LARGE DEVIATIONS

AND LAW OF THE ITERATED LOGARITHM FOR GENERALIZED DOMAINS OF ATTRACTION

BY

HANS-PETER SCHEFFLER* (Reno, Nevada)

Abstract

Suppose X, X_{1}, X_{2}, \ldots are i.i.d. random vectors, $S_{n}=\sum_{i=1}^{n} X_{i}$ and A_{n} are linear operators such that $A_{n} S_{n}$ converges in law to some full random vector Y. Then we say that X belongs to the strict generalized domain of attraction of Y. We show that if Y has no normal component, then $\left(A_{n} S_{n}\right)$ satisfies a large deviation principle. This large deviation result is used to show that a law of the iterated logarithm for $\left(A_{n} S_{n}\right)$ holds, which gives the precise growth behavior of the sample paths of the random walk $\left(S_{n}\right)$.

1. Introduction. Suppose that X, X_{1}, X_{2}, \ldots are independent random vectors on \boldsymbol{R}^{d} with common distribution μ and Y is a full random vector on \boldsymbol{R}^{d} with distribution ν. If there exist linear operators A_{n} on \boldsymbol{R}^{d} and constants $b_{n} \in \boldsymbol{R}^{d}$ such that for $S_{n}=\sum_{i=1}^{n} X_{i}$ we have

$$
\begin{equation*}
A_{n} S_{n}-b_{n} \Rightarrow Y \tag{1.1}
\end{equation*}
$$

then we say that μ belongs to the generalized domain of attraction of v and we write $\mu \in \operatorname{GDOA}(v)$. Here \Rightarrow denotes convergence in distribution. The class of all possible limit laws in (1.1) is called the operator stable laws.

Operator stable laws were characterized by Sharpe [14]. He showed that an operator stable law is infinitely divisible and satisfies

$$
\begin{equation*}
v^{t}=t^{A} v * \delta(a(t)) \tag{1.2}
\end{equation*}
$$

for all $t>0$, where $t^{A}=\exp (A \log t)$ is defined in terms of the exponential operator $\exp (B)=\sum B^{k} / k!$. The linear operator A in (1.2) is called an exponent of v. Generalized domains of attraction have been examined in a number of papers, including Hahn and Klass [5] and Meerschaert [12].

[^0]It is well known that central limit behavior of sums of i.i.d. random vectors can imply. strong limit theorems, in particular, laws of the iterated logarithm, for these sums. If v is a pure Gaussian measure, Weiner [17] gave necessary and sufficient conditions on the distribution of X such that a law of the iterated logarithm holds. We will prove, using a large deviation result for the sums S_{n} proved in Section 2, that if v is nonnormal, a law of the iterated logarithm also holds. Since we can decompose v into a normal and a nonnormal part and since, using the spectral decomposition of Meerschaert [11], this decomposition carries over to the norming operators A_{n}, we get a precise knowledge of the almost sure behavior of S_{n}.

In the following let v be a symmetric full nonnormal operator stable law on \boldsymbol{R}^{d} and let $\mu \in \operatorname{GDOA}(v)$ be symmetric such that

$$
\begin{equation*}
A_{n} S_{n} \Rightarrow Y \tag{1.3}
\end{equation*}
$$

Note that in view of the symmetry no centering in (1.3) is required.
2. Large deviations. Fix any unit vector $\theta \in \boldsymbol{R}^{d}$. Using (1.3) we get asymptotic information about $P\left\{\left|\left\langle A_{n} S_{n}, \theta\right\rangle\right| \leqslant x_{n}\right\}$ if $x_{n}=O(1)$, and thus only trivial information in the case where $x_{n} \rightarrow \infty$ as $n \rightarrow \infty$. However, as will be seen in Section 3 below, we often require information on $P\left\{\left|\left\langle A_{n} S_{n}, \theta\right\rangle\right|>x_{n}\right\}$ under these circumstances. This type of problem is called a problem of the probability of large deviations. In the one-dimensional situation $d=1$, Heyde [6] and [7] proved that $P\left\{\left|A_{n} S_{n}\right|>x_{n}\right\}$ is asymptotically equal to $n P\left\{\left|A_{n} X_{1}\right|>x_{n}\right\}$ as $n \rightarrow \infty$, using the theory of regular variation. However, in the multidimensional setting of generalized domains of attraction the tail functions

$$
t \mapsto \mu\left\{x \in \mathbb{R}^{d}:|\langle x, \theta\rangle|>t\right\}
$$

are no longer regular varying, but only $\mathrm{R}-\mathrm{O}$ varying. (See Seneta [13] for a definition of $\mathrm{R}-\mathrm{O}$ variation.) Using the theory of multivariable regular variation developed by Meerschaert [10] we will show that the ratio between $P\left\{\left|\left\langle A_{n} S_{n}, \theta\right\rangle\right|>x_{n}\right\}$ and $n P\left\{\left|\left\langle A_{n} X_{1}, \theta\right\rangle\right|>x_{n}\right\}$ remains bounded from zero and infinity. It turns out that this is sufficiently sharp to prove a law of the iterated logarithm.

Theorem 2.1. For every compact subset $K \subset \Gamma=\boldsymbol{R}^{\boldsymbol{d}} \backslash\{0\}$ there exist positive constants C_{1} and C_{2} such that for all $\theta \in K$ and every nondecreasing sequence $\left(x_{n}\right)$ of real numbers tending to infinity we have

$$
\begin{equation*}
C_{1} \leqslant \liminf _{n \rightarrow \infty} \frac{P\left\{\left|\left\langle A_{n} S_{n}, \theta\right\rangle\right|>x_{n}\right\}}{n P\left\{\left|\left\langle A_{n} X_{1}, \theta\right\rangle\right|>x_{n}\right\}} \leqslant \limsup _{n \rightarrow \infty} \frac{P\left\{\left|\left\langle A_{n} S_{n}, \theta\right\rangle\right|>x_{n}\right\}}{n P\left\{\left|\left\langle A_{n} X_{1}, \theta\right\rangle\right|>x_{n}\right\}} \leqslant C_{2} . \tag{2.1}
\end{equation*}
$$

Remark 2.2. Theorem 2.1 gives information about how fast the tails of $A_{n} S_{n}$ decrease in any radial direction, whereas from (1.3) we only get information about $P\left\{\left|\left\langle A_{n} S_{n}, \theta\right\rangle\right|>x_{n}\right\}$ if $x_{n}=O(1)$.

