
PROBABILITY , 

AND 
MATHEMATICAL STATISTICS 

VoL 117, Fasc. 1 (1997), p p  65-77 

LARGE DEVIATIONS 
AN%) LAW OF THE ITERATED LOGARITHM 

FOR GENERfiIZED DOMAINS OF ATTRACTION 

BY 

HANS-PETER S C HEF FL EB * (RENO, NEVADA) 

Abstract. Suppose X, XI, X,, ... are i.i.d. random vectors, 
S, = z:= Xi and A, are linear operators such that A, S, converges in 
law to some full random vector I: Then we say that X belongs to the 
shkt generalized domain of attraction of Z We show that if Y has no 
normal component, then (A,S,J satisfies a large deviation principle. 
This large deviation result is used to show that a law of the iterated 
logarithm for (A,&) holds, which gives the precise growth behavior of 
the sample paths of the random walk (S,,). 

1. Introduction. Suppose that X, XI,  X,, . . . are independent random vec- 
tors on Rd ~ t h  common distribution p and Y is a full random vector on Rd 
with distribution v. If there exist linear operators A, on Rd and constants b, E Rd 
such that for S, = zy=,Xi we have 

(1.1) A,S,-b,* Y, 

then we say that p belongs to the generalized domain of attraction of v and we 
write p~ GDOA(v). Here denotes convergence in distribution. The class of 
all possible limit laws in (1.1) is called the operator stable laws. 

Operator stable laws were characterized by Sharpe [14]. He showed that 
an operator stable law is intinitely divisible and satisfies 

(1-2) vf = t. v * d (a (t)) 

for all t > 0, where tA = exp(A1ogt) is defined in terms of the exponential 
operator exp (B) = Bk/k!.  The linear operator A in (1.2) is called an exponent 
of v. Generalized domains of attraction have been examined in a number of 
papers, including Hahn and Klass [5 ]  and Meerschaert 1121. 
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It is well known that central limit behavior of sums of i.i.d. random vectors 
can imply. strong limit theorems, in particular, laws of the iterated logarithm, 
for these sums. If v is a pure Gaussian measure, Weiner [17] gave necessary 
and sufficient conditions on the distribution of X such that a law of the iterated 
logarithm holds. We will prove, using a large deviation result for the sums S ,  
proved in Section 2, that if v is nonnormal, a law of the iterated logarithm also 
holds. Since we can decompose v into a normal and a nonnomal part and 
since, using the spectral decomposition of Meerschaert [ll], this decomposi- 
tion carries over to the norming operators A,, we get a precise knowledge of 
the- almost sure behavior of S,. 

In the following let v be a symmetric full nonnormal operator stable law 
on Wd and let ~EGDOA(V)  be symmetric such that 

Note that in view of the symmetry no centering in (1.3) is required. 

2. Large deviations. Fix any unit vector  BE^. Using (1.3) we get asymp- 
totic information about P (I(A, S,, 8)1 G xn) if x, = 0 (I), and thus only trivial 
information in the case where x, -+ co as n + m. However, as will be seen in 
Section 3 below, we often require information on P (I{An S,, 8)1 > x,) under 
these circumstances. This type of problem is called a problem of the probability 
of large deviations. In the one-dimensional situation d = I, Heyde [6] and [7] 
proved that P{(A,S,(  > x,) is asymptotically equal to nP ()A,X,I > x,) as 
n -, oo, using the theory of regular variation. However, in the multidimensional 
setting of generalized domains of attraction the tail functions 

are no longer regular varying, but only R - 0  varying. (See Seneta [13J for 
a definition of R-0 variation.) Using the theory of multivariable regular varia- 
tion developed by Meerschaert [lo] we will show that the ratio between 
P ( ]<A,  S,, 8))  > x,) and nP { ) (A ,  X I ,  8)f > x,) remains bounded from zero 
and infinity. It turns out that this is ~ ~ c i e n t l y  sharp to prove a law of the 
iterated logarithm. 

THEOREM 2.1. For every compact subset K c r = Rd\(0) there exist positive 
constants C ,  and C, such that for all 8 E K  and every nondeereasing sequence (x,)  
of real numbers tending to infinity we have 

. , 

C, < lirn inf P (I<A. Sw 01 > x.1 C lim sup P (1<A, S,, 01 > x,) d c,. 
n + m  nP (I (AnXl ,  8}1 > x,)  n + m  nP (I<AnX1, OI > xn) 
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Remark 2.2. Theorem 2.1 gives information about how fast the tails of 
A,S, decrease in any radial direction, whereas from (1.3) we only get infor- 
mation about P {I(A, S,, 8)1 > x,) if x, = 0 (1). 

