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Abstract. We prove the existence of an Omstein-Uhlenbeck type 
process associated with the E v y  Laplacian. Like the classical case, the 
law of the Levy Brownian motion at time 1 is an invariant probability 
of this process. The corresponding semigroup is explicitly described 
and the related Dirichlet form is constructed. There exist other paral- 
lels with the classical situation such as the hypercontractivity of the 
semigroup, an analogue of the Carneron-Martin space, etc. However, 
unlike the classical case in our setting the cylindrical functions do not 
form a core of the Dirichlet form, in fact the form is identically zero on 
them. In this sense the Uvy Ornstein-Uhlenbeck process provides an 
example of a new type of a gradient-type (or classical) Dirichlet form 
which is essentially idn i te  dimensional. 

1. The Omstein-Uhlenlbeck semigroup associated with the LCvy Brownian 
motion. Let E be a nuclear Frtchet space, E* its topological dual, and H a sepa- 
rable Hilbert space continuously and densely embedded into E*. Since E can 
be identified with the dual of E* (endowed with the strong topology, see 
Schaeffer [26], Chapter IV, 5) and the embedding H -, E* defines the injec- 
tion E = EX* -+ H, we may assume that E is continuously and densely injected 
into H in such a way that 

(k,v)=(k,v), for all V E E  and all ~ E H ,  

where (., -) denotes the duality (E*, E), and (-, a), the scalar product 
in H. 

This gives a standard triple E c H c E* in the terminology of the theory 
of generalized random processes. 

Let e = (en),", -, be an orthonormal basis in H consisting of elements 
of E. We assume that for every x E E the series C, (x, e,JH en converges to x in 
the topology of E (such a choice is always possible under our assumptions). 
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The goal of this paper is to study the Markov processes with formal 
generators 

and, in particular, their finite-dimensional approximations. 
- Unlike the case of the VolterraGross Laplacian (see, e.g., Hida et al. [lg] 

-and Kuo [20]), in which the corresponding processes exist in E*, in our setting 
there are no processes in E* with generators of the form (1.1), (1.2). It was 
shown in ~ccardi  et al. [5] that the parabolic equation associated with the 
differential operator (1.1) can be given a rigorous meaning in an appropriate 
function space and that, in this space, the equation has a unique solution for 
every initial datum. Moreover, the Markov process with generator Ad2 exists 
in a suitable "compact~cation" of E. This process is called the LPvy Brownian 
motion. Let us recall this construction. We shall assume that there is a con- 
tinuous linear homeomorphism V :  E* + E*, called the e-shift (or, simply, the 
shvt in the following), such that Y (II) c H and Y ej = ej+ (clearly, this is 
a restriction on both the triple and the basis). MI the assumptions are satisfied 
for E consisting of all two-sided sequences (x,) having finite seminorms 
pA (x) = supk I x , ~  (In1 + l)k for all k > 0 with the topology defined by these semi- 
norms if one chooses for H the two-sided 1' with its standard basis {en}.  

Denote by A! the space of bounded complex-valued Radon measures p on 
E* satisfying the following two conditions: 

1 X? IIul (dx) < a, for all i, 
E* 

where xi (x) = (x, e,) .  Clearly, for Y-invariant measures it suffices to require 
(1.4) only for i = 1. In the following by measures we mean countably additive 
ones. 

Note %p o Y- ' = %p and Ipl o Y - I  = lpl for each measure p E d. 
An important example of an element in the class A# is the Gaussian 

measure v on E* with Fourier transform exp(-(x, x),/2) (xEE). 
According to the ergodic theorem (see Parthasarathy [23]), for any mea- 

sure p E d the limit 

1 
11~11;:=g(x):= lim- C xz 

n+co2n+l i=- ,  - .. 

exists u-a.e. and 
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For the function g we use the alternative notation II.11; in order to express 
the fact that the domain of convergence of the series above depends on p and to 
underline that II.ll, is a seminorm in an appropriate function space (see Accardi 
and Obata [4]). 

Denote by 9 the space of the Fourier transforms of the measures from the 
class A. Recall that for any measure p on E* its Fourier transform is a com- 
plex function on E defined by 

FIv) = S exp(i{x, v > ) p ( d x ) .  
B* 

It  is &y to check that the class A' is a linear space stable under taking 
convolutions of measures. Hence, F is an algebra of bounded functions. In 
addition, F is stable under complex conjugation, since for every f = ii E 9 the 
conjugate function Tcoincides with the Fourier transform of the measure v de- 
fined by v (3) = ji ( -B) (clearly, v E k). 