Proof of Theorem 2.1. First we will prove the lower bound in (2.1). For $\varepsilon>0$ and $1 \leqslant i \leqslant n$ let

$$
B_{i}^{(n)}=\left\{\left|\left\langle A_{n} \sum_{j=1, j \neq i}^{n} X_{j}, \theta\right\rangle\right|<\varepsilon x_{n}\right\} \quad \text { and } \quad D_{i}^{(n)}=\left\{\left|\left\langle A_{n} X_{i}, \theta\right\rangle\right|>(1+\varepsilon) x_{n}\right\}
$$

Then we have

$$
\left\{\left|\left\langle A_{n} S_{n}, \theta\right\rangle\right|>x_{n}\right\} \supset \bigcup_{i=1}^{n}\left(D_{i}^{(n)} \cap B_{i}^{(n)}\right)
$$

and hence by the i.i.d. assumption on the X_{i} we get

$$
\begin{equation*}
P\left\{\left|\left\langle A_{n} S_{n}, \theta\right\rangle\right|>x_{n}\right\} \geqslant P\left(\bigcup_{i=1}^{n}\left(D_{i}^{(n)} \cap B_{i}^{(n)}\right)\right) \tag{2.2}
\end{equation*}
$$

$$
=\sum_{i=1}^{n} P\left(\left(D_{i}^{(n)} \cap B_{i}^{(n)}\right) \cap \bigcap_{j=1}^{i-1}\left(D_{j}^{(n)} \cap B_{j}^{(n)}\right)^{c}\right) \geqslant \sum_{i=1}^{n} P\left(\left(D_{i}^{(n)} \cap B_{i}^{(n)}\right) \backslash \bigcup_{j=1}^{i-1}\left(D_{j}^{(n)} \cap D_{i}^{(n)}\right)\right)
$$

$$
\geqslant \sum_{i=1}^{n}\left[P\left(D_{i}^{(n)}\right) P\left(B_{i}^{(n)}\right)-\sum_{j=1}^{i-1} P\left(D_{j}^{(n)}\right) P\left(D_{i}^{(n)}\right)\right] \geqslant n P\left(D_{1}^{(n)}\right)\left[P\left(B_{1}^{(n)}\right)-n P\left(D_{1}^{(n)}\right)\right] .
$$

From a standard convergence of types argument we know that $\left\{\left(A_{n} A_{n-1}^{-1}\right)^{*}\right\}$ is relatively compact in $\mathrm{GL}\left(\mathbb{R}^{d}\right)$, so $\left\{\left(A_{n} A_{n-1}^{-1}\right)^{*} \theta: n \geqslant 1, \theta \in K\right\}$ is compactly contained in Γ. Therefore, from (1.3) we get

$$
\begin{aligned}
P\left(B_{1}^{(n)}\right) & =P\left\{\left|\left\langle A_{n} S_{n-1}, \theta\right\rangle\right|<\varepsilon x_{n}\right\} \\
& =P\left\{\left|\left\langle A_{n-1} S_{n-1},\left(A_{n} A_{n-1}^{-1}\right)^{*} \theta\right\rangle\right|<\varepsilon x_{n}\right\} \rightarrow 1
\end{aligned}
$$

as $n \rightarrow \infty$ uniformly in $\theta \in K$. Hence for any $0<\delta<1$ there exists a number N_{1} such that

$$
\begin{equation*}
P\left(B_{1}^{(n)}\right)>1-\delta \tag{2.3}
\end{equation*}
$$

for all $n \geqslant N_{1}$ uniformly in $\theta \in K$. On the other hand, it follows from (1.3) and standard convergence criteria for triangular arrays (see e.g. Araujo and Giné [1]) that $n\left(A_{n} \mu\right) \rightarrow \phi$, where ϕ is the Lévy measure of v. Hence, since $x_{n} \rightarrow \infty$, we easily get

$$
n P\left\{\left|\left\langle A_{n} X_{1}, \theta\right\rangle\right|>(1+\varepsilon) x_{n}\right\} \rightarrow 0
$$

as $n \rightarrow \infty$ uniformly in $\theta \in K$. Therefore there exists a number N_{2} such that

$$
\begin{equation*}
n P\left(D_{1}^{(n)}\right)<\delta \tag{2.4}
\end{equation*}
$$

for all $n \geqslant N_{2}$ and all $\theta \in K$. Then, using (2.2)-(2.4), we infer for all $n \geqslant \max \left(N_{1}, N_{2}\right)$ and all $\theta \in K$ that

$$
\begin{equation*}
P\left\{\left|\left\langle A_{n} S_{n}, \theta\right\rangle\right|>x_{n}\right\} \geqslant(1-2 \delta) n P\left\{\left|\left\langle A_{n} X_{1}, \theta\right\rangle\right|>(1+\varepsilon) x_{n}\right\} . \tag{2.5}
\end{equation*}
$$

Writing $A_{n}^{*} \theta=r_{n} \theta_{n}$ with $\left\|\theta_{n}\right\|=1$ and $r_{n}=r_{n}(\theta)>0$, from (1.3) we get $\left\|A_{n}^{*}\right\| \rightarrow 0$, and hence $r_{n} \rightarrow 0$ as $n \rightarrow \infty$ uniformly in $\theta \in K$. Let

$$
\begin{equation*}
V_{0}(r, \theta)=\mu\left\{x \in \boldsymbol{R}^{d}:|\langle x, \theta\rangle|>r\right\} \tag{2.6}
\end{equation*}
$$

and for $b>0$

$$
\begin{equation*}
U_{b}(r, \theta)=\int_{|\langle x, \theta\rangle| \leqslant r}|\langle x, \theta\rangle|^{b} \mu\{d x\} \tag{2.7}
\end{equation*}
$$

denote the tail and the truncated moment functions of μ. Then for large n, using (2.5) and Lemma 2 in Meerschaert [12], we obtain

$$
\frac{P\left\{\left|\left\langle A_{n} S_{n}, \theta\right\rangle\right|>x_{n}\right\}}{n P\left\{\left|\left\langle A_{n} X_{1}, \theta\right\rangle\right|>x_{n}\right\}} \geqslant(1-2 \delta) \frac{V_{0}\left(r_{n}^{-1}(1+\varepsilon) x_{n}, \theta_{n}\right)}{V_{0}\left(r_{n}^{-1} x_{n}, \theta_{n}\right)} \geqslant C(1-2 \delta)(1+\varepsilon)^{-1 / m-\alpha}
$$

uniformly in $\left\|\theta_{n}\right\|=1$, where $m=\min \{\operatorname{Re}(\lambda)\}, \lambda$ is an eigenvalue of A, and $\alpha>0$ is arbitrarily small. This concludes the proof of the lower bound in (2.1).

