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EXISTENCE THEOWEM ANID WONGZARAI APPROXIMATIONS 
FOR MULTWALUED STOCHMTIC DIPPERENTIAIL EQUATIONS * 

BY 

ROGER PETTERSSON (CHAPEL HILL, NORTH C A ~ L I N A )  

Abshwct. We consider finite-dimensional multivalued stochastic 
differential equations where the drift has a multivalued and monotone 
term. Existence and approximation results are obtained by an exist- 
ence theorem for deterministic diflerential inclusions and a polygonal 
approximation of the Brownian motion. The dispersion matrix is as- 
sumed to be state space independent. 

Applications are given for Coulomb damping and hysteretic 
systems. 

I. Introduction. Differential inclusions 

where A is a (multivalued) maximal monotone map, b is a Lipschitz continuous 
map, and f is a locally integrable function, have been studied by several authors, 
see e.g. Brkzis [3], Benilan and Brkzis [2], Aubin and Cellina [I], Chapter 3, 
Kr6e [6] and Krie and Soize [A, Chapter XIV, Lakshmikantham and Leela [8], 
Chapter 3, and Miyadera [9]. The state spaces in cited papers were general 
Hilbert spaces. In this paper we let the state space be finite dimensional. 

A generalization of differential inclusions to 'stochastic differential inclu- 
sions,' called multivalued stochastic dierential equations, is obtained by replac- 
ing f by a fixed matrix a times the generalized derivative of the Brownian 
motion, i.e. Gaussian white noise. In this case it is convenient to write, analo- 
gously to stochastic differential equations, as follows: 

Krke [6] and the author Ell] showed, for a = a(t, x), the existence of a solution 
to multivalued stochastic merential equations in two different ways. The former 
used a fmed point argument and the latter a Yosida approximation technique. 

* Work supported by the Swedish Research Council for Engineering Sciences, 282-94-971, and 
the of Naval Research Grant N00014-93-1-0043 and N00014-93-1-0841. 
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Here we take another approach. We consider the case when the dispersion 
a is fixed, i.e. time and state independent. The idea is, for a given sample path 
of the Brownian motion B, to study deterministic differential inclusions where 
the driving force f is the right derivative of a polygonal approximation of the 
Brownian motion. By letting the polygon train get close to the Brownian 
motion, we obtain, under a suitable integrability condition, convergence of the 
solutions to the related differential inclusions, and the limit is shown to satisfy 
a multivalued stochastic differential equation. 

Hence we obtain, in the spirit of Wong and Zakai [13], [14], a solution to 
a d t iva lued stochastic differential equation (with fixed dispersion 0-1 as the 
limit of a sequence of solutions to differential inclusions. This means that 
a solution to a multivalued stochastic differential equation can be approxima- 
ted by a numerical method for a differential inclusion. It is also close to in- 
tuition in models where the driving force is Gaussian white noise. 

In Section 2 results for differential inclusions are recalled. In Section 3 
a solution to a multivalued stochastic differential equation is defined, and 
in Section 4, the main section in this note, the existence of a solution is shown 
by considering a sequence of differential inclusions. Section 5 contains con- 
vergence in mean square, Section 6 is devoted to applications, and in the 
last section a Wong-Zakai result is given for a case with space dependent 
dispersion. 

2. Differential inclusions. Throughout, let 9Zd be equipped with the usual 
norm 1.1 and inner product (., .). A set-valued (or multivalued) map A from 'illd 
on '$Id is a map that to any x in 'iRd associates a subset A(x) (possibly the empty 
set) of !Rd. For a set-valued map A on '$Id let g(A) = (x E gd: A (x) # 0) be the 
domain of A. 