The completion V of the space F with the sup-norm has a natural struc- 
ture of a C*-algebra (see Kadison and Ringrose [19]). Therefore, it is alge- 
braically and topologically isomorphic to the algebra C ( S )  of all continuous 
complex functions on a certain compact space S (see Theorem 4.4.3 in [19]). In 
fact, one can take for S the spectrum of V so that we may assume that E is 
continuously embedded (but not injectively) into S. Let us recall that the spec- 
trum S of Gf: is the subset of the unit sphere in the dual of V which consists of all 
multiplicative functionals (called also pure states, see Proposition 4.4.1 in [19]) 
and is equipped with the weak-* topology (this set is known to be weak*- 
-compact unlike the whole unit sphere; see Proposition 3.2.20 in [19]). Then for 
every x E E the functional x = I7 ( x ) ~  S is defined by 11 (f) = f (x). 

put e : = 17 (0). 
It is important that the above-mentioned mapping IT: E + S agrees with 

the isomorphism between V and C (S): denoting temporarily by f * the element 
in C(S) corresponding to f E%' we have f * (17(x)) = f (x) for all X E  E. In par- 
ticular, for any measure o on E and any f E G ~  we obtain 

In the sequel we often identify % and C(S). 
Recall that, for a homogeneous Markov process with state space M and 

transition probabilities P ( t ,  x, -), the transition semigroup (on bounded mea- 
surable functions $) is defined by the formula 

Now, let (w,(t)) be a sequence of independent real standard Wiener pro- 
cesses on a probability space (SZ, p). Recall that the standard Ornstein-Uhlen- 

7 - PAMS 17.1 



98 L. Accardi and V. I. Bogachev 

beck process t x ( t )  is defined as the solution of the stochastic differential equa- 
tion 

ex( t )  is a Gaussian process which admits the representation 

and whose transition semigroup {T,} is given by the formula 
.. . 

where y is the standard Gaussian measure on the line. Using (1.7) one can easily 
verify that y is an invariant probability of the process {"(t). 

The generator of the Wiener process on R" is A/2.  The generator of the 
Omstein-Uhlenbeck process on R" is A f (x)/2-(x, Vf (x))/2. The semigroup 
7;' is called the Ornstein-Uhlenbeck semigroup. 

The only difference between the semigroups Il; and ?;' is that the latter has 
the generator A -xV and corresponds to the process generated by the stochas- 
tic differential equation 

d t x  ( t )  = $dw (t)-  Sx ( t )  d t .  

In the sequel we shall use the following remark: let a and fl  be two positive 
numbers and let rx( t )  be the process governed by the equation 

Then the invariant probabiIity of rx( t )  is given by the density 

Notice that putting a = l/& and b =  1/2 we find that the invariant mea- 
sure of r ( t )  coincides with the law of the process dw (t)/& at time 1, which has 
the density ,/$% exp (-nt2/2), 

The same connection between the Wiener process and the Ornstein-Uh- 
lenbeck process exists in infinite dimensions. Recall that a stochastic process 
W(t)  with values in E* is called a Wiener process associated with H if for any 
v E E with llvllH = 1 the scalar process < W(t ) ,  v )  is the standard Wiener process 
(see Bogachev [lo]). It  is known that in this case there exists a process e ( t )  
satisfying (1.6). This process is Gaussian and its invariant probability p coin- 
cides with the law of the random element W(1). We shall show that in our 
setting there is an analogue of the process 5 in S whose invariant probability is 
the law of the Lkvy Brownian motion at time 1. 
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Denote by En the linear span of the vectors e-, ,  ..., en. 

For any natural numbers j and n let epl = , , / m e j .  Note that the vec- 
tors ep), . . ., ejl") form an orthonormal basis in the Hilbert space En equipped 
with the inner product 

We shall prove that the normalized sums 

-. . 1 1 
S, (t) : = - 2 s (t) ejn' = 

2 n + 1 i = - n  
2 wi (t)ei J2n+l i =  -n 

converge (in a certain sense) to the Lkvy Brownian motion introduced by 
Accardi et a]. in [ S ]  and that the associated Omstein-Uhlenbeck processes 
En (t) on En, defined by 

dE, ( t )  = as, ( t)  - $En  (t) at, En (0) = 0, 

converge to a process t, which belongs to a Markov family {e:} whose genera- 
tor can be identified with (1.2): this is the LBvy Ornstein-Uhlenbeck process. 

