independent of $\left\{X_{n}\right\}_{n \geqslant 1}$. By Lemma $1, E\left\|X^{\prime}\right\|<\infty$, so since for every projection p onto some coordinate subspace of V_{2}

$$
\begin{aligned}
P\left(\left|p\left(\bar{Z}_{n}\right)\right| \geqslant x \mid X_{1}, X_{2}, \ldots, X_{n-1}\right) & \leqslant P\left(\left\|\bar{Z}_{n}\right\| \geqslant x \mid X_{1}, X_{2}, \ldots, X_{n-1}\right) \\
& \leqslant P\left(\left\|X_{n}^{\prime}\right\| \geqslant K x \mid X_{1}, X_{2}, \ldots, X_{n-1}\right) \\
& =P\left(\left\|X^{\prime}\right\| \geqslant K x \mid X_{1}, X_{2}, \ldots, X_{n-1}\right) \\
& (0 \leqslant x<\infty)
\end{aligned}
$$

for some fixed $K>0$ a.s., the Theorem in Chatterji [1] yields

$$
n^{-1 / p} \sum_{j=1}^{n}\left(\bar{Z}_{j}-\alpha_{j}\right) \xrightarrow{\text { a.s. }} 0 \quad(n \rightarrow \infty),
$$

where α_{n} is a V_{2}-valued random variable on (Ω, \mathscr{B}, P) consisting of the components

$$
E\left(p\left(\bar{Z}_{n}\right) \mid p\left(\bar{Z}_{1}\right), p\left(\bar{Z}_{2}\right), \ldots, p\left(\bar{Z}_{n-1}\right)\right) \text { a.s. }
$$

By Lemma 1 and the classical Marcinkiewicz-Zygmund Strong Law of Large Numbers, there is a.s. an N (random) such that a.s.
(8)

$$
Z_{n}=\bar{Z}_{n} \quad(n \geqslant N)
$$

and

$$
E\left(\bar{Z}_{n} \mid X_{1}, X_{2}, \ldots, X_{n-1}\right)=E\left(Z_{n} \mid X_{1}, X_{2}, \ldots, X_{n-1}\right)=0 \quad(n \geqslant N)
$$

(since $E X_{1}^{\prime}=0$); hence a.s.

$$
\begin{equation*}
\alpha_{n}=0 \quad(n \geqslant N) . \tag{9}
\end{equation*}
$$

Thus, by (8) and (9),

$$
n^{-1 / p} \sum_{j=1}^{n} Z_{j} \xrightarrow{\text { a.s. }} 0 \quad(n \rightarrow \infty) .
$$

By Lemma 2, putting

$$
b_{n}:=n^{1 / p} \quad \text { and } \quad a_{n}:=b_{n} Z_{n}=\left[\sum_{j=1}^{n-1} X_{j}, X_{n}\right]^{\prime \prime}
$$

we obtain (7).
4. The fact that c^{\prime} is uniquely determined in the case $1 \leqslant p<2$ follows from (5).
4. Rates of convergence. We will use the following consequence of the Hölder Inequality:

Lemma 3. Assume $x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{n}, y_{n} \in G$. Then for some $K>0$ not depending on p, q

$$
\left\|\sum_{i=1}^{n}\left[x_{i}, y_{i}\right]\right\| \leqslant K \cdot \max _{1 \leqslant i \leqslant n}\left\|x_{i}^{\prime}\right\| \cdot \sum_{i=1}^{n}\left\|y_{i}^{\prime}\right\| .
$$

Proof. By Hölder's Inequality,

$$
\left\|\sum_{i=1}^{n}\left[x_{i}, y_{i}\right]\right\| \leqslant K\left(\sum_{i=1}^{n}\left\|x_{i}^{\prime}\right\|^{p}\right)^{1 / p}\left(\sum_{i=1}^{n}\left\|y_{i}^{\prime}\right\|^{q}\right)^{1 / q}
$$

for $p, q>1,1 / p+1 / q=1$. Now $q \rightarrow 1$ yields the assertion.
First we carry over the theorem of Hsu-Robbins-Erdös (cf. Chow and Teicher [2], Corollary 10.4.2):