DEFINITION 2.1. A set-valued map A from 9Zd into Sd is called monotone if 

for all x~EB(A) and u~EA(xJ, i = 1, 2. ra 

A monotone set-valued map A is said to be maximal if there is no other 
monotone set-valued map whose graph strictly contains the graph of A. We write 
throughout Ax instead of A(x). For a maximal monotone map A and a fixed 
point x = 9 (A), the set Ax is closed and convex (see e.g. Brkzis [3], chapitre 11.4). 
Hence there exists a unique point (Ax)' such that [(Ax)Ol = min (1 yl :  y E Ax). 
Let A' be the map from 9 (A) into 9Id defined by AOx = (Ax)'. For x E B (A) 
and y E 'iRd we denote by (Ax - y)' the point in Ax- y with smallest norm. 
Throughout, let [0, Tj be a finite closed interval in '93. We recall the definition 
of a solution to a differential inclusion (cf. Krke [q, Definition XIV.1.8). 

DEFINITION 2.2. Let A be a set-valued map on Sd, b = b ( t ,  x) a map 
from [0, TI x 'iRd into % ,  f ~ L l  ([0, 17; H), and uo a given point in 9 ( A ) .  
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A solution to the diflerential inclusion 

is any u E C (LO, TI ; H )  such that 
e ~ ( t )  E g ( A )  for all t in LO, TI ,  
ta the distribution derivative u' is in L' ([O, T I ,  Sd), 
s u' ( t )  E b ( t ,  u (t)) - Au (t)  + f ( t)  for almost all t in [0, TI. 

Some ordinary differential equations, where the right-hand side satisfies 
a monotonicity condition, can be rewritten as differential inclusions. One of the 
simplest examples is perhaps the following 

EXAMPLE 2.3. Consider the one-dimensional differential equation 

where sign0 = 1. This equation has obviously no solution in the usual sense for 
t 3 1. However, a related differential inclusion x'(t) E - A  (x (t)), where A is 
defined by A(x)  = signx for x # 0 and A (0) = [- 1, 11, admits a solution and 
the solution x t) has a right derivative D + x  l.) satisfying D + x  (t) = -Aox (t), 
where, in this case, A0 (x)  = signx for x + 0 and Ao(0) = 0. a 

Uniqueness of a solution to (2) is elementary to show by the Bellman- 
Gronwall inequality if e.g. b satisfies a Lipschitz condition in x. Krke showed 
an existence result for (2) which holds iff E C ([0, T I ,  % ) .  However, since in 
Section 4 we will let f be the right derivative of a polygonal approximation of 
a Brownian motion, we have to allow f to have jumps. We therefore need the 
following theorem which is obtained by Benilan and Brkzis [2], Corollaire 1.3, 
or a sIight modification of the proof of Theorem 1.3 in Krke [6] (see also Krke 
and Soize [7], Theorem XIV.l.lO). 

THEOREM 2.4. Let A be a maximal monotone map on H such that 9 ( A )  is 
closed and AD is bounded on compact subsets of g ( A ) .  Let b:  [0,  TI x 91dw'Xd 
be a continuous map such that 

Further, let$ [0, T ]  H ' X d  be piecewise continuous and uo E 9 (A). Then there is 
a solution to u' ( t)  E b (t  , u (t)) - Au (t) + f ( t) ,  u (0) = uo. Furthermore, for every 
t~ [0, T),  u has a right derivative d+u/dt, explicitly given by 

where f (t+O) = limhlo.h,of (t+h). 

Remark 2.5. The condition that .$@(A) is closed and A0 is bounded on 
compact subsets of 9 ( A )  is valid if for example 9 (A) = 91d or if A describes the 
outwards directed normal cone at the boundary of a dosed convex set G 
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for x E G = 9 (A) (see e.g. Benilan and Brizis [2], remarque 1.5). I 

For existence results of solutions to the differential inclusions where 
f s L1 (LO, TI; !Rd), see e.g. Benilan and Brbzis [2]. 

The aim in this note is to construct a solution to a daerential inclusion if 
the driving force f is Gaussian white noise. For this case we use the concept of 
multivalu,ed stochastic daerential equations, defined in the following section. 