We consider S, (t) and En(t) as E-valued random processes (and hence as 
S-valued random processes when E is mapped into S as explained above). Put 
nn x = z:= - n  xi e,. Setting 

S;[t):=S,(t)+x and E~(~ ) :=S , (~ )+X-~C,X+~- '~~X ,X ,  

we obtain the processes starting from any point XEE. For every x,  these are 
standard finite-dimensional processes in the plane x  + H,. Denote the corre- 
sponding semigroups by {P?)} and (Qn)), respectively. As explained above, 

where EL, is the Gaussian measure on En obtained as the image of the standard 
Gaussian measure on RZnf under the map 

The generator AJ2 of the process S:(t) is 

while the generator of the process E;(t) is 
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Note that if, starting En at a point x, we put E,(t)+e-t12x instead of the 
definition above, then we get a similar process, but with the idmite-dimen- 
sional drift (so that the last sum will be taken in infinite limits). However, we 
prefer to start with properly finite-dimensional objects, 

For the process Si( t )  we get the following representation of the transition 
semigroup: 

where p,j is the Gaussian measure on E equal the image of the standard 
Gaussian measure on RZn+l under the mapping 

In accordance with (1.10), in the following we shall use the notation 

Clearly, its Fourier transform equals 

THEOWM 1.1. (i) For any fixed t 2 0 the operators T("): 9 + C,  ( E )  and 
PI"): 9 + C,(E) converge strongly, i.e., pointwise in the sup-norm, to bounded 
operators II;:  5 + 9 and P,: 9 -+ 9, respectively. The families {?;)t30 and 
{P,)t30 are strongly continuous Markov semigroups on 9, hence they admit 
unique extensions to strongly continuous semigroups (denoted by the same sym- 
bols) on %' C(S). 

(ii) The semigroups (T )  and {P,) give rise to two Markov families {S,,), 
So,, = x, and (w,,), Wo,, = x, with state space S. Moreover, the processes 
St : = E , ,  and & : = w,* are the limits in distribution of the finite-dimensional 
processes En (t)  and S, (t)  (embedded into S), respectively. 

(iii) The law A of W, is an invariant Radon probability of the process 5. 
(iv) The process E t  de$ned as El,, with the initial distribution A is symmetric. 

P r o o f. Applying formulas (1.9) and (1.10) to a function f = v" (v E A) in 
the space 9 we get 

where A,,,, is the image of the measure pn under the map 
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Now note that, for any measure 1 on E and any measure v on E l ,  the 
following Parseval identity follows from the Fubini-Tonelli theorem: 

Indeed, 

Therefore, (1.14) gives, again for f = ?E F, 

1 Similar calculations give the following expression for el: 
P?) f (x) = J exp (i (z, x)) exp 

E* 

Since v-a.e. 
I n 

and (z, q,x) + (2, X )  in v-measure, by the dominated convergence we get 

t 
(1.17') lim f (x) = I exp (i (z , x) )  exp (- 11 z 11 t ) v (dz). 

n+m G 

Moreover, again by the dominated convergence it follows that the limits in 
(1.16) and (1.17) exist uniformly in x E E and locally uniformly in t. Denoting 
the right-hand sides of (1.16) and (1.17) by f and P, f, respectively, we get 

Note that the measures on E*: 

are finite and belong to A. Therefore, both semigroups {T,) and {P,) map 
9 into itself and send real functions from 9 to real functions and positive 
definite functions to positive, definite ones. Moreover, from (1.13) and (1.14) 
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it is dear that iff = Cis pointwise positive, then both P, f and f are pointwise 
positive, a fact that was not evident from the original construction in Accardi et 
al. 151. Since S is compact, these semigroups give rise to two homogeneous 
Markov families (W,J, Wo,x = x, and (3,,,), B o ,  = x, x E S, with state space 
S having {P,) and (q] as the transition semigroups, respectively. This 
well-known fact follows, e.g., from the Riesz-Markov theorem combined with 
the Kolmogorov theorem. The proof is similar to that of a metric case (see, e.g., 
Wentzell [29], Theorem 8.4). The only difference is that the transition proba- 
bilities P(t,  x, -1, which arise in the proof, have the measurability property 
x~+P(t,  x, B) for all sets B from the Baire a-field Ba(S) which may be smaller 
than the Bore1 a-field 9#(S). However, since by the compactness of S every 
measure on Oa (S) extends uniquely to a Radon measure on B (S), this is not 
a si@cant restriction. In particular, all the transition probabilities P(t, x, *) 
can be regarded as Radon measures. 