P r o  of of Theor  em 2.1, First we will prove the lower bound in (2.1). For 
E > O  and l < i < n  let 

BPI = ( I ( A ,  Xj, 0)1 < E X , )  and Dp' = {I{A,Xi, 0)l > ( 1  + s ) x , ) .  
j = l , j # l  

Then we have .. . . 
n 

{I<A, S,, > x,} 3 U (DP1 n B?), 
i= 1 

and hence by the i.i.d. assumption on the Xi we get 

From a standard convergence of types argument we know that ((A, A>,)*) is 
relatively compact in GL (Rd), SO ( (A,  AZl)*0:  n 2 1, 8 E K) is compactly con- 
tained in r. Therefore, from (1.3) we get 

= P(I (A , - lS , - l ,  (A,Ai_1,)"8)1 < E X , )  + 1 

as n + m uniformly in BEK. Hence for any 0 < S < 1 there exists a number N, 
such that 

1 (2.3) P ( B ~ ) )  > I -S 

for all n 2 N, uniformly in ~ E K .  On the other hand, it follows from (1.3) and 
standard convergence criteria for triangular arrays (see e.g. Araujo and Gink 
111) that n (A, j i )  + 4, where # is the Uvy measure of v. Hence, since x, + co, 
we easily get 

nP(I<A,X,, 01 > ( 1 + & ) ~ , ]  4 0  

1 as n -r m uniformly in BEK.  Therefore there exists a number N, such that 
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for all n 2 N, and all BEK. Then, using (2.2)-(2.4), we infer for all 
n 2 max(N,, N,) and all ~ E K  that. 

(2.5) P{I<A,S,,~)I>xn)~Il-2~1nP{I<A,X,,e>l>(~+~)x,~. 

Writing A," 6 = r, 0, with 1 1  8,11 = 1 and r, = r, (6) > 0, from (1.3) we get 
jl A,!!' 11 + 0, and hence rn + 0 as n + m uniformly in 0 E K. Let 

(2.61 v , (~,  6) = P(X EP: I(X, e}l > I) 
and for b > 0 

(2.7) U d r ,  0) = 1 I<& e>lb~{dx) 
I<x.O>l G r  

denote the tail and the truncated moment functions of p. Then for large n, using 
(2.5) and Lemma 2 in Meerschaert [12], we obtain 

uniformly in IIOnil = 1, where m = rnin {Re (A)), A is an eigenvalue of A, and 
ct > 0 is arbitrarily small. This concludes the proof of the lower bound in (2.1). 

Now we will prove the upper bound in (2.1). For 1 < k < n and 8 EK let 

xi,, = XkI (]<A, Xk, s xn) 
and write S!, = z;=, X!,,. Define 

En = {I(An X,, @ ) I  > xn for at least one k < n) 
and 

G* = {I<A, Slj,, 9 6>1 > x,3 - 
Then a simple calculation shows that (I(A,Sn, %)I > x,) c En u G,. Therefore 
we infer for every BEK that 

Using Tschebyscheffs inequality we get 

Since the Xi are i.i.d., we get 

E (<An S!,n, 8)') = nE (<An XB,,,, 0>'1+ n(n- 1) ( E  (AnXB,,,, 6))2. 

Therefore from (2.8) and (2.9) we infer for all ~ E K  that 
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Using Lemma 2 of Meerschaert [I21 we know that V, is uniform R - 0  
varying, and hence by a uniform version of Feller [4], p. 289, for every b > 0 
there exists a constant M = M, such that U,(r,  0) 6 Mrb Vo(r, 0) for all r 3 r ,  
and all 0 E K. Then writing A,* 0 = r,, 8, again, we get uniformly in 0 E K 

E (<A, X!,,, 0)') = 1; UZ (x, p i 1 ,  0,J G M z  xi Vb (x, r; l ,  On) 

and hence the first fraction on the right-hand side of (2.10) is bounded by M,. 
For the second fraction of (2.10) we use 

IE<AnXB1,n, 0)I < E(<AnXBl.n, e>l = r n  u1 (x,r , ly  on)- 
Therefore 

2 
< A  , ,  0 )  r , ,  1 )  4 r: (MI xn r i l  Yo (x. r;', 0,))' 

= M: x: (P {l<A, X, , 8)I =- x,})'. 

