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Abstract. The Strong Law of Large Numbers due to Marcinkie-
wicz and Zygmund is carried over to simply connected step 2-nilpotent
Lie groups. Moreover, for such groups, we prove analogues of the
classical theorems of Hsu-Robbins-Erdés, respectively Baum-—Katz,
giving information on the rate of convergence in Laws of Large Num-
bers.

1. Imtroduction. Simply connected step 2-nilpotent Lie groups are groups
which arise as follows: Let [, ]: RxR?— R*(d > 0) be a skew-symmetric
bilinear map such that [[R?, R%], R?] = {0}. Then G = R®, equipped with the
multiplication

xy=x+y+%[x, yl,

is a group of the above-mentioned type. Clearly, e =0 and x~! = —x. The
best-known (noncommutative) examples are the Heisenberg groups H? given by

Hd =R2d+1 =Rdede
and
[x, ¥y} = (0, 0, (x), y&y —(xP, yU3)eR¥x R x R = HY,
where
x =M, x?, X3,  y=(",y? yNeR xR xR = H°.

The so-called groups of type H, which arise in the context of composition
of quadratic forms, all belong to this class (cf. Kaplan [5]). See also Folland
and Stein [3].

For G = R, it was shown by Hsu—Robbins-Erdds that in the Law of Large
Numbers complete convergence is equivalent to the finiteness of the second
moment. Baum and Katz strengthened the Marcinkiewicz-Zygmund Law of
Large Numbers in the sense that there is not only strong convergence, but
convergence of certain series which implies complete convergence. Both theo-
rems due to Hsu-Robbins-Erdés, respectively Baum—Katz, may be interpreted
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as results concerning the rate of convergence in the corresponding Laws of
Large Numbers.

In this paper we will prove an analogue of the Marcinkiewicz—Zygmund
Law of Large Numbers (which contains the Kolmogorov Strong Law of Large
Numbers for random variables with expectation as a special case) for simply
connected step 2-nilpotent Lie groups. Moreover, we carry over the theorems
of Hsu-Robbins—Erdds, respectively Baum—Katz, to this context.

2. Preliminaries and notation. For real-valued functions f, g, the notation
Jf<-g means that there is a constant K >0 such that f(x) < Kg(x) for
all x.

Let G be a simply connected step 2—n11potent Lie group. Let V, =[G, G]
be the center of G, and ¥, a complement of V,, ie.

(1) G=V, @V,

The notation x = (x’, x”")e G will always be understood with respect to (1), i.e.
x'eV,,x"eV,. For a>0, xeG put

5,() = (ax', a*x").

Clearly, 6, is an automorphism of G. A homogeneous gauge on G is a con-
tinuous function |-|: G — [0, oof satisfying

=0, XI>0 (xeG\{0}),
[0,(x) =alx] (a>0,xeG)
(cf. Goodman [4]). By a compactness argument we have
) |—x| 5 I
(cf. Goodman [4], Lemma 2) and
() -yl < lxl+lyl (x, yeG).
An e)_(ample is
Pely = (11 + x4

By Goodman [4], Lemma 1, all homogeneous gauges |-| are equivalent (i.c.

sy s 1)
Let p>0, ceG, and let X be a G-valued random vanable Since

E|X-c? < E(X]+]cl),
it follows that

EXP<ow=E|X ¢ < 0.
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A sequence {X,},>, of random variables is said to converge completely to
the random variable X if for every ¢ >0

Y P(X,—X| > &) < o0.
n=1
By the Borel-Cantelli Lemma, complete convergence implies a.s. convergence.

3. The Marcinkiewicz-Zygmund Law of Large Numbers. The following
lemma is well known:

LemMMa 1. We have 11, /171 < 1%

Now we prove the following analogue of the classical Marcinkiewicz-
Zygmund Strong Law of Large Numbers (see e. g Chow and Teicher [2],
Theorem 5.2.2):

THEOREM 1. Let G be a simply connected step 2-nilpotent Lie group, and |- |
an arbitrary homogeneous gauge on G. Assume X |, X,, ... are iid. G-valued
random variables defined on some common probability space (2, %, P). Then for
any pel0, 2[

(4) ,, 1/p(I—’l[ (Xj-c))"'—st (n—+oo)

for some ceG iff E|X,|’ < oo0. If so, then in the case 1 < p <2 we have
¢ = —EX,
while ¢” and, in the case 0 < p <1, also ¢’ can be chosen arbitrarily.