3. Mdt ivJd  stochastic differential equations. kt (a, 9, P) be a complete 
probability space with a right continuous and complete filtration (St),30. kt 
{B(t)),30 be an (St)-adapted m-dimensional Brownian motion. Suppose A is 
a maximal monotone map on !Rd, and let x, be a fixed point in 9 ( A ) ,  and C be 
a universal constant. For a function g: LO, TI + !Rd let llgll = suportsr lg(t)l. 

DEFINITION 3.1. Let b and 0 be Bore1 measurable maps, 

and let A be a maximal monotone set valued map on Wd. By a solution to the 
multiuahed stochastic dzfirentinl equation 

we mean a couple (5, q) on (9,)-adapted processes such that 5 is continuous 
almost surely and 

(i) c ( t ) ~ g ( A )  for all t€[O, TI, 
(5) is absolutely continuous where q' (t) E At  (t) for almost all t in [0, TI, 

and # (t)12 dt is finite, 
(iii) t (t) = x, + so b (s, C (s)) ds - q (t) + So cr (s, 5 (s)) dB (s) interpreted in the 

sense of It& FB 

We assume throughout that a is constant and that b satisfies the usual 
Lipschitz and linear growth conditions 

for 0 < t G T, x, y€!Rd. 
Note that if (iHiii) in Definition 3.1 are satisfied together with (5), then 

(see [Ill). 
Uniqueness (pathwise) of a solution to (4) is easy to verify if (5) is valid (see 

Krte 161 or Krk and Soize [7], Chapter XIV). 
In this note we prove, by considering differential inclusions, the existence 

of a solution under a convenient integrability condition. The integrability con- 
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dition is shown to hold in a product situation and if A satisfies a linear growth 
condition (Chapter 4). We also give an example when the integrability con- 
dition is not satisfied. 

4. Wong-Zakai approximations. This section is the main part in this note. 
It is disposed as follows. First we introduce solutions ts of differential inclu- 
sions where the driving force f = sBb is a constant matrix a times the right 
derivative of a polygonal approximation of B. Then we give, under a suitable 
integrability condition, an existence theorem for solutions of multivalued sto- 
chastic differential equations. Finally, we show that this condition holds if 
A satisfies -a linear growth condition or if we have the mentioned product 
situation. 

For S > 0 let 0 = to < t ,  < . . . < tCg = T be a partition of [O, TI with 

m e s h d = m a x { A t k : l ~ k ~ c , ) ,  where dt,=tk-tk-,. 

Define B, as follows: Bd (0) = 0 and 

where AB(tk) = B (tk) -B( tk-  Let Bb (t) = dB (tk)/Atk for tk- < t < tk, i.e. the 
right derivative of B,. By Theorem 2.4 it follows that if 93 (A) is closed and Ao is 
bounded on compact subsets of 9(A), and b is continuous and satisfies the 
usual Lipschitz condition, then there exists a unique solution t, to the fol- 
lowing differential inclusion: 

We have thus, loosely speaking, replaced dB in the multivalued stochastic 
differential equation (4) by Bb ( t )  dt.  We assume throughout that the conditions 
for the existence of a solution to (8) are satisfied. Note that, by Definition 2.2, 
we can identlfy a solution to (8) by a couple (tar q,) of absolutely continuous 
components where $It) E 9 (A) for all t in [0, TI and qQ (t) E At, (t) for almost 
all t and 

t t 

ta (t) = xo + S b (s, t g  IS)) ds- (t) + J DBQ  ids 
0 0 

or, equivalently, 

By letting SJO, we infer, under the condition that 
T 

sup j jqb (t)lz dt < ao (a.s.), 
D<SCT 0 

that Ed converges almost surely in supremum norm to some process 5 which 

3 - PAMS 17.1 
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is the first component of a couple (t, r) shown to be a solution to the corre- 
sponding multivalued stochastic d8erential equation (4). 

THEOREM 4.1. For 8 > 0, let and q, be given by (9). Further, assum that 
( 5 )  and (10) are satisfied and that g ( A )  is closed. Then there exists a unique 
solution (r, q )  to the multivaEued stochastic dlyerential equation (4). Furthermore, 
ta + t un~ormly  on [O, TI (almost surely) as 610. 