By our construction, for any fixed t the laws of S,(t) and E,,(t) (more 
precisely, the laws of USn (t) and I7zn (t)) converge weakly to the laws of 5 and 
E,, respectively. Moreover, we have also the weak convergence of the finite- 
-dimensional distributions of these processes, Indeed, let t, < . . . < t, be fixed 
moments and let f E CIS?. Let us verify that 

where PI:! ..., *, and P ,,,...,, , denote the measures on Sk induced by 
(lIEn(tl), ..., 17En(tk)) and (St,, . .., E,), respectively. Clearly, it ~ ~ c e s  to 
check this for f from a subset in C(S? with dense linear span. Such a subset is 
formed by the functions f of the form f = fl . . .A, wherehb,, . . . , yk) = gj (yj) 
with g ~ 9 .  To simplify the notation we consider the case k = 2. Then the 
right-hand side of the equality under the question is given by 

An analogous formula holds true for PI:!...,,,. Therefore, by the strong conver- 
gence of the semigroups and the weak convergence of PI:) we obtain the desired 
equality. For the process the proof is analogous. 

Let us check that the law of Wl (which is a Radon probability measure on 
the compact 5') is an invariant probability for the process 3,. To this end, it 
suffices to note that the images (under 17) of the invariant probabilities p, of the 
processes 3; ( t )  converge weakly to the measure A. Finally, since each (T,'")) is 
&-symmetric, { T )  is A-symmetric. 

Therefore, there exists also a process B t  with the same transition semi- 
group {T,),  but with the initial distribution A which is its invariant measure. 

Note that the measure A is defined on S. However, by the isomorphism 
between C(S)  and %, it generates a continuous linear functional on %, hence 
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on 9. We denote this functional by the same symbol A. It  follows from the 
considerations above that, for any f = V " E ~ ,  

Formula (1.16) gives the following explicit expression for the action of IC; 
on 9: 

This action consists of scaling the measure v and then changing the argument 
in the Fourier transform. The action of P, on A is expressed by the formula 

Let us make one important remark. In Theorem 1.1 we constructed the 
semigroup (TI on the Banach space C (S) (with our convention to identify C (S) 
and %). On the other hand, A is an invariant probability for (T,), and, as we 
already know, {T, )  is a Markovian semigroup on I? (A). Clearly, C (X) is dense 
in L?(A), since A is a Radon measure. However, the sup-norm in C(S) is 
stronger than the I?-norm. Therefore, {q)  may have different generators on 
both spaces. In order to avoid confusion, by generator A, of (T,) we shall mean 
its generator in C(A). Domain of AL in Z ( A )  is denoted by D (A,). 

Another useful observation is that for each element f EV the (?-algebras 
generated by {T, f, t 2 0 )  and {P, f, t 2 0 )  are separable and stable under the 
corresponding semigroup. Hence, the results above hold true if we replace S by 
the spectra of these C*-algebras which are metrizable compacta. This enables 
us to use the whole machinary of Fukushima [16] and Ma and Rockner [21]. 
The same is true for any countable subset of %9 instead off: The properties of 
the process on these metrizable state spaces will be the subject of a separate 
paper. 

PROPOSI~ON 1.2. The generator of the semigroup (T,] on %? coincides with 
(1.2) on all f ~ F f r o m  its domain. For any such f = v" the following equality holds: 

(1.22) ALf (4 = 3 5  C-i(z, ~>-11~11~1exp(i<~, x))v(dz). 
ti? 

In a similar way, the generator of the semigroup (PJ on % is given by (1.1) on all 
f €9 from its domain and 

The proposition follows from the direct calculations which we omit. 