For the proof of the case 1 < p < 2 we need the following lemma, which is
similar to Kronecker’s Lemma (cf. Chow and Teicher [2], Lemma 5.1.2).

LeMMA 2. For any sequence {a,},>1 < R* and {b,}n>, < ]0, o[ such that
byt =2b, n=1),b,> 0 (n—> ), and

1

bz-bl ~0 (n— o)

ji=1
we have

bzza.r_'o (n — ).

nj=1
Proof For £ >0, choose NeN such that

AP A

\%

8
<3 ).
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Then, by summation by parts, we get

1 n 1 n aj 1 n J n—1
B j‘; aj| =3z le b,b <y ; b, b,f ,Zl (bjsr1— ,)Z
e 1Nzt i g Ly
s— —_— . _._ —
e & G ] 43S

for n large enough. =

Proof of Theorem 1. 1. The “only if’ part may be proved similarly to
that in the classical sitvation (cf. Chow and Teicher [2], p. 122): Since

n—1

duesn (1) =3y (- T] (Xf'“))'}i %-0)

n—1 n
= 6(,'/("_1))—1/17 (5("—1)—1/11(— 1=_[1 (X,C)))' 6n—1/p('=1—11 (X,'C))
2550 (n—o0)

by (4), it follows from the Borel-Cantelli Lemma that

Y. P(X;-¢| > n'?) < o0,

n=1
which implies E|X; -c|? < oo by Corollary 4.1.3 of Chow and Teicher [2]. So
E|X;-clf < 0.

2. Assume 0 < p< 1, E|X,|? < o0, and let ce G be arbitrary. By consid-
ering X;-c instead of X;, we may without loss of generality assume ¢ = 0. By
Lemma 1 and the classical Marcinkiewicz—Zygmund Strong Law of Large
Numbers we have

(5) n'”"(i X) 250 (n-o o),

so we have to prove
(6) n"2P([1X) 250 (n— ).
j=1

This is equivalent to

n(Y XY 4in (Y (X, XD 250 (n c0).

i=1 2 1<i<j<n
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The first summand tends to 0 a.s. by Lemma 1 and the classical Marcinkie-
wicz—Zygmund Strong Law of Large Numbers. So it remains to show

)] "_zlp( Z [Xi, X,-])"ﬁ»O (n — ).

1<€i<j<n

But for this we have

I Y X X1 = 0@ Y 1K) 20 (1 o)
N i=1

1<i<j<n

by Lemma’1 and the classical Marcinkiewicz-Zygmund Strong Law of Large
Numbers, which proves (7), and thus (6).

3. Assume 1 €< p <2, E|X,|’ < o0, and again without loss of generality
¢ =0, EX| = 0. Let ¢" € ¥, be arbitrary. Hence, as above, in order to prove (4),
it remains to show (7). Define the V,-valued random variables

n—1
Z,:=[n"" Y X, X',
i=1 '

n—1
Zy:=Zy 14, where 4;={n"'7|(} X)| <1}.
j=1

Without loss of generality, we may assume that there is a G-valued random
variable X on (Q, #, P) which is distributed like X; and independent of
{X,}nz1- By Lemma 1, E | X'|| < oo, so since for every projection p onto some
coordinate subspace of V,

P(pZ) = x1X,, X,, cios Xnoy) S PUIZ,) 2 x1X 1, X3, ooy Xpy)
S P(IX, = Kx|Xy, Xa, ..., Xuy)
=P(|1X'| > Kx|X1, X5, ..., X5-1)

| 0<x < ®)

for some fixed K > 0 a.s., the Theorem in Chatterji [1] yields
n~U Y (Z;—a) 250 (n— 0),
j=1

where o, is a V,-valued random variable on (22, #, P) consisting of the com-
ponents

E(p(Z_,,)Ip(Z_l), p(ZZ)’ LRRE pv(Z_n—l)) a.s.