Theorem 2. Let G be a simply connected step 2-nilpotent Lie group, $|\cdot|$ a homogeneous gauge on G, and assume $\left\{X_{n}\right\}_{n \geqslant 1}$ are i.i.d. G-valued random variables. Then

$$
\begin{equation*}
\sum_{n=1}^{\infty} P\left(\left|\delta_{n-1}\left(\prod_{i=1}^{n}\left(X_{i} \cdot c\right)\right)\right| \geqslant \varrho\right)<\infty \quad \text { for every } \varrho>0 \tag{10}
\end{equation*}
$$

iff

$$
E\left|X_{1}\right|^{2}<\infty, \quad c^{\prime}=-E X_{1}^{\prime}
$$

Proof. As in the proof of Theorem 1, we may assume without loss of generality that $c=0, E X_{1}^{\prime}=0$. We first prove the "if" direction: By Lemma 3,

$$
\begin{aligned}
\left|\delta_{n^{-1}}\left(\prod_{j=1}^{n} X_{j}\right)\right| \leqslant & K n^{-1}\left\|\sum_{j=1}^{n} X_{j}^{\prime}\right\|+K\left\{n^{-2}\left\|\sum_{j=1}^{n} X_{j}^{\prime \prime}\right\|\right\}^{1 / 2} \\
& +(K / \sqrt{2})\left\{n^{-1} \max _{1 \leqslant j \leqslant n}\left\|X_{j}^{\prime}\right\| \cdot n^{-1} \sum_{j=1}^{n}\left\|X_{j}^{\prime}\right\|\right\}^{1 / 2} \\
= & K T_{n}^{(1)}+K \sqrt{T_{n}^{(2)}}+(K / \sqrt{2}) \sqrt{T_{n}^{(3)} \cdot T_{n}^{(4)}}
\end{aligned}
$$

Suppose $\sigma \cdot>0$. We have

$$
\begin{equation*}
\sum_{n=1}^{\infty} P\left(T_{n}^{(1)} \geqslant \sigma\right)<\infty \tag{11}
\end{equation*}
$$

by Corollary 10.4.2 of Chow and Teicher [2], and

$$
\begin{equation*}
\sum_{n=1}^{\infty} P\left(T_{n}^{(2)} \geqslant \sigma\right)<\infty \tag{12}
\end{equation*}
$$

by Theorem 10.4 .1 of Chow and Teicher [2] (with $\alpha=2, p=\gamma=1$; it is easy to see that the theorem is also valid in the case $E X \neq 0, \alpha>1$). For $T_{n}^{(3)}$ we get

$$
\begin{align*}
\sum_{n=1}^{\infty} P\left(T_{n}^{(3)} \geqslant \sigma\right) & \leqslant \sum_{n=1}^{\infty} n P\left(\left\|X_{1}^{\prime}\right\| \geqslant \sigma n\right) \tag{13}\\
& \leqslant 1+\int_{1}^{\infty}(t+1) P\left(\left\|X_{1}^{\prime}\right\|^{2} \geqslant \sigma^{2} t^{2}\right) d t \\
& \leqslant 1+H \int_{1}^{\infty} P\left(\left\|X_{1}^{\prime}\right\|^{2} \geqslant s\right) d s \leqslant 1+H E\left\|X_{1}^{\prime}\right\|^{2}<\infty
\end{align*}
$$

Again by Corollary 10.4.2 of Chow and Teicher [2] we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} P\left(T_{n}^{(4)}-E\left\|X_{1}^{\prime}\right\| \geqslant \sigma\right)<\infty \tag{14}
\end{equation*}
$$

Now without loss of generality $E\left\|X_{1}^{\prime}\right\|>0$, for otherwise (12) proves the "if" direction. Since

$$
\begin{aligned}
P\left(\left|\delta_{n^{-1}}\left(\prod_{i=1}^{n} X_{i}\right)\right|\right. & \geqslant \varrho) \leqslant P\left(T_{n}^{(1)} \geqslant \frac{\varrho}{3 K}\right)+P\left(T_{n}^{(2)} \geqslant\left(\frac{\varrho}{3 K}\right)^{2}\right) \\
+ & +P\left(T_{n}^{(3)} \geqslant\left(\frac{\varrho}{3 K}\right)^{2} \frac{1}{E\left\|X_{1}^{\prime}\right\|}\right)+P\left(T_{n}^{(4)}-E\left\|X_{1}^{\prime}\right\| \geqslant E\left\|X_{1}^{\prime}\right\|\right)
\end{aligned}
$$

inequalities (11)-(14) yield the assertion.