Now we will prove the upper bound in (2.1). For $1 \leqslant k \leqslant n$ and $\theta \in K$ let

$$
X_{k, n}^{\theta}=X_{k} I\left(\left|\left\langle A_{n} X_{k}, \theta\right\rangle\right| \leqslant x_{n}\right)
$$

and write $S_{n, n}^{\theta}=\sum_{k=1}^{n} X_{k, n}^{\theta}$. Define

$$
E_{n}=\left\{\left|\left\langle A_{n} X_{k}, \theta\right\rangle\right|>x_{n} \text { for at least one } k \leqslant n\right\}
$$

and

$$
G_{n}=\left\{\left|\left\langle A_{n} S_{n, n}^{\theta}, \theta\right\rangle\right|>x_{n}\right\} .
$$

Then a simple calculation shows that $\left\{\left|\left\langle A_{n} S_{n}, \theta\right\rangle\right|>x_{n}\right\} \subset E_{n} \cup G_{n}$. Therefore we infer for every $\theta \in K$ that

$$
\begin{equation*}
P\left\{\left|\left\langle A_{n} S_{n}, \theta\right\rangle\right|>x_{n}\right\} \leqslant P\left(E_{n}\right)+P\left(G_{n}\right) \leqslant n P\left\{\left|\left\langle A_{n} X_{1}, \theta\right\rangle\right|>x_{n}\right\}+P\left(G_{n}\right) . \tag{2.8}
\end{equation*}
$$

Using Tschebyscheff's inequality we get

$$
\begin{equation*}
P\left(G_{n}\right) \leqslant \frac{1}{x_{n}^{2}} E\left(\left\langle A_{n} S_{n, n}^{\theta}, \theta\right\rangle^{2}\right) . \tag{2.9}
\end{equation*}
$$

Since the X_{i} are i.i.d., we get

$$
E\left(\left\langle A_{n} S_{n, n}^{\theta}, \theta\right\rangle^{2}\right)=n E\left(\left\langle A_{n} X_{1, n}^{\theta}, \theta\right\rangle^{2}\right)+n(n-1)\left(E\left\langle A_{n} X_{1, n}^{\theta}, \theta\right\rangle\right)^{2} .
$$

Therefore from (2.8) and (2.9) we infer for all $\theta \in K$ that

$$
\begin{align*}
& \frac{P\left\{\left|\left\langle A_{n} S_{n}, \theta\right\rangle\right|>x_{n}\right\}}{n P\left\{\left|\left\langle A_{n} X_{1}, \theta\right\rangle\right|>x_{n}\right\}} \tag{2.10}\\
& \quad \leqslant 1+\frac{E\left(\left\langle A_{n} X_{1, n}^{\theta}, \theta\right\rangle^{2}\right)}{x_{n}^{2} P\left\{\left|\left\langle A_{n} X_{1}, \theta\right\rangle\right|>x_{n}\right\}}+\frac{n\left(E\left\langle A_{n} X_{1, n}^{\theta}, \theta\right\rangle\right)^{2}}{x_{n}^{2} P\left\{\left|\left\langle A_{n} X_{1}, \theta\right\rangle\right|>x_{n}\right\}}
\end{align*}
$$

Using Lemma 2 of Meerschaert [12] we know that V_{0} is uniform $\mathrm{R}-\mathrm{O}$ varying, and hence by a uniform version of Feller [4], p. 289, for every $b>0$ there exists a constant $M=M_{b}$ such that $U_{b}(r, \theta) \leqslant M r^{b} V_{0}(r, \theta)$ for all $r \geqslant r_{0}$ and all $\theta \in K$. Then writing $A_{n}^{*} \theta=r_{n} \theta_{n}$ again, we get uniformly in $\theta \in K$

$$
\begin{aligned}
E\left(\left\langle A_{n} X_{1, n}^{\theta}, \theta\right\rangle^{2}\right) & =r_{n}^{2} U_{2}\left(x_{n} r_{n}^{-1}, \theta_{n}\right) \leqslant M_{2} x_{n}^{2} V_{0}\left(x_{n} r_{n}^{-1}, \theta_{n}\right) \\
& =M_{2} x_{n}^{2} P\left\{\left|\left\langle A_{n} X_{1}, \theta\right\rangle\right|>x_{n}\right\},
\end{aligned}
$$

and hence the first fraction on the right-hand side of (2.10) is bounded by M_{2}.
For the second fraction of (2.10) we use

$$
\left|E\left\langle A_{n} X_{1, n}^{\theta}, \theta\right\rangle\right| \leqslant E\left|\left\langle A_{n} X_{1, n}^{\theta}, \theta\right\rangle\right|=r_{n} U_{1}\left(x_{n} r_{n}^{-1}, \theta_{n}\right) .
$$

Therefore

$$
\begin{aligned}
\left(E\left\langle A_{n} X_{1, n}^{\theta}, \theta\right\rangle\right)^{2} & \leqslant r_{n}^{2}\left(U_{1}\left(x_{n} r_{n}^{-1}, \theta_{n}\right)\right)^{2} \leqslant r_{n}^{2}\left(M_{1} x_{n} r_{n}^{-1} V_{0}\left(x_{n} r_{n}^{-1}, \theta_{n}\right)\right)^{2} \\
& =M_{1}^{2} x_{n}^{2}\left(P\left\{\left|\left\langle A_{n} X_{1}, \theta\right\rangle\right|>x_{n}\right\}\right)^{2} .
\end{aligned}
$$