Finally, this gives for all B E  K 

where nP (I(A,X17 0)1 > xn) -, 0 as n + m. This completes the proof. 

3. Law of the iterated logarithm. In the one-dimensional situation d = 1 it 
was shown by Chover [3] that if p = v and A, = n-", where l/u is the index of 
the stable law v, the following law of the iterated logarithm holds: 

lim sup Jn-" SnllpOglOg" = 8 almost surely, 
n-r  m 

Later, Vasudeva [15] showed that this is also true if p is only in the domain of 
attraction of v, i.e. (1.3) holds. Furthermore, Weiner [la showed that a slightly 
different law of iterated logarithm holds on Rd if ,u = v and A, = n-A. An 
extension of this result to the case of domains of normal attraction was con- 
sidered by Khokhlov [9]. We will show that Chover's type of law of iterated 
logarithm also holds for measures in the generalized domain of attraction of v. 
Additionally, we will prove that every point in a certain interval is almost 
surely a cluster point of the random sequence ((IA, S,t1 l / 'Oglog").  Our method of 
proof also shows that some results of law of the iterated logarithm type are 
strongly related to the large deviation result proved in Section 2. 

Since the formulation and the proof of our result depend strongly on the 
spectral decomposition derived in Meerschaert [ll], we will first introduce 
some notation. Factor the minimal polynomial of A into f, ( x )  . . . f, (x) such 
that all roots of f,(x) have real part equal ai and aj < ai for j < i. Sharpe [I41 
showed that if v has no normal component, the set {a,, . . . , a,) is contained in 
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the interval (1/2, a). If we define k; = Ker @{A)), then .;$ . . . @ V, is a direct 
sum decomposition of lZd into A-invariant subspaces. We will call this the 
spectral decomposition of Rd relative to A. Now let p E GDOA(v) be such that 
(1.3) holds. Using Theorem 4.2 of Meerschaert [I11 we can assume without loss 
of generality that p is spectrally compatible to v, i.e. the spaces are 
A,-invariant for all n. Given any random vector X we write 
X = X(I1+ +.. +X(P) with respect to the spectral decomposition and for 
1 < i < p we set X(lp...~i) = x ( ~ ) +  . . . + ~ ( ' 1 .  

Using the above assumptions and notation we will prove the foIlowing law 
of the iterated logarithm: 

TEEOREM 3.1. For any 1 < i < p 

(3.1) limsup IIA n r n  S(l-..-vi) I l/log'Ogn = Yr almost surely. 
n-r m 

Remark 3.2. Theorem 3.1 not only shows that the maximal growth rate 
of ][A, SnIJ is of order (logn)"P, but it also shows that if (A, S,J is restricted to the 
Iower dimensional subspaces V1@ . . . @ 6 of Hed for some 1 6 i < p, then the 
different growth rate (logn)"' is obtained. Furthermore, since from Hudson et 
aI. [S] we know sharp bounds on the norm of the norming operators A,, it is 
easy to see that the maximal growth rate of the random walk (S,) restricted to 
a subspace is of order (nlogn)"'. 

The structure of the proof of Theorem 3.1 is as follows. First we will show 
that (3.1) is true if v is spectrally simple, i.e. Re@) = a > 1/2 for all eigenvalues 
1, of A. This will be done in Proposition 3.3. Then we show that this special 
result implies the general case. 

In the following let v be a symmetric full operator stable law without 
Gaussian component on the finite-dimensional vector space V such that 
Re(;l) = a for all eigenvalues R of A, where A is any exponent of v. Further- 
more, let + denote the Lkvy measure of v and let ~EGDOA(V) be symmetric 
such that if XI, X,, . . . are i.i.d. random variables distributed according to p., 
we infer for Sn = C;=, and some sequence (A,) of linear operators on V that 
AnS,* V. In this case the following law of the iterated logarithm holds: 

(3.2) lim sup lJ A,, S,, Jl l ) l O ~ w n  = e" almost surely. 
n-rm 

Proof. Due to the nature of the power in (3.2) it sf l~ces to show that for 
any 0 c E < 1 with probability one we have 