As far as the "only if" part is concerned, first observe that, by (10) and the Borel-Cantelli Lemma,

$$
\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}^{\prime}+c^{\prime}\right) \xrightarrow{\text { a.s. }} 0
$$

hence by the classical Marcinkiewicz-Zygmund Law of Large Numbers it follows that $E X_{1}^{\prime}=-c^{\prime}$. Now we show that $E\left|X_{1}\right|^{2}<\infty$. For this, it suffices to prove, by Corollary 10.4.2 of Chow and Teicher [2], that $E\left\|X_{1}^{\prime \prime}\right\|<\infty$. Observe that

$$
\begin{align*}
& \prod_{i=1}^{n}\left(X_{i} \cdot c\right)+\prod_{i=1}^{n}\left(X_{n+1-i} \cdot c\right) \tag{15}\\
& =\sum_{i=1}^{n}\left(X_{i} \cdot c\right)+\frac{1}{2} \sum_{1 \leqslant i<j \leqslant n}\left[X_{i} \cdot c, X_{j} \cdot c\right]+\sum_{i=1}^{n}\left(X_{n+1-i} \cdot c\right) \\
& \quad+\frac{1}{2} \sum_{1 \leqslant i<j \leqslant n}\left[X_{n+1-i} \cdot c, X_{n+1-j} \cdot c\right] \\
& =2 \sum_{i=1}^{n}\left(X_{i} \cdot c\right)+\frac{1}{2} \sum_{1 \leqslant i<j \leqslant n}\left(\left[X_{i} \cdot c, X_{j} \cdot c\right]+\left[X_{j} \cdot c, X_{i} \cdot c\right]\right)=2 \sum_{i=1}^{n}\left(X_{i} \cdot c\right) .
\end{align*}
$$

Now we may proceed as in the proof of Corollary 10.4.2 in Chow and Teicher [2]: Put $h=\operatorname{dim} V_{2}$, let $\left\{\tilde{X}_{n}\right\}_{n \geqslant 1}$ be an independent copy of the process $\left\{X_{n}\right\}_{n \geqslant 1}$, and put $Y_{n}=\left(X_{n} \cdot c\right)-\left(\tilde{X}_{n} \cdot c\right)$. Then, by (15), the symmetry of Y_{n}, and Lévy's Inequality (cf. Chow and Teicher [2], Lemma 3.3.5), we get

$$
\begin{align*}
& 1-P^{n}\left(\left\|Y_{1}^{\prime \prime}\right\|<\beta\right)=P\left(\max _{1 \leqslant i \leqslant n}\left\|Y_{i}^{\prime \prime}\right\| \geqslant \beta\right) \leqslant P\left(\max _{1 \leqslant i \leqslant n}\left\|\sum_{j=1}^{i} Y_{j}^{\prime \prime}\right\| \geqslant \beta / 2\right) \tag{16}\\
& \quad \leqslant 2 h P\left(\left\|\sum_{i=1}^{n} Y_{i}^{\prime \prime}\right\| \geqslant \beta / 2 h\right) \leqslant 4 h P\left(\left\|\sum_{i=1}^{n}\left(X_{i} \cdot c\right)^{\prime \prime}\right\| \geqslant \beta / 4 h\right) \\
& \quad \leqslant 8 h P\left(\left\|\left(\prod_{i=1}^{n}\left(X_{i} \cdot c\right)\right)^{\prime \prime}\right\| \geqslant \beta / 4 h\right) \leqslant 8 h P\left(\left|\prod_{i=1}^{n}\left(X_{i} \cdot c\right)\right| \geqslant L \sqrt{\beta / 4 h}\right)
\end{align*}
$$