In order to obtain the convergence of we first need an important 
lemma. : .. . 

LEMMA 4.2. For 6 > O let (&, 1 6 )  be given by (9). Then, for 6, e > 0, 

Further, 

Proof of Lemma 4.2. Let us show (1 1); (12) is proved similarly. We have 

hence 
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We observe that 

8 

- J d I ~ l a - t l p ) ( ~ ) ,  ( b  ( ~ 3  Te  (s))-b ($5 9, (~)))ds-d(tla-~eI (s)> 
0 

and 
t t 

2 (oB, It) - 0Bp [t), 5 b (s, t, (,I) -b  (s, t p  (s)) ds - J d ( ~ ~ 1 6  - ( s ) )  
0 0 

I 
t 

I 

= 2 j' ((4 (4 - 0Be (s)) + (a (4 - cB, (0) - (0Bi (4- flBp b)), 
0 

( b  (s, 5, (4) -b (s, 5, (4)) ds -d(tl, -?el (8)) .  

Hence, by (131, 

Since A is a monotone map and, for almost all s in [0, n, q; ( S ) E  ASa (s) and 
q: (s) E A t p  (s), the inequality (1 1 )  holds. II 

By Lemma 4.2 and the boundedness assumption (10) of {qb),,, in 
L2([0, TI; 'Std), we infer that {t,),,, is a Cauchy sequence in supremum 
norm (almost surely). In fact, it is sufficient that {q~)O<asT  is bounded in 
L1 (LO, TI ; 

LEMMA 4.3. Let (t,, q3 be the solution to (9)  and let ds 
be finite almost surely. Then 

as 6 and e tend to zero. 

Proof of Lemma 4.3. By Lernma 4.2 we have 
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T where, by assumption, I. Iq; (s)l ds + J: lq; (s)I ds is almost surely bounded. By 
using the Lipschitz condition on b we obtain 

Since IlaB,-aB, 1 1 ,  + 0 almost surely as 6 and p tend to zero and 6 1 1  Sa- C 11: ds 
is almost surely finite (ta and 5, are continuous), Bellman43ronwall~s inequali- 
ty completes the proof. 

Using Lemma 4.3 and the property that q; is almost surely bounded in 
L2([0, T j ;  Wd) we are able to show Theorem 4.1. 

P roo f  of Theorem 4.1. It remains to show existence. For convenience 
we omit the words 'almost surely.' By Lemma 4.3 there exists a continuous 
process c such that 

and consequently, by Schwarz' inequality and the Lipschitz assumption on b, 

and since also 

IlcBa-gBIIT j o ,  d / o ,  

we obtain with q (t)  = xo + so b (s, t (s)) ds + aS(t)  - t (t) the relation 

We now show that ( c ,  q) is indeed a solution to (4). We need to verify that 
c ( t )  E 9 (A) for all t in [0,  TI and that q is absolutely continuous with 
q ' ( t ) ~  A(( t )  for almost all t  in [$? TI. 

Since, by assumption, sup { S o  Iq; (t)12 dt: 0 < S < T )  < co we obtain by 
Banach-Alaoglu's theorem that there exists a subsequence (qan),,Bl such that 
qQ, converges weakly in L2([0,  TI;  9Id) to some v in L2([0,  17; 'illd) as 6,/0. 

Now we use theorems for maximal monotone maps to show that 
5  ( t ) ~  9 ( A )  and v (t)  E A[ (t)  for almost all points t  in [0, TI. Let d be the set- 
-valued map on L2([0,  TI; gd) defined by ( d x ) ( t )  = Ax(t) a.e. in [0,  TI for 
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x E L2 ([O, TI; %"). Then, by Aubin and Cellina [I], Chapter 3, d is a maximal 
monotone map on L2 ( [ O ,  TI; Sd). 