Remark 1.3. It is worth mentioning that the domain of the operator A, 
differs from the domain of A, and that for an element f €9 the function A, f 
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typically is not the Fourier transform of a measure. To see this, let us note that 
i f f  E 9 is in the domain of the first order operator xV and X V ~ E  9, then 

This condition can be written as 

 AMPLE 1.4. Let v be the Gaussian measura on E* with Fourier tran$orm 
f {x) = exp(-(x, x),/2). Then f is in the domain ofthe generators of both semi- 
groups (7;) and (P,) on V (hnm also on Lz (A)) and 

is in %?, but is not the Fourier trangurrn of any bounded measure on E*. 

P r o of. The function (x, xj, exp (- (x, x),/2) belongs to the uniform clo- 
sure of 9, since it is the uniform limit of the functions 

which are in F. Obviously, by (l.21), f is in the domain of the generator of (P,) 
on %. The fact that f is in the domain of the generator of the semigroup {?;I on 
V can be verified directly. To this end, notice that since v is ergodic under the 
e-shift, by the ergodic theorem (cf. Shiryaev [2a  or Parthasarathy [23]) the 
function g equals 1 v-a.e. Hence 

f (x) = exp(-(1 -e-*)/2)exp(-e-'(x, x)=/2). 

Assume now that there is a measure R on E* with 

Xtx) = (x, 
exp ( - b y  x) 

H/2) ' 

The finite-dimensional projection An of this measure (under projecting onto EJ 
has the Fourier transform 

1 " 
n x ) =  i =  t -n x:exp(-- c x:). 

2i= -. 
One can easily check that 

where v, is the standard Gaussian measure on En (endowed with the inner 
product from H). Now, to get a contradiction with our assumption, it suffices 
to prove that the variations of the measures A, are not bounded in total. 
Indeed, if it were the case, the sequence of independent identically distributed 
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random variables ln (x) = 1 -xf' on (E*, v) would have the following property: 

Note that E t ,  = 0. It then follows from a classical result (see Shiryaev 1271 or 
Vakhania et al. [28], p. 228) that the series xz - m  gi converges in mean. 
According to another result from probability theory (see 1271, p. 414) we get 

which is impossible since the {,,'s have identical distributions. 

Note that the operator xVL acts on measures in the following way: 

where d , p  stands for the Fomin derivative of the measure p along the vector 
e (see Bogachev and Smolyanov [I31 or Daletskii and Fomin [I51 for more 
information about differentiable measures). Denoting by pi the logarithmic 
derivative of p along e, (the Radon-Nikodym density of d,, p with respect to p] 
we get 

Using !P-invariance of p one can check that pi o Y = Bi+ Thus, the functions 
(-, en) fin are equally distributed, and the series of these functions cannot con- 
verge in mean. In particular, if these functions are independent as random 
variables on (E*, p)? then (xV' p is not a finite measure, however, it can happen, 
as we have seen above, that its Fourier transform belongs to Q (which is the 
case if jl is in the domain of the semigroup (7;) on 5%'). 

Re mar  k 1.5. (i) As could be noticed from the reasoning above, the same 
results hold true for some other choices of our initial functional space 9. For 
example, it is possible to impose a stronger restriction X?*E L1 (p) for an integer 
p 2 1, which leads to a smaller space of measures 4, (or even take 
dm = n,,, d2d. 

(ii) It has been proved by Accardi and Bogachev [2] (with the class 4 
replacing 4) that the processes and 3, have the following analogue of the 
path continuity property: for each function f E C(S)  the scalar processes f (3,) 
and f (q have continuous modifications. Moreover, for any f €95 (Fourier 
transforms of measures from d4) such scalar processes satisfy the estimate 
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and hence have a-Holder continuous modifications with any aE(0 ,  1/2). AS 
noted by M. Rocher, the same is true for the symmetric process 3:' with initial 
distribution A (for any space F2, or F, instead of M). This can be deduced 
from the proof of Proposition 2.12 in AIbeverio and Kusuoka [7]. This prob- 
lem will be discussed in more detail elsewhere. 

2. The L h y  gradient a d  the associated DidcMet form. We shall use the 
term a "pre-Dirichlet form t" for a closable form d whose closure is a Dirichlet 
form in the usual sense (see Ma and RGckner [21]). In such a case the closure 
wilL be denoted by the same symbol t. To simplify formulas, we shall consider 
ieal functions when dealing with Dirichlet forms. 