for some constant $L>0$; hence for $\gamma=L / \sqrt{4 h}$, by (10) and (16) we get

$$
\begin{aligned}
\infty & >\sum_{n=1}^{\infty}\left(1-P^{n}\left(\left\|Y_{1}^{\prime \prime}\right\|<n^{2}\right)\right)=\sum_{n=1}^{\infty} P\left(\left\|Y_{1}^{\prime \prime}\right\| \geqslant n^{2}\right) \sum_{j=0}^{n-1} P^{j}\left(\left\|Y_{1}^{\prime \prime}\right\|<n^{2}\right) \\
& \geqslant \sum_{n=1}^{\infty} n P\left(\left\|Y_{1}^{\prime \prime}\right\| \geqslant n^{2}\right)\left[\frac{1}{n} \sum_{j=0}^{n-1}\left(1-8 h P\left(\left|\prod_{i=1}^{j}\left(X_{i} \cdot c\right)\right| \geqslant \gamma j\right)\right)\right] .
\end{aligned}
$$

The expression [...] tends to 1 as $n \rightarrow \infty$ by (10), and

$$
\begin{aligned}
\sum_{n=1}^{\infty} n P\left(\left\|Y_{1}^{\prime \prime}\right\| \geqslant n^{2}\right) & \geqslant \int_{1}^{\infty} t P\left(\left\|Y_{1}^{\prime \prime}\right\| \geqslant(t+1)^{2}\right) d t \\
& \geqslant \frac{1}{4} \int_{1}^{\infty} P\left(\left\|Y_{1}^{\prime \prime}\right\| \geqslant s\right) d s \geqslant \frac{1}{4}\left(E\left\|Y_{1}^{\prime \prime}\right\|-1\right),
\end{aligned}
$$

so $E\left\|Y_{1}^{\prime \prime}\right\|<\infty$, and thus, by Lemma 10.1.1 of Chow and Teicher [2], $E\left\|\left(X_{1} \cdot c\right)^{\prime \prime}\right\|<\infty$. Since $E X_{1}^{\prime}=0$, it follows that

$$
E\left(X_{1} \cdot c\right)^{\prime \prime}=E X_{1}^{\prime \prime}+c^{\prime \prime}
$$

so $E\left\|X_{1}^{\prime \prime}\right\|<\infty$. Hence we have $E\left|X_{1}\right|^{2}<\infty$.
Now we formulate an analogue of the Baum-Katz Theorem (cf. Chow and Teicher [2], Theorem 5.2.7):

Theorem 3. Let G be a simply connected step 2-nilpotent Lie group, $|\cdot|$ a homogeneous gauge on G, and assume that $\left\{X_{n}\right\}_{n \geqslant 1}$ are i.i.d. G-valued random variables. Suppose $0<p<2, E\left|X_{1}\right|^{p}<\infty$, and let $c \in G$ be such that $c^{\prime}=-E X_{1}^{\prime}$ in the case $1 \leqslant p<2$. Then if $\alpha p \geqslant 1$, we have

$$
\sum_{n=1}^{\infty} n^{\alpha p-2} P\left(\max _{1 \leqslant i \leqslant n}\left|\delta_{n}-\alpha\left(\prod_{j=1}^{i}\left(X_{j} \cdot c\right)\right)\right| \geqslant \varrho\right)<\infty
$$

for every $\varrho>0$.
Proof. The proof is the same as in the classical case (cf. Chow and Teicher [2], p. 130): Again, without loss of generality, $c=0, E X_{1}^{\prime}=0$. By Theorem 1,

$$
\delta_{n-1 / p}\left(\prod_{i=1}^{n} X_{i}\right) \xrightarrow{\text { a.s. }} 0 \quad(n \rightarrow \infty),
$$

so

$$
\max _{1 \leqslant i \leqslant n}\left|\delta_{n-1 / p}\left(\prod_{j=1}^{i} X_{j}\right)\right| \xrightarrow{\text { a.s. }} 0 \quad(n \rightarrow \infty) .
$$