We have thus as follows: can 4 5 in L2 ([0, Tj; %*) by (14), qb, tends weak- 
ly in L2 ([O, TI; Sd) to v as 8,JO and ~ L E  &{*, This implies, by Aubin and 
Cellina [I], Proposition 3.1.2, that v ~ d t  in L2([0, TI; gd) which means that 
v(t} E A[ (t) and, in particular, ((t) E 9 (A) for almost all t in [0, TI .  

Since ta is continuous and 5, converges uniformly on [0, 7'l to 5, and 
$?(A) by assumption is closed, we infer that < ( t ) ~ g ( A )  for all t in [0, TI. 

Next we show that 17 is absolutely continuous with derivative q' = v. For 
O d s < t < T w e  liave 

where the left-hand side by (15) converges to q (t) - q (s) and the right-hand side, 
by the weak convergence in L2 ([0, a; Sd}, converges to f v (u)du. Since 
v E L2 ([0, n; !$Id), this means that q is absolutely continuous with g' = u. This 
also implies that q ' ( t ) ~  A t ( t )  for almost all t in [0, ;rl. 

Finally, 5 (t) and 17 (t) are, for fixed t, F,-adapted. This follows since ta (t)  
and (t) are FB,(,,-adapted, where Pd (t) = min {ti: ti > t), the convergences 
(14) and (15) hold true, and (9,) is a right-continuous filtration. rn 

Theorem 4.1 can easily be extended to the case when CT = a(t). 

Re m ark  4.4. There is one important case when the integrability condition 
(10) is not satisfied. Let A be the outwards directed normal cone for the set 
G = [0, OD) in R (recall Remark 2.5). For simplicity, assume x, = 0 and b = 0. 
In that case, from the theory of the Skorohod equation (see e.g. Ikeda and 
Watanabe [4]), 

If (10) were true, then by the Banach-Alaoglu theorem, there would be a sub- 
sequence (qan),2 such that, almost surely, &, would converge weakly to some 
v ~ L ~ ( 0 ,  T). In particular, we would especially get, for any 0 < tl < t2 6 T, 

12 

v (t) dt = min 3 (s)- min B (s), 
11 OSsSt2 OSs6t1 

which would imply that minoSSS,B(s) is absolutely continuous, which, as is 
well known, is not true (141, p. 122). 

In the rest of this section we show that the integrability condition (10) is 
satisfied in two important cases. 

(i) Linear  growth condit ion of A: 
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this condition may be useful for stochastic differential equations with discon- 
tinuous drift and for application in mechanics, see Example 6.1. 

(ii) Produc t  s i tuat ion:  for sornep, 1 < p < d, the first pcomponents of 
Ax are zero for X E ~ ( A )  and the last d-p rows of a are zero, i.e. 

(17) (Ax);=O, i = 1 ,  ..., p, and uij=O, i = p + l ,  ..., d, j = l ,  ..., m. 

This means that, in this case, (4) is a coupled system where the first p rows 
describe a stochastic differential equation and the last d -p rows describe a (de- 
terministic) differential inclusion. One application in seismic reliability analysis 
is given by Example 6.2. Conditions (16) and (17) are somewhat more general 
than in Krte [6] and Pettersson [Ill .  

First we show that the sequence (<a)O<ddT is almost surely uniformly 
bounded on [0, 7'l under conditions (16) and (17). 

PROPOSITION 4.5. Let e8 be given by the diflerential inclusion (81, where b 
satisfies the Lipschitz and linear growth conditions (5). Assume either A sntisfis 
the linear growth condition (16) or we have the product situation (17). Then 
supo T 1) is finite a~most surely, 

P roof. For convenience we suppress the words 'almost surely.' Consider 
first the case when (16) is satisfied. By Schwarz' inequality, for 0 < t < T, 

where, for almost all t in 10, a, & ( t ) ~  A(,@); hence, by (16), Iqb(t)l 
Q L(1+ ISa (t)l), t-re. in [0, TI. Further, ljba~;(s)dsl Q IIaBll is bounded. Bell- 
man-Gronwall's inequality together with the linear growth condition of b then 
gives ~up(11e~11~: 0 < 6 < T )  < m. 