Notice that for any n the process E,(t) with initial distribution pm is the 
diffusion on E corresponding to the pre-Dirichlet form 

and that (2.1) can be rewritten as 

LEMMA 2.1. Let p a d  v be two Y-invariant measures on E* such that 
(-, ei> EC (p) and (a, e,} EC (v). Put pi : = ( m ,  e i )  p and vi : = (-, e,} v. Then the 
measure pi * vi is absoIutely continuous with respect to p * v and its RadoeNiko- 
dym derivative gi satisfies the equality 

ei (Yx) = gi+ (x) p * v-a.e. 

Proof. The first assertion is trivial. To prove the second one let us note 
that for any bounded Borel function f on E* there is a Borel function g such 
that f = g o Y. Therefore, from the Y-invariance of p, v and p * v we get 

LEMMA 2.2. The sequence (&'A of pre-Dirichlet forms conuerges pointwise 
on 9. We denote its limit by 8,. 

Proof. Let f = v". Then, by a property of the Fourier transform, 
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where vi = ( 4 ,  ei) v. According to Lemma 2.1, the measure vi * vi is absolutely 
continuous with respect to v * v and for the corresponding Radon-Nikodym 
density gi we have ei + , = Q ,  o Y. Therefore, from (2.1) and (1.15) we get 

Applying again the ergodic theorem we get the convergence of the integrals 
in (2.2). 

Since the pperator A, is the generator of a symmetric Markovian semi- 
group, it is self-adjoint and nonpositive (see Ma and Riickner [21]). It is natu- 
ral to ask about the relation of its domain with our initial functional class 9. 
This class has a simple description, so it would be useful to know whether it 
uniquely determines our main objects. This is indeed so in the following sense. 

PROPOSITION 2.3. (i) AL is essentially self-adjoint on To = 9 n D(A3.  
(ii) The quadratic form &, obtained in Lemma 2.2 is the pre-Dirichlet form 

corresponding to the operator A, on Fo, and Fo is a core of the Dirichlet form 
obtained as the closure of 8, (this closure will be denoted also by 83. 

Proof. (i) It is not hard to prove that F0 is dense in L2(A). Indeed, for 
each n the mappings 

00 

G, f H J  ne-"sT, fds 
0 

send 9 into 9. Since G, f + f in J?(A) and G, f E D ( A ~  (see Yosida [30], 
Theorem 1, Chapter IX, 9 3), we infer that Fo is dense in 9, hence also in 
I?(A). It is worth noting that the same argument shows that the class so, 
defined as the intersection of 9 with the domain of the generator of ('I;) on 
V C(S) is dense in C(S), hence also in I? (A). Since the inclusion 
T,(D(Ad) c D(AL) always holds (see Ma and Riickner [21]), we obtain 
I;Fo c Fo and FOo c Po,. According to a standard result (see, e.g., Theo- 
rem X.49 in Reed and Simon [24]) this implies the essential self-adjointness of 
A, on Fo (and also on goo). It follows then that So and go, are cores for the 
Dirichlet form 8,. 

(ii) Let f be real. We have to prove the equality 

GCf-f) = - A ( f A , f l .  
By definition, 

On the other hand, since A, f ~ g ,  we have. 

4 f A L f )  = lim Sf ( x ) A , f  ( x ) ~ n ( d x ) .  
a+ m 



108 . L. Accardi and V. I. Boeachev 

Note that 
w 

Sf AL f (4 P, (dx) = S f [ A  L f (4 - C xi a,, f (41 P,, (dx) 
En i=-m 

The first term on the right-hand side of the expression above coincides 
with (2.2). So it sufices to check that 

By the Parseval equality this reduces to the following: 

where 
1 n 

and g is given by (1.5). The integral on the left-hand side of the expression 
above can be estimated by llvll Ilgv-g, vll, which converges to zero by the 
ergodic theorem. 