Thus, by (2) and (3), we obtain

$$
\begin{align*}
& \max _{n+1 \leqslant i \leqslant 2 n}\left|\delta_{n^{-1 / p}}\left(\prod_{j=n+1}^{i} X_{j}\right)\right|=\max _{n+1 \leqslant i \leqslant 2 n}\left|\delta_{n^{-1 / p}}\left(\left(-\prod_{j=1}^{n} X_{j}\right) \cdot \prod_{j=1}^{i} X_{j}\right)\right| \tag{17}\\
& \quad \lesssim\left|\delta_{n-1 / p}\left(\prod_{j=1}^{n} X_{j}\right)\right|+\max _{1 \leqslant i \leqslant 2 n}\left|\delta_{(2 n)^{-1 / p}}\left(\prod_{j=1}^{i} X_{j}\right)\right| \xrightarrow{\text { a.s. }} 0 \quad(n \rightarrow \infty)
\end{align*}
$$

Case 1: $\alpha p=1$. Put

$$
\varrho^{\prime}=2^{-2 \alpha} \varrho .
$$

Since the random variables

$$
\left\{\max _{2^{n+1}}\left|\prod_{j=2^{n+1}}^{i} X_{j}\right|\right\}_{n \geqslant 1}
$$

are independent, it follows from (17) and the Borel-Cantelli Lemma that

$$
\begin{aligned}
\infty & >\sum_{n=1}^{\infty} P\left(\max _{2^{n}+1 \leqslant i \leqslant 2^{n+1}}\left|\prod_{j=2^{n+1}}^{i} X_{j}\right| \geqslant 2^{\alpha n} \varrho^{\prime}\right) \\
& =\sum_{n=1}^{\infty} P\left(\max _{1 \leqslant i \leqslant 2^{n}}\left|\prod_{j=1}^{i} X_{j}\right| \geqslant 2^{\alpha n} \varrho^{\prime}\right) \geqslant \int_{0}^{\infty} P\left(\max _{1 \leqslant i \leqslant\left\llcorner 2^{\dagger}\right\rfloor}\left|\prod_{j=1}^{i} X_{j}\right| \geqslant 2^{\alpha(t+1)} \varrho^{\prime}\right) d t \\
& \geqslant(\log 2)^{-1} \int_{1}^{\infty} x^{-1} P\left(\max _{1 \leqslant i \leqslant\lfloor x\rfloor}\left|\prod_{j=1}^{i} X_{j}\right| \geqslant 2^{\alpha} \varrho^{\prime} x^{\alpha}\right) d x \\
& \geqslant(\log 2)^{-1} \sum_{n=1}^{\infty} \frac{1}{2 n} P\left(\max _{1 \leqslant i \leqslant n}\left|\prod_{j=1}^{i} X_{j}\right| \geqslant 2^{\alpha} \varrho^{\prime}(2 n)^{\alpha}\right) \\
& \geqslant(2 \log 2)^{-1} \sum_{n=1}^{\infty} \frac{1}{n} P\left(\max _{1 \leqslant i \leqslant n}\left|\prod_{j=1}^{i} X_{j}\right| \geqslant \varrho n^{\alpha}\right) .
\end{aligned}
$$

Case 2: $\alpha p>1$. Put

$$
\varrho^{\prime}=2^{-\alpha^{2} p /(\alpha p-1)} \varrho
$$

Since for $n \geqslant 1$

$$
(n+1)^{\alpha p /(\alpha p-1)} \geqslant n^{\alpha p /(\alpha p-1)}+\frac{\alpha p}{\alpha p-1} n^{1 /(\alpha p-1)} \geqslant n^{\alpha p /(\alpha p-1)}+n^{1 /(\alpha p-1)}
$$

the random variables

$$
\left\{\left.\max _{\substack{n^{\alpha p /(\alpha p-1)+1 \leqslant i} \\ \leqslant n^{\alpha p /(\alpha p-1)+n^{1 /(\alpha p-1)}}}}\right|_{j=\left\lfloor n^{\alpha p} /(\alpha p-1)\right\rfloor+1} \prod_{j} X_{j} \mid\right\}_{n \geqslant 1}
$$