(3.3) J I  A,S,II > (logn)" ' " I "  for at most finitely many n 

and 

(3.4) II A, S, ll > (log n)(l for infinitely many n . 
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We will first show (3.3). To do this for n 2 1 define the event 
D, = ( 1 1  An SnII > (10gn)(l+~'"). Let n, = 2, and let 

c = (SUP SUP 1 1 ~ ~  ~ ; l l l ) - l .  
k b l  n k S n < n k + i  

Then an application of Theorem 3.1 of Meerschaert [I 11 shows that C is finite. 
Furthermore, let 

3, = { max 11 A ,  SnII > C (log nJ('+')'"}. 
n k S n < n k + l  

If n, 6 n < nk+,, then 

so the monotonicity of logt implies that Dn c 3,. Hence 

lim sup Dn c lim sup B, . 
n+m k+m 

We next establish that for some number k, and all k 3 k, 

is valid. Let 

Then using Theorem 3.1 of Meerschaert [ll] again, we see that M is finite. In 
view of (1.3) we know that the laws of An S, are uniformly tight, and hence for 
every 0 c D < 1 there exists a number k,  such that 

P ( 1 1  A1 S,]I > (C/2M) (log n,,)" < D for all I .  

Hence for k > k, and n, < n c nk+ we get 

which proves (3.6). 
Now let (fl(l), . . . , 8(")}, m = dim be an orthonormal basis of K Then it 

is easy to see that if Z is any random vector with values in we have for some 
positive real constant C, 
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for all t > 0. Then an application of Ottaviani's maximum inequality (see e.g. 
Breiman [2], p. 45) along with (3.6), (3.7) and the definition of the constant C in 
(3.5) gives, for some constant E > 0, 

But in view of Theorem 2.1, for some constant D, > 0 we obtain 

Writing A,*,, , Oh' = rr,, , Ofi , with IIOkl 11 = 1 and r,+ , > 0 again and recal- 
ling the definition of Vo in (2.6), we see that the right-hand side of the last 
inequality is equal to 

In view of Lemma 2 of Meerschaert [I21 and a uniform version of Feller [4], 
p. 289, for some positive constant E ,  and every 6 > 0 we have 

for all t 2 to, k 2 1 and llB/l = 1. Furthermore, by the standard convergence 
criteria for triangular arrays, (1.3) implies that ' . 

Hence, if S > 0 is small enough, (3.8) is bounded above for all large k by 

for some constant D, > 0 and some > 0. Consequently, P (B& d Bk-'' ") 

for all large k and some positive real constant B. Finally, an application of the 
Borel-Cantelli lemma gives 

P (lim sup D,) < P (lim sup B,) = 0, 
n+ co k - r  m 

so (3.3) is valid. 

Now we will prove (3.4). From a convergence of types argument we know 
that K = sup,, , /(A, A;-!, (1 is finite. Enlarge K if necessary to have K 2 1. 
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Then, using the inequality 1 1  A, X, 11 < 11 A, S,ll + 1 1  An Sn - 11, we get 

A, X,II > 2K (logn)" -'la i.0.) c (11 A, Snll > K (logn)('-"'" i.0.) 

u (ilA,Sn-l 11 > K(logn)(l i.0.). 
But 

(11 An Sn- 11 > K (logn)If -"I" i.0.) c { I 1  A, S, 11 > (logn)(l-")" i.o.1, 

and so 

Hence it is enough to show that the probability of the left-hand side of (3.10) is 
one. Therefore, by the independence part of the Borel-Cantelli lemma we have 
to show that 

m 

(3.1 1) P (11 A,X,II > 2K (I~gn)~'-")") = ao . 
n =  1 

But for any 11811 = 1 we have, writing At  B = r,O, again, 

I By the standard convergence criteria for triangular arrays of random variables 
! we know that 

Furthermore, we infer from Lemma 2 of Meerschaert [12] that for every suf- 
ficiently small 6 > 0 there exists a constant C > 0 such that for all large n we 
have 

where C, is a positive constant. Hence there exists a C, > 0 such that for all 
large n we have 

P ( 1 1  AnX,II > 2K(l0gn)(l-'~ > 
1 

' C 2 n l o g n y  

which yields (3.11). This completes the proof of Proposition 3.3. 

Proof of Theorem 3.1. Fix any 1 < i < p. As in the proof of Proposi- 
tion 3.3 it suffices to show that for any sufficiently small E > 0 and some 
constant C = C(E) we have with probability one 

(3.12) I t  A, Sily..."'ll < C (logn)(l +'lai for almost all n 
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and 

(3.13) 1 1 ~  s{l,.--,i) ,, I I > C ( l ~ g n ) ( l - ~ ) ~ ~  for infinitely many n. 