By Lemma 1 and the classicél Marcinkiewicz—Zygmund Strong Law of Large
Numbers, there is a.s. an N (random) such that as.
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18) Z,=Z, (m=N)
and ‘
EZ,|X:,X2,..., Xo-1)=E(Z,] X, X3,...,X,-1)=0 (n=N)

(since EX'; = 0); hence as.
© a,=0 (n=N).
Thus, by (8) and (9),

T WY Z,250  (n> o),

i=1 :
By Lemma 2, putting
n—1
by:;=n" and a,:=b2Z,=[) X, X.]’,

ji=1
we obtain (7).
4. The fact that ¢’ is uniquely determined in the case 1 < p < 2 follows
from (5). =
4. Rates of comvergence. We will use the following consequence of the
Holder Inequality:

- LEMMA 3. Assume x1, Y1, X2, Y25 +-+» Xns Ys€G. Then for some K > 0 not
depending on p, q

n n
IS [ v < K- max % Y 1.
i=1 1<i<n i=1

Proof. By Hoélder’s Inequality,

I 2 [x:, yi]|| < z I )”"(z yill9)*"

for p,g>1, 1/p+1/g=1. Now g— 1 yields the assertion. =

First we carry over the theorem of Hsu—Robbins—Erdos (cf. Chow and
Teicher [2], Corollary 10.4.2):

THEOREM 2. Let G be a simply connected step 2-nilpotent Lie group,
[*| @ homogeneous gauge on G, and assume {X,},>, are iid. G-valued random
variables. Then

(10) i P(|5,,-1(ﬁ (X,--c))| >g) <o for every >0
n=1 i=1

iff .
E|X{?< o, ¢ =—EX,.
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Proof. As in the proof of Theorem 1, we may assume without loss of
generality that ¢ = 0, EX; = 0. We first prove the “if” direction: By Lemma 3,

ou- (1200 < K7t 3 X0+ K (2 5, %713

+(K/2){n max 1107t X I
. A j=1

= KTO+K /TP +(K//2)/ T TP.

Suppose a-> 0. We have

(11) P(TM>0)< 0
1

n=

by Corollary 10.4.2 of Chow and Teicher [2], and

P(T? > 0) <

s

12)

It

n=1

by Theorem 10.4.1 of Chow and Teicher [2] (with @ = 2, p = y = 1; it is easy to
see that the theorem is also valid in the case EX # 0, « > 1). For T,® we get

13) Y P(T?>20)< ¥ nP(IXy] > on)

n=1 - n=1

<14 [ ¢+ PIX3)? = o??)dt
1‘ .

<1+H [ P(1X|? > s)ds < 1+ HE | X4 < oo.
‘ 1 '

Again rby Corollary 10.4.2 of Chow and Teicher [2] we have

(14 Y. P(TP—E|Xi] 2 0) < .

- n=1

Now without loss of generality E | X' | > 0, for otherwise (12) proves the “if”
direction. Since

(TT x, 5 2 o5 (2
Psn([1x)> ) < P(10> L) r(123 (L))

2 1
PIT® > e P(TY—E|X,| > E|X
* ( <3K> E”X,1”)+ (T@—E|X4]l > E|X41),

inequalities (11)(14) yield the assertion.
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As far as the “only if” part is concerned, first observe that, by (10) and the
Borel-Cantelli Lemma,

N =
i

(X’+c’)
hence by the classical Marcinkiewicz-Zygmund Law of Large Numbers it
follows that EX'} = —c'. Now we show that E |X,|*> < co. For this, it suffices to

prove, by Corollary 10.4.2 of Chow and Teicher [2], that E || X|| < c0. Ob-
serve that

5 [0+ [T @nesrc0

= Z(Xi-c)+% Z [X;c, X C]+Z(Xn+1 i"C)

i=1 1€i<j<n =1

+ Z [Xnsi1-ic, Xpi1-jc]

1<i<j<n

N =

=2_i (_X',C)'f'l Z ([Xi'C, Xj'C]+[Xj'C,Xi'C]]=2.i (Xi'C).

2 1€i<j<n
Now we may proceed as in the proof of Corollary 10.4.2 in Chow and Tei-
cher [2]: Put h = dim V,, let {X ,,},, >1 be an independent copy of the process
{Xu}n>1, and put ¥, = (X,-c)—(X," ). Then, by (15), the symmetry of Y,, and
Lévy’s Inequality (cf. Chow and Teicher [2], Lemma 3.3.5), we get

(16) 1-P"(IY{'| <) =P(max |¥'| > f)<P (max (R

\l\ 1<i<n =1

> B/2)
<zhp(||_i " > B/2H) < kP ||z Xy’ > B/ah)