are independent and, by (17),

$$
\begin{aligned}
& \max _{\substack{n^{\alpha p /(\alpha p-1)+1 \leqslant i} \\
\leqslant n^{\alpha p /(\alpha p-1)+n^{1 /(\alpha p-1)}}}} n^{-\alpha /(\alpha p-1)}\left|\prod_{j=\left\lfloor n^{\alpha p /(\alpha p-1)\rfloor+1}\right.}^{i} X_{j}\right| \\
& \leqslant \max _{n^{\alpha p /(\alpha p-1)+1 \leqslant 2 n^{\alpha p /(\alpha p-1)}}} n^{-\alpha /(\alpha p-1)} \mid \prod_{j=\left\lfloor n^{\alpha p p /(\alpha p-1)\rfloor+1}\right.}^{i} X_{j} \xrightarrow{\text { a.s. }} 0 \quad(n \rightarrow \infty),
\end{aligned}
$$

so, by the Borel-Cantelli Lemma,

$$
\begin{aligned}
\infty & >\sum_{n=1}^{\infty} P\left(\max _{\substack{n^{\alpha p /(\alpha p-1)+1 \leqslant i} \\
\leqslant n^{\alpha p /(\alpha p-1)+n^{1 /(\alpha p-1)}}}} \prod_{j=\left\lfloor n^{\alpha p /(\alpha p-1)\rfloor+1}\right.}^{i} X_{j} \mid \geqslant n^{\alpha /(\alpha p-1)} \varrho^{\prime}\right) \\
& =\sum_{n=1}^{\infty} P\left(\max _{1 \leqslant i \leqslant n^{1 /(\alpha p-1)}}\left|\prod_{j=1}^{i} X_{j}\right| \geqslant n^{\alpha /(\alpha p-1)} \varrho^{\prime}\right) \\
& \geqslant \int_{1}^{\infty} P\left(\max _{1 \leqslant i \leqslant\left\lfloor t^{1 /(\alpha p-1)}\right\rfloor}\left|\prod_{j=1}^{i} X_{j}\right| \geqslant(t+1)^{\alpha /(\alpha p-1)} \varrho^{\prime}\right) d t \\
& \geqslant(\alpha p-1) \int_{1}^{\infty} x^{\alpha p-2} P\left(\max _{1 \leqslant i \leqslant\lfloor x]^{\alpha}}\left|\prod_{j=1}^{i} X_{j}\right| \geqslant 2^{\alpha /(\alpha p-1)} \varrho^{\prime} x^{\alpha}\right) d x \\
& \geqslant A \sum_{n=1}^{\infty} n^{\alpha p-2} P\left(\max _{1 \leqslant i \leqslant n}\left|\prod_{j=1}^{i} X_{j}\right| \geqslant 2^{\alpha /(\alpha p-1)} \varrho^{\prime}(2 n)^{\alpha}\right) \\
& =A \sum_{n=1}^{\infty} n^{\alpha p-2} P\left(\max _{1 \leqslant i \leqslant n}\left|\prod_{j=1}^{i} X_{j}\right| \geqslant \varrho n^{\alpha}\right)
\end{aligned}
$$

for some constant $A>0$.

REFERENCES

[1] S. D. Chatterji, An L^{p}-convergence theorem, Ann. Math. Statist. 40 (1969), pp. 1068-1070.
[2] Y. S. Chow and H. Teicher, Probability Theory, Springer, New York 1978.
[3] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton University Press, Princeton, NJ, 1982.
[4] R. Goodman, Filtrations and asymptotic automorphisms on nilpotent Lie groups, J. Differential Geom. 12 (1977), pp. 183-196.
[5] A. Kaplan, Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms, Trans. Amer. Math. Soc. 258 (1980), pp. 147-153.

Université de Lausanne
Ecole des Hautes Etudes Commerciales
Institut de Sciences Actuarielles
CH-1015 Lausanne

Received on 13.9.1994;
revised version on 17.9.1996