Finally, this gives for all $\theta \in K$

$$
\frac{n\left(E\left\langle A_{n} X_{1, n}^{\theta}, \theta\right\rangle\right)^{2}}{x_{n}^{2} P\left\{\left|\left\langle A_{n} X_{1}, \theta\right\rangle\right|>x_{n}\right\}} \leqslant M_{1}^{2} n P\left\{\left|\left\langle A_{n} X_{1}, \theta\right\rangle\right|>x_{n}\right\},
$$

where $n P\left\{\left|\left\langle A_{n} X_{1}, \theta\right\rangle\right|>x_{n}\right\} \rightarrow 0$ as $n \rightarrow \infty$. This completes the proof.
3. Law of the iterated logarithm. In the one-dimensional situation $d=1$ it was shown by Chover [3] that if $\mu=v$ and $A_{n}=n^{-\alpha}$, where $1 / \alpha$ is the index of the stable law ν, the following law of the iterated logarithm holds:

$$
\limsup _{n \rightarrow \infty}\left|n^{-\alpha} S_{n}\right|^{1 / \log \log n}=e^{\alpha} \text { almost surely. }
$$

Later, Vasudeva [15] showed that this is also true if μ is only in the domain of attraction of v, i.e. (1.3) holds. Furthermore, Weiner [16] showed that a slightly different law of iterated logarithm holds on \mathbb{R}^{d} if $\mu=v$ and $A_{n}=n^{-A}$. An extension of this result to the case of domains of normal attraction was considered by Khokhlov [9]. We will show that Chover's type of law of iterated logarithm also holds for measures in the generalized domain of attraction of v. Additionally, we will prove that every point in a certain interval is almost surely a cluster point of the random sequence $\left(\left\|A_{n} S_{n}\right\|^{1 / \log \log n}\right)$. Our method of proof also shows that some results of law of the iterated logarithm type are strongly related to the large deviation result proved in Section 2.

Since the formulation and the proof of our result depend strongly on the spectral decomposition derived in Meerschaert [11], we will first introduce some notation. Factor the minimal polynomial of A into $f_{1}(x) \ldots f_{p}(x)$ such that all roots of $f_{i}(x)$ have real part equal a_{i} and $a_{j}<a_{i}$ for $j<i$. Sharpe [14] showed that if v has no normal component, the set $\left\{a_{1}, \ldots, a_{p}\right\}$ is contained in
the interval $(1 / 2, \infty)$. If we define $V_{i}=\operatorname{Ker}\left(f_{i}(A)\right)$, then $V_{1} \oplus \ldots \oplus V_{p}$ is a direct sum decomposition of \boldsymbol{R}^{d} into A-invariant subspaces. We will call this the spectral decomposition of \boldsymbol{R}^{d} relative to A. Now let $\mu \in \operatorname{GDOA}(v)$ be such that (1.3) holds. Using Theorem 4.2 of Meerschaert [11] we can assume without loss of generality that μ is spectrally compatible to v, i.e. the spaces V_{i} are A_{n}-invariant for all n. Given any random vector X we write $X=X^{(1)}+\ldots+X^{(p)}$ with respect to the spectral decomposition and for $1 \leqslant i \leqslant p$ we set $X^{(1, \ldots, i)}=X^{(1)}+\ldots+X^{(i)}$.

Using the above assumptions and notation we will prove the following law of the iterated logarithm:

Theorem 3.1. For any $1 \leqslant i \leqslant p$

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left\|A_{n} S_{n}^{(1, \ldots, i)}\right\|^{1 / \log \log n}=e^{a_{i}} \text { almost surely } \tag{3.1}
\end{equation*}
$$

Remark 3.2. Theorem 3.1 not only shows that the maximal growth rate of $\left\|A_{n} S_{n}\right\|$ is of order $(\log n)^{a_{p}}$, but it also shows that if $\left(A_{n} S_{n}\right)$ is restricted to the lower dimensional subspaces $V_{1} \oplus \ldots \oplus V_{i}$ of \mathbb{R}^{d} for some $1 \leqslant i \leqslant p$, then the different growth rate $(\log n)^{a_{i}}$ is obtained. Furthermore, since from Hudson et al. [8] we know sharp bounds on the norm of the norming operators A_{n}, it is easy to see that the maximal growth rate of the random walk $\left(S_{n}\right)$ restricted to a subspace V_{i} is of order $(n \log n)^{a_{i}}$.

The structure of the proof of Theorem 3.1 is as follows. First we will show that (3.1) is true if v is spectrally simple, i.e. $\operatorname{Re}(\lambda)=a>1 / 2$ for all eigenvalues λ of A. This will be done in Proposition 3.3. Then we show that this special result implies the general case.

In the following let v be a symmetric full operator stable law without Gaussian component on the finite-dimensional vector space V such that $\operatorname{Re}(\lambda)=a$ for all eigenvalues λ of A, where A is any exponent of v. Furthermore, let ϕ denote the Lévy measure of v and let $\mu \in \operatorname{GDOA}(v)$ be symmetric such that if X_{1}, X_{2}, \ldots are i.i.d. random variables distributed according to μ, we infer for $S_{n}=\sum_{i=1}^{n} X_{i}$ and some sequence $\left(A_{n}\right)$ of linear operators on V that $A_{n} S_{n} \Rightarrow v$. In this case the following law of the iterated logarithm holds:

Proposition 3.3.

$$
\begin{equation*}
\underset{n \rightarrow \infty}{\limsup }\left\|A_{n} S_{n}\right\|^{1 / \log \log n}=e^{a} \text { almost surely. } \tag{3.2}
\end{equation*}
$$

Proof. Due to the nature of the power in (3.2) it suffices to show that for any $0<\varepsilon<1$ with probability one we have

$$
\begin{equation*}
\left\|A_{n} S_{n}\right\|>(\log n)^{(1+\varepsilon) a} \quad \text { for at most finitely many } n \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|A_{n} S_{n}\right\|>(\log n)^{(1-\varepsilon) a} \quad \text { for infinitely many } n \tag{3.4}
\end{equation*}
$$

We will first show (3.3). To do this for $n \geqslant 1$ define the event $D_{n}=\left\{\left\|A_{n} S_{n}\right\|>(\log n)^{(1+\varepsilon) a}\right\}$. Let $n_{k}=2^{k}$ and let

$$
\begin{equation*}
C=\left(\sup _{k \geqslant 1} \sup _{n_{k} \leqslant n<n_{k+1}}\left\|A_{n} A_{n_{k}}^{-1}\right\|\right)^{-1} . \tag{3.5}
\end{equation*}
$$

Then an application of Theorem 3.1 of Meerschaert [11] shows that C is finite. Furthermore, let

$$
B_{k}=\left\{\max _{n_{k} \leqslant n<n_{k+1}}\left\|A_{n_{k}} S_{n}\right\|>C\left(\log n_{k}\right)^{(1+\varepsilon) a}\right\} .
$$