Now let us consider the product situation. For this case, (12) implies 

(the term ro (( oB;(s)ds, dqa(u)) vanishes by (17)). Observe that, for almost all s 
in [0, TI, ~ ' ( s )E  Ata(& AOxO€ AxO and A is a monotone map; hence 
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Further, 

t 

< 2 sup laBa(t)-cBaU j lb(u, Ca(4)l du < 4 llo~llr i lb(u. <a(u))l duy 
&O,tl 0 0 

then use the same arguments as for the linear growth case (16). ria 
. - 

Now we show that, in the linear growth condition (16) or the product 
situation (17), (q;jO<gsT is almost surely bounded in LZ([O, TJ; %?. In fact, 
{q;)o<asT is (almost sureIy) bounded in Lm([O, TI; %q. For a function 
g: [O, TI + gd, let 

JgJL- = ess sup (Jg (t)J: 0 6 t f T )  . 

P~owmro~ 4.6. Let be the solution to (a), where either A satisjies the 
linear growth condition (16) or we have the product situation (17) with A0 bound- 
ed on compact subsets of 3 ( A )  and 9(A) closed. Then S U ~ ~ < ~ ~ ~  Iq;IL.. is finite 
almost surely. 

Proof. Suppress the words 'almost surely.' 
For the linear growth case (16), the result follows by the fact that 6 (t) E Ata (t) 

for almost all t in [0, TJ and by Proposition 4.5. 
Now consider the product situation. We can write ra = (r,,,, 

E !RP x ! R d - p  given by the differential inclusion 

where bl and b2 are the first p and the last d-p rows of b, respectively. 
Similarly, the dispersion 0, represents the p first rows of cr (the rest are by 
assumption zero) and A, denotes the d - p  last components of A (the p first are 
zero). The second expression in (18) can be rewritten as &,B(t) = b2(tr ta(t)) 
-g;,,(t), where q;,a(t)~A2 tZsa(t) for almost all t in LO, TJ. By the linear 
growth condition of b (hence also of b,) and by Proposition 4.5, b2(t, cb(t)) is 
almost surely uniformly bounded for 0 < t < Tand 0 < 6 < T. Hence, to con- 
clude the proposition we only need to show that s~p,,~,,l~,,,),, is finite. 
By (18) we get 

(here, the norm 1.1 and inner product ( m y  -) represent the usual norm and inner 
product in W"'p, respectively). Since b2 (s, c, (s))- (b2 (s, L!, (s)) - A2 (& (s))' E 
A25,,,(s) for almost all s in LO, Tj, we obtain, by adding and subtracting terms, 
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Proposition 4.5 of boundedness of t, and the assumption that 3 ( A )  is closed 
yield that { ~ 2 , d ( ~ ) ) O d s 9 T . 0 < S s T  belongs to a compact subset of $@(A2); con- 
sequently, by the assumption on A', ((A2~2,8(s))0)0s.sT,,.. is bounded. Final- 
ly, by using the inequality I(y - A2x)"l < I yI + I(A2x)Ol, the linear growth as- 
sumption of b and Proposition 4.5, we obtain 

r 

It2,6(t)-&2,6 ( S I S ) ~ ~  G C j  152.6 (u) - <2,,(~11 d~ 
8 

which by Brizis [3], lemme A.5, gives It2,& It) - c2,* (s)I < C (t  - s), and hence 
supo I V ' , , ~ ~ ~ ~  is finite. w 

5. Convergence in mean square. In this section we show that, in the linear 
growth case or in the product situation, the convergence of {, to is also, in 
mean square, uniform on compacts. First we need a boundedness condition for 

similar to (6). 

PROPOSI~ON 5.1. Let c6 be given by the diflerential inclusion (8). Assume 
either A satisfies the linear growth condition (16) or we have the product situa- 
tion (1  7). %en sup,, , , , E 11 la I ]  $ is Jinite. 