Now we shall construct a gradient (which will be called the L6vy gradient) 
in such a way that the Dirichlet form 8, will have the form 

where X is the Hilbert space defined below. 
Let X be the space of all real sequences (x,,) satisfying the condition 

1 " 
Iimsup- C x; < oo. 

n i =  -,, 
As shown in Accardi and Obata [4], there exists a pre-scalar product (-, .), on 
X with the following property: if the limit 
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exists for two elements k = (hn) and k = (kJ in X, then this limit coincides with 
(h, k),. The completion of the quotient space X/(-, -1, with respect to this inner 
product is denoted by X, and its complexifid space by i fC.  Note that 3- is 
a nonseparable Hilbert space. 

For any f = V"EF we define its X-gradient as follows. The XC-valued 
function V, f is defined by 

The estimate 
.. . .. - - 

and the ergodic theorem show that, for any x E E, V, f (x) is an element of XC 
(more precisely, it defines an equivalence class in this space). Note that if both 
v and f = f are real, then V, f takes values in X. 

The gradient constructed above on 9 induces the gradient for the corre- 
sponding elements in C(S). Note that this gradient is the limit in the sense of 
Accardi et al. [3] of the finite-dimensional En-gradients, i.e. 

THEOREM 2.4. For any real f E F, equality (2.3) holds. In addition, the Diri- 
chlet form 8, is a dz$iision Diriehbt form, that is: there exists an algebra d of 
bounded real functions in the domain of A,, dense in the real I? (A) and stable 
under the action of CF-fUnctions, and for any f E d,  # E CF the following equality 
holds: 

ALQI(f )  = 4 ' ( f ) A L f + # ' ( f ) r ( f , f ) 3  

where (f, f = [A, (f 2, - 2fAL fl/2. 
Proof. Let f = ~"ES be real. Then 

n 

~ ~ ( f , f )  = n+ lim rn (2n+l)- 'J ( a , f ( ~ ) ) ' ~ ( d ~ )  
i =  -n  

and 

Using the notation of Lemma 2.1 and identity (1.15), the right-hand sides of the 
relations above can be written as 

1 " 1 
Lbn J- pi(.z)exp(-- Z (r, e 3 2 ) ~ * v ( d z )  n+mE.2n+1 i=-n 4n+2,,-, 
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and 

Applying once again the ergodic theorem to the measure v*v we get (2.3). 
To prove the second statement, let us take for d the space of all functions 

g = 4oJ; where +EC,"(R') and a real function f is in the class 
F,, = 9 n D (A,) used in Proposition 2.3. Clearly, d is stable under composi- 
tions with C,"-functions and is contained in D ( A 3  since the latter is also stable 
under such compositions (by the property of Markov semigroups; see Ma and 
Rockner [21]). By virtue of Proposition 2.3, A, is essentially self-adjoint on d, 
It remains to check the formula for A, (4 of). If 4 is a polynomial, this formula 
can be easily verified directly. It should be noted that, although polynomials 
are not in C,", for any fixed f E sf, the polynomial p off coincides with #J (f) for 
a function 4~ Cr (R1) which agrees with p on a segment that contains the 
values off (recall that d consists of bounded functions). Let now 4 and f be 
fixed. I = [-C, q, where C > sup 1 f 1. Taking a sequence of polynomials p,, 
which converge to f uniformly on I so that (p: )  and {p:}  converge uniformly to 
the corresponding derivatives off; we obtain the desired identity. 

3. Hyprcontractivity. Recall that the semigroup (T,) associated with an 
invariant probability measure p and a Dirichlet form 8 is called hypercontrac- 
tive if the estimate 

holds for any t > 0, p > 1, q > 1, such that 

It is known (see Gross [17], Bakry and Emery 191) that the hypercontractivity 
is equivalent to the following logarithmic Sobolev inequality: 

An important example of a hypercontractive diffusion semigroup is the 
Ornstein-Uhlenbeck semigroup (see [17]). In this particular case (3.1) reads as 
follows: 

13-31 Jf I ~ ) ~ l n l f  (x)l~(dx) G J ( V f  (4 ,  Vf (x))P+ Ilf IJilnllf 112. 

PROPOSITION 3.1. The Omstein-Uhlenbeck semigroup (q )  associated with 
the U v y  Laplac-ian is hypercontractiue. In addition, the following logarithmic 
Sobolev inequality holds: 
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Proof,  The hypercontractivity, i.e. the estimate (3.11, follows from the 
convergence of the semigroups {T(")] to {T,) combined with the fact that these 
semigroups are hypercontractive by [17]. 