If $n_{k} \leqslant n<n_{k+1}$, then

$$
\left\|A_{n} S_{n}\right\| \leqslant\left\|A_{n} A_{n_{k}}^{-1}\right\|\left\|A_{n_{k}} S_{n}\right\| \leqslant C^{-1}\left\|A_{n_{k}} S_{n}\right\|,
$$

so the monotonicity of $\log t$ implies that $D_{n} \subset B_{k}$. Hence

$$
\limsup _{n \rightarrow \infty} D_{n} \subset \limsup _{k \rightarrow \infty} B_{k} .
$$

We next establish that for some number k_{0} and all $k \geqslant k_{0}$

$$
\begin{equation*}
\max _{n_{k} \leqslant n<n_{k+1}} P\left\{\left\|A_{n_{k}} \sum_{j=n+1}^{n_{k+1}} X_{j}\right\|>\frac{C}{2}\left(\log n_{k}\right)^{(1+\mathrm{e}) a}\right\} \leqslant D<1 \tag{3.6}
\end{equation*}
$$

is valid. Let

$$
M=\sup _{k \geqslant 1} \sup _{n_{k} \leqslant n<n_{k+1}}\left\|A_{n_{k}} A_{n_{k+1}-n}^{-1}\right\| .
$$

Then using Theorem 3.1 of Meerschaert [11] again, we see that M is finite. In view of (1.3) we know that the laws of $A_{n} S_{n}$ are uniformly tight, and hence for every $0<D<1$ there exists a number k_{0} such that

$$
P\left\{\left\|A_{l} S_{l}\right\|>(C / 2 M)\left(\log n_{k_{0}}\right)^{(1+\varepsilon) a}\right\}<D \quad \text { for all } l .
$$

Hence for $k \geqslant k_{0}$ and $n_{k} \leqslant n<n_{k+1}$ we get

$$
\begin{aligned}
& P\left\{\left\|A_{n_{k}} \sum_{j=n+1}^{n_{k+1}} X_{j}\right\|>\right.\left.\frac{C}{2}\left(\log n_{k}\right)^{(1+\varepsilon) a}\right\} \leqslant P\left\{\left\|A_{n_{k}} S_{n_{k+1}-n}\right\|>\frac{C}{2}\left(\log n_{k_{0}}\right)^{(1+\varepsilon) a}\right\} \\
& \leqslant P\left\{\left\|A_{n_{k+1}-n} S_{n_{k+1}-n}\right\|>\frac{C}{2 M}\left(\log n_{k_{0}}\right)^{(1+\varepsilon) a}\right\}<D,
\end{aligned}
$$

which proves (3.6).
Now let $\left\{\theta^{(1)}, \ldots, \theta^{(m)}\right\}, m=\operatorname{dim} V$, be an orthonormal basis of V. Then it is easy to see that if Z is any random vector with values in V, we have for some positive real constant C_{1}

$$
\begin{equation*}
P\{\|Z\|>t\} \leqslant \sum_{j=1}^{m} P\left\{\left|\left\langle Z, \theta^{(j)}\right\rangle\right|>C_{1} t\right\} \tag{3.7}
\end{equation*}
$$

for all $t>0$. Then an application of Ottaviani's maximum inequality (see e.g. Breiman [2], p. 45) along with (3.6), (3.7) and the definition of the constant C in (3.5) gives, for some constant $E>0$,

$$
\begin{aligned}
P\left(B_{k}\right) & \leqslant \frac{1}{1-D} P\left\{\left\|A_{n_{k}} S_{n_{k+1}}\right\|>\frac{C}{2}\left(\log n_{k}\right)^{(1+\varepsilon) a}\right\} \\
& \leqslant \frac{1}{1-D} P\left\{\left\|A_{n_{k+1}} S_{n_{k+1}}\right\|>\frac{1}{2}\left(\log n_{k}\right)^{(1+\varepsilon) a}\right\} \\
& \leqslant \frac{1}{1-D} \sum_{j=1}^{m} P\left\{\left|\left\langle A_{n_{k+1}} S_{n_{k+1}}, \theta^{(j)}\right\rangle\right|>E k^{(1+\varepsilon) a}\right\} .
\end{aligned}
$$

But in view of Theorem 2.1, for some constant $D_{1}>0$ we obtain

$$
P\left\{\left|\left\langle A_{n_{k+1}} S_{n_{k+1}}, \theta^{(j)}\right\rangle\right|>E k^{(1+\varepsilon) a}\right\} \leqslant D_{1} n_{k+1} P\left\{\left|\left\langle A_{n_{k+1}} X_{1}, \theta^{(j)}\right\rangle\right|>E k^{(1+\varepsilon) a}\right\} .
$$

Writing $A_{n_{k+1}}^{*} \theta^{(j)}=r_{k+1} \theta_{k+1}^{(j)}$ with $\left\|\theta_{k+1}^{(j)}\right\|=1$ and $r_{k+1}>0$ again and recalling the definition of V_{0} in (2.6), we see that the right-hand side of the last inequality is equal to

$$
\begin{equation*}
D_{1} \frac{V_{0}\left(r_{k+1}^{-1} E k^{(1+\varepsilon) a}, \theta_{k+1}^{(j)}\right)}{V_{0}\left(r_{k+1}^{-1}, \theta_{k+1}^{(j)}\right)} n_{k+1} P\left\{\left|\left\langle A_{n_{k+1}} X_{1}, \theta^{(j)}\right\rangle\right|>1\right\} . \tag{3.8}
\end{equation*}
$$

In view of Lemma 2 of Meerschaert [12] and a uniform version of Feller [4], p. 289, for some positive constant E_{1} and every $\delta>0$ we have

$$
\begin{equation*}
\frac{V_{0}(t \lambda, \theta)}{V_{0}(t, \theta)} \leqslant E_{1} \lambda^{-1 / a+\delta} \tag{3.9}
\end{equation*}
$$

for all $t \geqslant t_{0}, \lambda \geqslant 1$ and $\|\theta\|=1$. Furthermore, by the standard convergence criteria for triangular arrays, (1.3) implies that

$$
n_{k+1} P\left\{\left|\left\langle A_{n_{k+1}} X_{1}, \theta^{(j)}\right\rangle\right|>1\right\} \rightarrow \phi\left\{x \in V:\left|\left\langle x, \theta^{(j)}\right\rangle\right|>1\right\}<\infty .
$$