P r o  of, Introduce stopping times zf = inf(0 6 t 6 T: It6 (t)l 2 N) (equal 
to T if the corresponding set is empty) and use similar arguments to those in 
the proof of Proposition 4.5 applied to the processes 5ft) = <,(.AT!) and 
$(-) = I. A ZF). Then we h d  that E 1 1  Cr11$ is bounded by a constant indepen- 
dent of N and 6. Since 5,  is continuous almost surely, II(yljT + lleallT as N t ~o 

almost surely, and hence we can deduce by Fatou's lemma that also E 111611$ is 
bounded by a constant. 

PROPOSITION 5.2. Asstame that 5 is a solution to (4) and let e, be given 
by (8). Zzen under the linear growth condition (16) of A, 

(19) E lit6- t112. = 0 ( ( 6 1 0 g 6 - ~ ) ~ ~ ~ )  

and for the product situation (17), 

(20) EII<a-lII$ = O(J1ogJ-l) 

for small 6 > 0. 

Proof. By a modification of the proof of Lemma 4.2 we have 
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Consider first the linear growth case. By arguments as in the proof of 
Lemma 4.3, 

IIcd-eIlr s ( I . + ~ T )  I IQB~-~BIIZT 
T T t 

+ 4 11 - GB 11. (j I?: I~II + s IV' C~)I ds) + 2 (L+ L ~ )  j II e, - e 11s" ds. 
0 0 0 

For small 6, 
E IIoB8-nBII: < CBlog8-I 

(see e.g. Pettersson [lo]) and by the linear growth assumption of A, the bound- 
edness (6) of El.) and Proposition 5.1, 

T T 

sup j E I?; @)I ds + 1 E Irl' (4l ds 
O<dST 0 0 

is finite. Cauchy-Schwarz's inequality and Bellman-Gronwall's inequality then 
give (19). 

For the product situation we have 

which, by arguments as in the linear growth case, gives (20). ~e 

Remark 5.3. If (16) or (17) is satisfied, then 11[,-{l($ is almost surely 
0 ((Slog 1/6)1/2) or 0 (6 1ogl/6), respectively. This is easily seen by a trivial 
modification of the proof of Proposition 5.2 and by using the well-known 
modulus of continuity for the Brownian motion. ra 

6. Applications. In this section we give some examples where it may be 
useful to consider multivalued stochastic daerential equations by using ap- 
proximative differential inclusions. In the first example, A satisfies a linear 
growth condition, and in the second one, a product situation is described. 

EXAMPLE 6.1 (Coulomb damping). An equation for describing a mechani- 
cal system with both linear viscous damping and friction is as follows: 

where f is an excitation force instantly assumed to be piecewise continuous. 
Further, it is assumed that q, (i) E A, ( i )  for the maximal monotone set-valued 



42 R. Pettersson 

map A, from '3 to % defined by 

sign z i f z # O ,  
= - 1  1 if z = o .  

For simplicity, we assume the mass m is equal to 1. We rewrite the second 
degree system (21) as a first degree system: for u = (u,, u2) in '3l2 let 

and let A be the maximal monotone map given by Au = {(0, y): y E rA2 (u2)). 
Then, with u = (x, 11, the second order equation (21) may be reformulated as 
a differential inclusion 

(22) u ' ( t ) ~  b(u(t))-Au(t)-rrf (t). 

Since A0 is bounded on compacts (we even have lAOul < 1 for all u in I)a2), it 
follows by Remark 2.5 that there exists a unique solution u t )  to (22) such that 

For given u, {b (u)- A (u)+ qf(t + 0))" can be written in the form 

(uz, {f (t+O)-kul-pu2-rAz(u2))0).  