4. Comparison with the standard BrtssteiwUhlemlbeek process and cowclnd- 
iolg remarks. It is very interesting to compare the process 5, constructed above 
with the standard (infinite-dimensional) Ornstein-Ublenbeck process 9, in E* 
associated 'with H.  Using the basis {e,) we can define this process just as 

where (en (t)] is a sequence of independent standard real Ornstein-Uhlenbeck 
processes. Denoting by W(t)  the Wiener process in E* constructed in a similar 
way by means of a sequence of independent real Wiener processes w, (t) we get 

What happens if we try to obtain this process r, by the method applied 
above for constructing E,? Keeping the notation of the previous sections we 
have the finite-dimensional processes 

and the corresponding semigroups 1;"." given by 

T"." f (x) = j f ( ~ - ~ ~ x + e - ~ ~ ~ ~ ~ ~ x + . \ l ~ ~ ) ~ , ( d ~ ) ,  

where y, is the Gaussian measure on En with the Fourier transform 
exp (-zy= -. x:/2). By the Parseval formula (with f = 0 we have 

Thus, if v is the Dirac measure 6, the limit equals 1, otherwise it is zero. 
However, in this situation we get a nontrivial limit semigroup if we choose 
a bigger functional space. For example, let Fo be the collection of the Fourier 
transforms of measures of the form p = v + A, where v E A and R is a finite 
Borel measure on some of the subspaces E,. This new class A, of measures can 
be written as an algebraic sum A +Atin, where Afi, stands for the class of all 
measures concentrated on the finite-dimensional subspaces En. It follows from 
the S-invariance of all measures in A that the intersection A n Afin contains 
only measures concentrated at the origin, that is, only measures proportional 
to the Dirac measure 6. The class of the Fourier transforms of measures in 
Afin will be denoted by Sfin. For any A E A, the function depends only on 
a finite number of variables xi. Hence, this function can be viewed as a function 
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on E*. On this bigger functional space, the limit semigroup (which is the 
transition semigroup (?;') of the process t,, on E*) acts nontrivially by the 
formula 

T c f b ) =  l f  (e -"'x+ J C F y ) y ( d y ) ,  
B1 

where y is the Gaussian measure on E* with Fourier transform exp (-(x, xx),/2) 
(this is the invariant measure of the Omstein-Uhlenbeck process t). In par- 
ticular, our new space contains all trigonometric functions of the form 

since these are the Fourier transforms of the atomic measures at 
c -, e -, + . . . + en en. It is known that the linear span of such functions is a core 
of the Dirichlet form corresponding to the process 5; (which is the Ornstein 
-Uhlenbeck process with initial distribution y) and defined by the formula 

Here VB f (2) is defined from the relation 

( V H f ( z ) , h ) , = a h f ( z )  for all ~ E H .  

However, at this point the parallel between the processes 8, and l ,  is broken. 
Though the operators A, and V' are well defined on Sfin (AL is vanishing on 
Yfi,), this subspace is far from being a core for the Dirichlet form 8,. This shows 
the essentially infinite-dimensional character of the objects constructed above. 
Certainly, since we have a process corresponding to the semigroup (TI,  and thus 
to the Dirichlet form c?,, our situation agrees with the general theory developed 
in Fukushima [16] and Ma and Rockner [21]. A novelty is that it does not fit the 
framework of the usual infinite-dimensional Dirichlet forms considered in Al- 
beverio and Rockner 181, Ma and Rockner [21]. Thus, we get an interesting 
example of a Dirichlet form of the "gradient type" which is essentially infinite 
dimensional. It is worth mentioning that the process 3, may have some common 
features with the processes constructed and studied in Bogachev et al. [12]. It is 
possible to construct Sobolev classes and capacities over A in the spirit of 
BouIeau and Hirsch 1141 (see Accardi and Bogachev [2]). 

In conclusion, note that the methods of this paper apply to more general 
differential and pseudodiKerentia1 operators connected with the Gvy Laplacian. 
Analogous constructions have sense in the quantum case. 

This paper has been written during the visit of the second-named author to 
the Centro Vito Volterra. The second-named author gratefully acknowledges 
the support of the Russian Fundamental Research Foundation (Grant 
N 94-01-01556) and the International Science Foundation (Grants M38000 and 
M38300). The authors are much indebted to M. Rockner for illuminating 
discussions and helpful comments. 
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