Hence, if $\delta>0$ is small enough, (3.8) is bounded above for all large k by

$$
D_{2}\left(k^{(1+\varepsilon) a}\right)^{-1 / a+\delta}=D_{2} k^{-\left(1+\varepsilon_{1}\right)}
$$

for some constant $D_{2}>0$ and some $\varepsilon_{1}>0$. Consequently, $P\left(B_{k}\right) \leqslant B k^{-\left(1+\varepsilon_{1}\right)}$ for all large k and some positive real constant B. Finally, an application of the Borel-Cantelli lemma gives

$$
P\left(\limsup _{n \rightarrow \infty} D_{n}\right) \leqslant P\left(\underset{k \rightarrow \infty}{\limsup } B_{k}\right)=0,
$$

so (3.3) is valid.
Now we will prove (3.4). From a convergence of types argument we know that $K=\sup _{n \geqslant 2}\left\|A_{n} A_{n-1}^{-1}\right\|$ is finite. Enlarge K if necessary to have $K \geqslant 1$.

Then, using the inequality $\left\|A_{n} X_{n}\right\| \leqslant\left\|A_{n} S_{n}\right\|+\left\|A_{n} S_{n-1}\right\|$, we get

$$
\begin{aligned}
\left\{\left\|A_{n} X_{n}\right\|>2 K(\log n)^{(1-\varepsilon) a} \text { i.o. }\right\} \subset & \left\{\left\|A_{n} S_{n}\right\|>K(\log n)^{(1-\varepsilon) a} \text { i.o. }\right\} \\
& \cup\left\{\left\|A_{n} S_{n-1}\right\|>K(\log n)^{(1-\varepsilon) a} \text { i.o. }\right\}
\end{aligned}
$$

But

$$
\left\{\left\|A_{n} S_{n-1}\right\|>K(\log n)^{(1-\varepsilon) a} \text { i.o. }\right\} \subset\left\{\left\|A_{n} S_{n}\right\|>(\log n)^{(1-\varepsilon) a} \text { i.o. }\right\}
$$

and so

$$
\begin{equation*}
\left\{\left\|A_{n} X_{-}\right\|>2 K(\log n)^{(1-\varepsilon) a} \text { i.o. }\right\} \subset\left\{\left\|A_{n} S_{n}\right\|>(\log n)^{(1-\varepsilon) a} \text { i.o. }\right\} \tag{3.10}
\end{equation*}
$$

Hence it is enough to show that the probability of the left-hand side of (3.10) is one. Therefore, by the independence part of the Borel-Cantelli lemma we have to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} P\left\{\left\|A_{n} X_{n}\right\|>2 K(\log n)^{(1-\varepsilon) a}\right\}=\infty \tag{3.11}
\end{equation*}
$$

But for any $\|\theta\|=1$ we have, writing $A_{n}^{*} \theta=r_{n} \theta_{n}$ again,

$$
\begin{aligned}
& P\left\{\left\|A_{n} X_{n}\right\|>2 K(\log n)^{(1-\varepsilon) a}\right\} \geqslant P\left\{\left|\left\langle A_{n} X_{n}, \theta\right\rangle\right|>2 K(\log n)^{(1-\varepsilon) a}\right\} \\
& =\frac{1}{n} \frac{V_{0}\left(r_{n}^{-1} 2 K(\log n)^{(1-\varepsilon) a}, \theta_{n}\right)}{V_{0}\left(r_{n}^{-1}, \theta_{n}\right)} n P\left\{\left|\left\langle A_{n} X_{1}, \theta\right\rangle\right|>1\right\}
\end{aligned}
$$

By the standard convergence criteria for triangular arrays of random variables we know that

$$
n P\left\{\left|\left\langle A_{n} X_{1}, \theta\right\rangle\right|>1\right\} \rightarrow \phi\{x \in V:|\langle x, \theta\rangle|>1\}>0 .
$$

Furthermore, we infer from Lemma 2 of Meerschaert [12] that for every sufficiently small $\delta>0$ there exists a constant $C>0$ such that for all large n we have

$$
\frac{V_{0}\left(r_{n}^{-1} 2 K(\log n)^{(1-\varepsilon) a}, \theta_{n}\right)}{V_{0}\left(r_{n}^{-1}, \theta_{n}\right)} \geqslant C\left(2 K(\log n)^{(1-\varepsilon) a}\right)^{-1 / a-\delta} \geqslant C_{1} \frac{1}{\log n}
$$

where C_{1} is a positive constant. Hence there exists a $C_{2}>0$ such that for all large n we have

$$
P\left\{\left\|A_{n} X_{n}\right\|>2 K(\log n)^{(1-\varepsilon) a}\right\} \geqslant C_{2} \frac{1}{n \log n}
$$

which yields (3.11). This completes the proof of Proposition 3.3.
Proof of Theorem 3.1. Fix any $1 \leqslant i \leqslant p$. As in the proof of Proposition 3.3 it suffices to show that for any sufficiently small $\varepsilon>0$ and some constant $C=C(\varepsilon)$ we have with probability one

$$
\begin{equation*}
\left\|A_{n} S_{n}^{(1, \ldots, i)}\right\| \leqslant C(\log n)^{(1+\varepsilon) a_{i}} \quad \text { for almost all } n \tag{3.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|A_{n} S_{n}^{(1, \ldots, i)}\right\|>C(\log n)^{(1-\varepsilon) a_{i}} \quad \text { for infinitely many } n \tag{3.13}
\end{equation*}
$$