By Proposition 3.3 we infer for every 1 < j < i that for almost all sample points 
and almost all n the inequality 11 A, S??II < (logn)(' + holds. Since aj d ai for 
all 1 6 j 6 i, we have 

for almost all n almost surely, and hence (3.12) holds. 
For the proof of (3.13), let E < (a,- ai- l)/(ai- +a,). From Proposition 3.3 

we get with probability one 11 A, St) I[ > (logn)(l -E12)0t for infinitely many n. Fur- 
thermore, for l < j < i- l ,  [IA, Sij))I < (logn)('+')"j for almost all n almost sure- 
Iy. Hence, with probability one, for infinitely many n 

But by the choice of E the last difference is greater than (l~gn)(~-'))"' for all large 
n, which gives (3.13). This completes the proof of Theorem 3.1. 

In addition to Theorem 3.1 we can prove the following clustering state- 
ment which gives additional information about the path behavior of the ran- 
dom walk (S,). 

COROLLARY 3.5. Under the assumptions of Theorem 3.1, for any 1 < i < p, 
with probability one every point in the interval (1, en*] is a duster point of the 
sequence 

( 1 1  A,, Sil*..-*') 11 : n 2 1). 

Proof. For 1 < i < p and 0 < 1 < a,, let 6 = ad1 and let n, = [2k6], where 
[x] denotes the integer part of x. We will show that 

(3.14) lim sup 11 A,, ~i;....i)~l l/1oglogm - - ea almost surely. 
k- r  m 

We will show that for any small E > 0 and for almost all sample points we have 

(3.15) IIA nk $,:.-a'7 It > (log%) (lfE1?or at most finitely many k 

and 

(3.1 6) 11 A nk S(l....p')ll nk > Qognk)(l -")"or infinitely many k. 
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For 1 G I < p let {O('.l), . . . , 8(1im')), m, = dim v, be an orthonormal basis of 6. 
Then for some constant C > 0 we obtain 

The inequality (3.15) now follows upon arguing just as in the proof of (3.3). 
The proof of (3.16) is more involved than the proof of (3.4). First we will 

show that with probability one we have 

- nk 
(3.17) I]A,; XY*...-')I( > (logn,)" -42)'" for infinitely many k. 

j = n k - i + l  

Note that these are independent events. Let 

Since 6 2 1, Theorem 3.1 of Meerschaert [ll] shows that M is finite. Fix any 
unit vector B E  & and set A:-,,-, 9 = rk8, with rk > 0 and IIBkll = 1. Then from 
Theorem 21, for some positive real constant K, we infer that 

Since nP{I(AnXl, 8)1 > 1) + # {I(x, O)l > 1) > 0, we get from Lemma 2 of 
Meerschaert [12] that the last expression above is bounded from below for all 
large k by some positive constant times k-(l-"l) for some el > 0. Now the 
independence part of the Borel-Cantelli lemma gives (3.17). 

Finally, suppose that (3.16) does not hold on a set of positive probability. 
Then for almost all points in this set we have 
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for infinitely many k using (3.17) and the assumption. But since 
11 A,, A;!, 1 1  6 C for all k and some constant C > 0, the last difference is greater 
than (l~gn,)(~-")"or all large k, which is a contradiction, and hence (3.16) 
holds. This completes the proof. 

4. Cwclaedimg remarks. Since for every unit vector B E  V,@ . . . OK\ 
V,@ . . . @ K- we have I(A, S,, 8)1 < 11 A, S',l.*nw.i)ll, Theorem 3.1 implies that 

lim sup ! ( A ,  S,, B)lillOglogn < , eai almost surely. 
n-t m 

~ukhermore, the methods of our proof actually show that for any 1 C i < p 
there exists at least one unit vector 0 E Vl e . . .@I 5\V10 . . . 8 q- such that 

(4.1) lim sup 1 (A, S, , 0)j l ) lOglOgn = tF almost surely. 
a+ m 

Though it seems that the law of the iterated logarithm depends only on the tail 
behavior of the random variable { X I ,  8 )  and this tail behavior is uniform in 
11811 = I ,  we were unable to prove (4.1) for all unit vectors 0. It might require 
a different method of proof or additional information about the norming ope- 
rators A,, i.e. a sharper spectral decomposition, which decomposes every 
further. 
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