For u2 # 0, 

and for u2 = 0, 

In fact, it is (23) and (24) which usually characterize the Coulomb damping (cf. 
Krke [?I, Chapter XIV.2). If the piecewise continuous f is replaced by Gaussian 
white noise E, it seems useful to consider a solution to (21) as the limit as S/O of 
solutions to (21) with f = BQ. For more details about this particular example 
see e.g. Jogrkus [S], Example 1.5. ia 

EXAMPLE 6.2 (bilinear hysteresis and earthquakes). Let f: [O, T'l ++'$id, as 
in the previous example, be piecewise continuous. Assume -f describes an 
acceleration in a given direction generated by an earthquake. Suppose this 
acceleration influences a structure to be deformed x units in this direction. 
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Let - R be the restoring force produced by the deformation. If we take the 
mass equal one, the equation of motion is usually written as 

(25) f f 2 h l + R = f ,  x(O)=f(O)=f(O)=O, 

where the constant h > 0 characterizes the structuraI damping. In this example 
we assume bilinear hysteresis. Then R may be written in the form 

where a is a fixed constant in [0, I] and z(.) is an almost surely absolutely 
continuous - process 'with 

where A3 is the outwards directed normal cone for the set [- 1,  11 explicitly 
written as 

Heuristically we may think as follows: if a = 1, the structure is elastic, and if 
0 < a < 1, we have an elasto-plastic system. In the latter case the structure is 
elastic when lzl < 1 (i.e. - (1 -a) + ax < R c 1 -or + ax) and permanently de- 
formed when z  = 1 and 3 > 0 or z = -1 and i < 0 (i.e. when R = l-u+ux 
and 3 > O  or R =  -(l-a)+ux and 2 ~ 0 ) .  

It may be more convenient to rewrite the equation (25) with the conditions 
.(26)-(28) into a first degree system. Put u = ( x ,  2, z), 

u2 

b(u)=  [ -uul-2hu2-(1-a)u3 ., 1 and c = [:I. 
Let A be the outwards directed normal on the boundary of the set G = R2 
x [- 1,  I ] ,  i.e. 

Au = ((0, 0 ,  y): y€A3z ) .  

Then 

Remark 2.5 gives d+u/dt = {of (t +O)-Au(t)I0. This means, in particular, that 
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( 1  { i t  0 if z (t) = 1, 

(30) if -1 < z(t) < I ,  
d t 

I (t) I{;,,,, if z ( t )  = - 1. 

I f f  is replaced by a Gaussian white noise B, it seems again plausible to 
consider a solution to (25H28) as the limit (as d LO) of solutions lo to (29) with 
f = Bb. For more-details about bilinear hysteresis and earthquakes see e.g. Krke 
[6]-or Krke and Soize [7], Chapter XIV. w 

7. Product situation a d  space dependent dispersion. We consider 
a Wong-Zakai result for a product situation where a = a(x). We use ideas 
from Wong and Zakai's original papers [I31 and [14]. 

EXAMPLE 7.1. With notations as those to the proof of Proposition 4.6, we 
consider the daerential inclusion 

e,(O) = xo, where p = m = 1. Here, a = (LT,, 0,) as well as b = (b,, b,) are as- 
sumed to be Lipschitz continuous with Lipschitz constant L. Note that we 
furthermore assume that al depends on c, only through A solution to (31) 
can be constructed inductively by [2], corollaire 1.3, since on each interval 
[ti- ,, tij, A-b-aBd+ L(1+ IcBhI)I is maximal monotone, where Ix = x for 
XEN*. We assume there exists some E > 0 such that E < al (x) < I/&. Let 

where F1 (x, y) = bl (F- (x), y)/a (F - (x)) and F2 (x, y )  = b2 (F - (x), y) for 
(x, y) E (Ji x !Rd- l. Since also the &s are Lipschitz continuous, by Proposition 4.6, 

+ f uniformly on [0, f l  almost surely, where 

By the continuity of F-l,  td = (F-I (f,,,), <,,,) converges (almost surely) uni- 
formly on LO, TI to 4: = (5,, c2), where 5 ,  = F-I  (Fl) and 5 ,  = Fz. By Its's 
formula, 
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( (0 )  = x,, where o denotes Stratonovich integration. A similar convergence 
result can be obtained for Example 6.2, with space dependent a. However, the 
above arguments do go through for one-dimensional multivalued stochastic 
differential equations with a linear growth condition on A. 
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