By Proposition 3.3 we infer for every $1 \leqslant j \leqslant i$ that for almost all sample points and almost all n the inequality $\left\|A_{n} S_{n}^{(j)}\right\| \leqslant(\log n)^{(1+\varepsilon) a_{j}}$ holds. Since $a_{j} \leqslant a_{i}$ for all $1 \leqslant j \leqslant i$, we have

$$
\left\|A_{n} S_{n}^{(1, \ldots, i)}\right\| \leqslant \sum_{j=1}^{i}\left\|A_{n} S_{n}^{(j)}\right\| \leqslant i(\log n)^{(1+\varepsilon) a_{i}}
$$

for almost all n almost surely, and hence (3.12) holds.
For the proof of (3.13), let $\varepsilon<\left(a_{i}-a_{i-1}\right) /\left(a_{i-1}+a_{i}\right)$. From Proposition 3.3 we get with probability one $\left\|A_{n} S_{n}^{(i)}\right\|>(\log n)^{(1-\varepsilon / 2) a_{i}}$ for infinitely many n. Furthermore, for $1 \leqslant j \leqslant i-1,\left\|A_{n} S_{n}^{(j)}\right\| \leqslant(\log n)^{(1+\varepsilon) a_{j}}$ for almost all n almost surely. Hence, with probability one, for infinitely many n

$$
\begin{aligned}
& \left\|A_{n} S_{n}^{(1, \ldots, i)}\right\| \geqslant\left\|A_{n} S_{n}^{(i)}\right\|-\sum_{j=1}^{i-1}\left\|A_{n} S_{n}^{(j)}\right\| \\
& >(\log n)^{(1-\varepsilon / 2) a_{i}}-\sum_{j=1}^{i-1}(\log n)^{(1+\varepsilon) a_{j}} \geqslant(\log n)^{(1-\varepsilon / 2) a_{i}}-(i-1)(\log n)^{(1+\varepsilon) a_{i}-1}
\end{aligned}
$$

But by the choice of ε the last difference is greater than $(\log n)^{(1-\varepsilon) a_{i}}$ for all large n, which gives (3.13). This completes the proof of Theorem 3.1.

In addition to Theorem 3.1 we can prove the following clustering statement which gives additional information about the path behavior of the random walk (S_{n}).

Corollary 3.5. Under the assumptions of Theorem 3.1, for any $1 \leqslant i \leqslant p$, with probability one every point in the interval $\left(1, e^{a_{i}}\right]$ is a cluster point of the sequence

$$
\left\{\left\|A_{n} S_{n}^{(1, \ldots, i)}\right\|: n \geqslant 1\right\}
$$

Proof. For $1 \leqslant i \leqslant p$ and $0<\lambda \leqslant a_{i}$, let $\delta=a_{i} / \lambda$ and let $n_{k}=\left[2^{k^{\delta}}\right]$, where $[x]$ denotes the integer part of x. We will show that

$$
\begin{equation*}
\limsup _{k \rightarrow \infty}\left\|A_{n_{k}} S_{n_{k}}^{(1, \ldots, i)}\right\|^{1 / \log \log n_{k}}=e^{\lambda} \text { almost surely } \tag{3.14}
\end{equation*}
$$

We will show that for any small $\varepsilon>0$ and for almost all sample points we have

$$
\begin{equation*}
\left\|A_{n_{k}} S_{n_{k}}^{(1, \ldots, i)}\right\|>\left(\log n_{k}\right)^{(1+\varepsilon) \lambda} \quad \text { for at most finitely many } k \tag{3.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|A_{n_{k}} S_{n_{k}}^{(1, \ldots, i)}\right\|>\left(\log n_{k}\right)^{(1-\varepsilon) \lambda} \quad \text { for infinitely many } k \tag{3.16}
\end{equation*}
$$

For $1 \leqslant l \leqslant p$ let $\left\{\theta^{(l, 1)}, \ldots, \theta^{\left(l, m_{l}\right)}\right\}, m_{l}=\operatorname{dim} V_{l}$, be an orthonormal basis of V_{l}. Then for some constant $C>0$ we obtain

$$
P\left\{\left\|A_{n_{k}} S_{n_{k}}^{(1, \ldots, i)}\right\|>\left(\log n_{k}\right)^{(1+\varepsilon) \lambda}\right\} \leqslant \sum_{l=1}^{i} \sum_{j=1}^{m_{l}} P\left\{\left|\left\langle A_{n_{k}} S_{n_{k}}, \theta^{(l, j)}\right\rangle\right|>C\left(\log n_{k}\right)^{(1+\varepsilon) \lambda}\right\} .
$$

The inequality (3.15) now follows upon arguing just as in the proof of (3.3).
The proof of (3.16) is more involved than the proof of (3.4). First we will show that with probability one we have

$$
\begin{equation*}
\left\|A_{n_{k}} \sum_{j=n_{k-1}+1}^{n_{k}} X_{j}^{(1, \ldots, i)}\right\|>\left(\log n_{k}\right)^{(1-\varepsilon / 2) \lambda} \quad \text { for infinitely many } k \tag{3.17}
\end{equation*}
$$

Note that these are independent events. Let

$$
M=\sup _{k \geqslant 1}\left\|A_{n_{k}-n_{k-1}} A_{n_{k}}^{-1}\right\| .
$$

Since $\delta \geqslant 1$, Theorem 3.1 of Meerschaert [11] shows that M is finite. Fix any unit vector $\theta \in V_{i}$ and set $A_{n_{k}-n_{k-1}}^{*} \theta=r_{k} \theta_{k}$ with $r_{k}>0$ and $\left\|\theta_{k}\right\|=1$. Then from Theorem 2.1, for some positive real constant K, we infer that

$$
\begin{aligned}
P & \left\{\left\|A_{n_{k}} \sum_{j=n_{k-1}+1}^{n_{k}} X(1, \ldots, i)\right\|>\left(\log n_{k}\right)^{(1-\varepsilon / 2) \lambda}\right\} \\
& =P\left\{\left\|A_{n_{k}} S_{n_{k}-n_{k-1}}^{(1, \ldots, i)}\right\|>\left(\log n_{k}\right)^{(1-\varepsilon / 2) \lambda}\right\} \\
& \geqslant P\left\{\left\|A_{n_{k}-n_{k-1}} S_{n_{k}-n_{k-1}}^{(1, \ldots, i)}\right\|>M\left(\log n_{k}\right)^{(1-\varepsilon / 2) \lambda}\right\} \\
& \geqslant P\left\{\left|\left\langle A_{n_{k}-n_{k-1}} S_{n_{k}-n_{k-1}}, \theta\right\rangle\right|>M\left(\log n_{k}\right)^{(1-\varepsilon / 2) \lambda}\right\} \\
& \geqslant K\left(n_{k}-n_{k-1}\right) P\left\{\left|\left\langle A_{n_{k}-n_{k-1}} X_{1}, \theta\right\rangle\right|>M\left(\log n_{k}\right)^{(1-\varepsilon / 2) \lambda}\right\} \\
& =K \frac{V_{0}\left(r_{k}^{-1} M\left(\log n_{k}\right)^{(1-\varepsilon / 2) \lambda}, \theta_{k}\right)}{V_{0}\left(r_{k}^{-1}, \theta_{k}\right)}\left(n_{k}-n_{k-1}\right) P\left\{\left|\left\langle A_{n_{k}-n_{k-1}} X_{1}, \theta\right\rangle\right|>1\right\}
\end{aligned}
$$

Since $n P\left\{\left|\left\langle A_{n} X_{1}, \theta\right\rangle\right|>1\right\} \rightarrow \phi\{|\langle x, \theta\rangle|>1\}>0$, we get from Lemma 2 of Meerschaert [12] that the last expression above is bounded from below for all large k by some positive constant times $k^{-\left(1-\varepsilon_{1}\right)}$ for some $\varepsilon_{1}>0$. Now the independence part of the Borel-Cantelli lemma gives (3.17).