< 8hp(||(_]f[1 (X:-¢))'|| = B/4h) < 8hP(|_1j (X,.-c)| > L./B/4h)

for some constant L > 0; hence for y = L/,/4h, by (10) and (16) we get

© -] n—1
> Y (1-P (%) <n?)= ¥ P(IX] =n) Y PV <n?)
n=1 n=1 j=0

n—1

/f nP(|Y}) > )E,Z (1—8hP(llj(X o> ))]

i=0



Laws of Large Numbers ' 175

The expression [...] tends to 1 as n— o0 by (10), and

[ 2]

Y nP(IY7l =2 n’) = [eP(IY1] 2 (e+1))de
1

n=1

]_°° 144 1 1" _
Z{P(IIY I=s)ds > Z(E [ Y{']| 1),

so E|Y| < o, and thus, by Lemma 10.1.1 of Chow and Teicher [2],
E|(Xy )’ < co. Since EXy =0, it follows that

E(X,-c)' = EX{+c",
so E || X'{]| < co. Hence we have E[X,|* < c0. m

Now we formulate an analogue of the Baum-Katz Theorem (cf. Chow and
Teicher [2], Theorem 5.2.7):

THEOREM 3. Let G be a simply connected step 2-nilpotent Lie group, ||
a homogeneous gauge on G, and assume that {X,},>, are i.i.d. G-valued random
variables. Suppose 0 < p < 2, E|X |’ < o0, and let ce G be such that ¢’ = —EX;
in the case 1 < p < 2. Then if ap > 1, we have

Z n*?~2 P( max |6,-«( H(X o) =e) <o

1<isn

Jor every g > 0.

Proof. The proof is the same as in the classical case (cf. Chow and Teicher
[2], p- 130): Again, without loss of generality, c = 0, EX} = 0. By Theorem 1,

‘/P(lj )20  (n—> ),

SO

max |J,-1» H )20 (n— o).
1<i<n j=1
Thus, by (2) and (3), we obtain

(17) max - |6,-1» l_[ X;)|= max nlé e ((— .jl_[lXj). l_l[ X))

n+1<is<2n j=n+1 nt+1<is2 j=1

250 (n— o).
1<i<2n

|5 ~-1/p HX |+ max |5(2") l/y(l_l Xj)
i=1

Case 1: ap = 1. Put
g =272,
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Since the random variables

. max | ]_[ X}nz1

2"+].<l~-<..2""‘1 =an+1

are independent, it follows from (17) and the Borel-Cantelli Lemma that

o> P( max | [] Xj|=2"0)

"=-1 2"+1‘<l‘<2"+l j= 2n+1

= i max |Hxl>2am I) IP( max |Hx|>2¢(t+1) )dt
n=1] 0

1<is2n 1sisp2e] o

> (log2)~* [ x~' P( max |]_[X,| 2%’ x%)dx
1

1<1£|_xj j=1

> (log2)~! Z P max |I'[ X > 2%0'(2n)y)

1~.<..|-....n j=1

> (2log2)~' ¥ rll ( max IH X >

n=1 1<i€n j

Case 2: ap > 1. Put

0 = 2—¢’p/(¢p—1)g_
Since for n> 1

(n4 1yPleP=1 > popler—1 _,_“:_pl pllep=1) > pepi@p=1) 4 pliep=1)

the random variables

max I1 Xif}nz1

nep/(ep—-1) 41 < ~1
SnEpl(ep—1) 4 piftap - 1) I =LAEPIEP 1] +1

are independent and, by (17),

max n-e/er—1)| ﬁ X

. i
nepflep-1)+1 £ . —_
Sn“P/(EP—1)+n1/(:P-1) j=|n=p/(=P= 1) ] +1

i
< max n/er—1)| I1 X250 (n— ),
pep/(xp—1) 1 € 2pap/(ap—1) j=Lnep/ep-1) ] +1
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so, by the Borel-Cantelli Lemma,

o0
o> Y P( Jmax I X,| > noler=1 g)
, = *p/(ep—1) 4+ 1 i 1 -

n=1 snﬂ"p/(ﬁp—l)+"1/(ﬂp—l) j=Lnep/ep-1)|+1

1<igpt/(=p—1)

= 5 P(_ max [T X)|> e 0)

a0
a/(ap—1)
>{P(1<,Jg:sz§,-njlﬂxll > e+ 171070 g)de

> (ep— l)fx“l’ 2P( max |]_[X[>2“/“" Do’ x%)dx

1<1$|_xJJ 1

=>A Z n*?~2 P( max |H Xj| = 271 o' (2n))

n= 1<ign j=

=4 Z n*?~2 P( max |H X|=

1=sisn j=1

for some constant 4 > 0. ®
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