Finally, suppose that (3.16) does not hold on a set of positive probability. Then for almost all points in this set we have

$$
\begin{aligned}
&\left(\log n_{k}\right)^{(1-\varepsilon) \lambda} \geqslant\left\|A_{n_{k}} S_{n_{k}}^{(1, \ldots, i)}\right\| \geqslant\left\|A_{n_{k}} \sum_{j=n_{k}+1}^{n_{k}} X_{j}^{(1, \ldots, i)}\right\|-\left\|A_{n_{k}} S_{n_{k}-1}^{(1, \ldots, i)}\right\| \\
&>\left(\log n_{k}\right)^{(1-\varepsilon / 2) \lambda}-\left\|A_{n_{k}} A_{n_{k}-1}^{-1}\right\|\left(\log n_{k-1}\right)^{(1-\varepsilon) \lambda}
\end{aligned}
$$

for infinitely many k using (3.17) and the assumption. But since $\left\|A_{n_{k}} A_{n_{k-1}}^{-1}\right\| \leqslant C$ for all k and some constant $C>0$, the last difference is greater than $\left(\log n_{k}\right)^{(1-\varepsilon) \lambda}$ for all large k, which is a contradiction, and hence (3.16) holds. This completes the proof.
4. Concluding remarks. Since for every unit vector $\theta \in V_{1} \oplus \ldots \oplus V_{i} \backslash$ $V_{1} \oplus \ldots \oplus V_{i-1}$ we have $\left|\left\langle A_{n} S_{n}, \theta\right\rangle\right| \leqslant\left\|A_{n} S_{n}^{(1, \ldots, i)}\right\|$, Theorem 3.1 implies that

$$
\limsup _{n \rightarrow \infty}\left|\left\langle A_{n} S_{n}, \theta\right\rangle\right|^{1 / \log \log n} \leqslant e^{a_{i}} \text { almost surely. }
$$

Furthermore, the methods of our proof actually show that for any $1 \leqslant i \leqslant p$ there exists at least one unit vector $\theta \in V_{1} \oplus \ldots \oplus V_{i} \backslash V_{1} \oplus \ldots \oplus V_{i-1}$ such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left|\left\langle A_{n} S_{n}, \theta\right\rangle\right|^{1 / \log \log n}=e^{a_{i}} \text { almost surely. } \tag{4.1}
\end{equation*}
$$

Though it seems that the law of the iterated logarithm depends only on the tail behavior of the random variable $\left\langle X_{1}, \theta\right\rangle$ and this tail behavior is uniform in $\|\theta\|=1$, we were unable to prove (4.1) for all unit vectors θ. It might require a different method of proof or additional information about the norming operators A_{n}, i.e. a sharper spectral decomposition, which decomposes every V_{i} further.

REFERENCES

[1] A. Araujo and E. Giné, The Central Limit Theorem for Real and Banach Valued Random Variables, Wiley, New York 1980.
[2] L. Breiman, Probability, Addison-Wesley, 1968.
[3] J. Chover, A law of the iterated logarithm for stable summands, Proc. Amer. Math. Soc. 17 (1966), pp. 441-443.
[4] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. II, 2nd edition, Wiley, New York 1971.
[5] M. Hahn and M. Klass, Affine normability of partial sums of i.i.d. random vectors: A characterization, Z. Wahrsch. verw. Gebiete 69 (1985), pp. 479-505.
[6] C. C. Heyde, A contribution to the theory of large deviations for sums of independent random variables, ibidem 7 (1967), pp. 303-308.
[7] - On large deviation problems for sums of random variables not attracted to the normal law, Ann. Statist. 38 (1967), pp. 1575-1578.
[8] W. N. Hudson, J. A. Veeh and D. C. Weiner, Moments of distributions attracted to operator stable laws, J. Multivariate Anal. 24 (1988), pp. 1-10.
[9] Y. S. Khokhlov, A law of the iterated logarithm for random vectors in the case of operator stable limit law, preprint, 1994.
[10] M. Meerschaert, Regular variation in $\boldsymbol{R}^{\boldsymbol{k}}$, Proc. Amer. Math. Soc. 102 (1988), pp. 341-348.
[11] - Spectral decomposition for generalized domains of attraction, Ann. Probab. 19 (1991), pp. 875-892.
[12] - Regular variation and generalized domains of attraction in \boldsymbol{R}^{k}, Statist. Probab. Lett. 18 (1993), pp. 233-239.
[13] E. Seneta, Regularly Varying Functions, Lecture Notes in Math. 508, Springer, Berlin 1976.
[14] M. Sharpe, Operator-stable probability distributions on vector groups, Trans. Amer. Math. Soc. 136 (1969), pp. 51-65.
[15] R. Vasudeva, Chover's law of the iterated logarithm and weak convergence, Acta Math. Hungar. 44 (1984), pp. 215-221.
[16] D. Weiner, A maximal law of the iterated logarithm for operator-normalized stochastically compact partial sums of i.i.d. random vectors, in: Probability in Banach Spaces. V, A. Beck et al. (Eds.), Lecture Notes in Math. 1153, Springer, Berlin 1985, pp. 426-439.
[17] - A law of the iterated logarithm for distributions in the generalized domain of attraction of a nondegenerate Gaussian law, Probab. Theory Related Fields 72 (1986), pp. 337-357.

Department of Mathematics
University of Nevada
Reno NV 89557, U.S.A.

Received on 7.8.1996

[^0]: * On leave from Fachbereich Mathematik, Universität Dortmund, 44221 Dortmund, Germany. This research was supported by a research scholarship from the Deutsche Forschungsgemeinschaft (DFG).

