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Abstract. In this paper, suTTicient conditions for the existence of 
(a-finite) invariant measures for a class of Markov chains with random 
transition probabilities are given. A special class of Markov chains 
with random transition probabilities is also studied here to show the 
relevance of attractors for certain iterated function systems to the in- 
variant measures for these chains, and some of these results are illus- 
trated with computer-generated pictures. 

I. Introduction. One of the aims of this paper is to generalize the model of 
Markov chains with random transition probabilities, extensively studied by 
Cogbum in a series of papers (here we mention only [ 5 ] )  and later by Orey 
[16], to a locally compact Hausdodl state space. We provide a sufficient con- 
dition for the existence of a non-trivial a-finite and locally finite (i.e. finite on 
compact subsets) invariant measure for the above-mentioned (skew) chains. In 
Section 3, where we present this result, the method and other details are de- 
scribed. 

In Section 4, we consider a special class of the Markov chains we studied 
in Section 3. These chains are induced by a number of afKne maps on Rd. The 
Markov random walks (with values in these afKne maps) from these Markov 
systems give rise to what has been called "attractors" in the literature. Such 
attractors in the context of iterated function systems, in various situations, have 
been studied extensively in recent years by M. Barnsley and his co-workers in 
numerous papers. Also, recently in [13], in the i.i.d. context, such attractors 
were studied in connection with invariant measures. The main purpose of this 
section is to establish a connection between these attractors and the invariant 
measures for the class of Markov chains that we study here. Our results in 
Section 4 are then illustrated by appropriate computer-generated pictures of 
attractors. 

In Section 2, we present a result necessary and sufficient for the existence 
of invariant probability measures for general Markov chains that have the Fel- 
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ler property (i.e. takes bounded continuous functions into bounded continuous 
functions) and also the property of taking continuous functions vanishing at 
infinity into continuous functions vanishing at infinity. 

2. hwrisnnt measwe for general Markov chins. In this section, we present 
a general theorem on the existence of an invariant probability measure for 
a Markov chain (XJ with locally compact second countable state space X. 

Let P(x, A), XEX and A c X, be a Markov transition probability func- 
tion so that, for each Borel subset A c X, PI., A) is a Borel measurable func- 
tion of x and, for each x E X, P (x, -) is a probability measure on the Borel 
subsets of X. 

In the rest of this section, we make the following two assumptions: 
(i) If A is a compact subset of X, then the function x + P(x, A) vanishes 

at infinity. 
(ii) P has the Feller property, that is, for each bounded continuous  fun^ 

tion f on X, the function Pf (x) = j f I)) P ( x ,  dy) is continuous. 
Let us remark that in the context of random matrices we are often in 

situations where the conditions (i) and (ii) hold. For instance, if p is a (Borel) 
probability measure on X, the set of d x d non-negative matrices (with usual 
topology) which have no zero rows or zero columns, then the Markov kernel 
P (x, A), defined by 

satisfies both (i) and (ii). 

THEQREM 2.1. Suppose that conditions (i) and (ii) hold. Then thefollowing are 
equivalent: 

(a) There is an invariant probability measure R for P, that is, 

for every Bore1 subset A c X .  
(b) There is a compact subset K c X such that s ~ p ~ n - ~ x ,  Pk (x, K )  

does not converge to 0 as n + oo. 
n 

(c) sup lim sup sup n-I pk (x, A) = 1. 
A: compact a+ m x k =  1 

For the equiualence of (b) and (c), we do not need condition (ii). 

Remark. Note that once we have established that (a) and (b) are equiva- 
lent, (c) follows trivially from (a). However, in the absence of condition (ii), the 
equivalence of (b) and (c) does not seem to be trivial. Let us also mention that 
our proof will show that the quantity on the left in. (c) with "lim sup" there 
replaced by "lim inf' is also either 0 or 1, in the presence of condition (i). 
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P r o  of  of  The o r  em 2.1. (a) (b). This is easy since if I is an invariant 
probability measure for P, then 

(b) 3 (a). Note that (b) implies that there is a compact set K such that, for 
some subsequence (nJ, there exist dements X,,E X such that 

L - 
- P k ( x , , , K ) > 6 > 0  for all i 2 1 .  

- - n i k = l  

Dehe the probability measures (v,,) by 

Then there exists a subsequence (ni,) such that (v,,) converges (weak) to some 
measure v, v(X) < I. It follows that v ( K )  3 8. 

Now we observe that, for any Bore1 set A, 

Now, writing (A) = J P Cy, A) v,, (dy), we have: for any bounded continuous 
function f vanishing at infinity, 

since the function Pf (y) also vanishes at inftnity. Thus, since 

we have 

IUf <.>Pbl d.>1 V ( ~ Y )  = Jfdv. 

Now, given any compact set B c Xy the set B being a G,-set, there exists 
f, (continuous with compact support) such that f, 1 1 ,  so that 
v (B) = P Cy , B) v (dy). Thus, (b) * (a). 

(b) * (c). Suppose that a > 0, where 

1 " 
(2.1) sup limsupsup- z P(X,  A)=a.  

A: compact n+m x n k = ~  

If possible, let a < 1. Choose E > 0, a < c < 1, such that E < c/4,O < E < c - a, 
0 < a < C-E c c < 1, c(1 +c)/2 < a. Let A be a given compact set and X E X .  
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There exists a positive integer ma such that, for m 2 m,, 

1 rn 
sup- PkCy, A ) < c - E .  

y m k = l  

Using the condition (i), we can now find a compact set E such that 

I 12-31 P", A) c E, 1 G s G rno, 

whenever y 4E. Now we have from (2.1): There exists r ,  such that, for r 3 r,, 

There exists a positive integer so, 1 6 so < ma, depending on r such that, for 
r 2 ro, 

To see this, just write 

+ p o + m o  (x, E) + P2m0+mo (x, E)+ ... +Prmofm0 (x  y E)). 

Now, let n 2 m0 (r ,  + 1 )  and write n = m, (r + 1) + t, 0 6 t < m,, where r 2 r ,  . 
Let so be such that (2.5) holds for this so. 

We will now use (2.2), (2.3) and (2.5). Now we have: for A in (2.2), 

+{I pb, A)f'm0+30(x, dy)+ 1 2 P C y ,  A)P"O+sO(x, dy)} 
Ek=1 E c k = l  

f+Jm 
+ P m r + k ( ~ ,  A)] 

k =  1 +so 
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<- 3m,+mo -+-Pmo+"O ( x ,  E) i- mo -+- P2m0+90 
n '[ { f n  } {X (., g+ ...I 

which is a contradiction. This proves that (b) = (c). 
Notice that (c) =- (b) trivially. The proof of the theorem is now complete. s 

3. Invariant measures for Mirkov &aim with random tramsition probabili- 
ties. In this section, we generalize the model of Markov chains with random 
transition probabilities initially and extensively investigated by Cogburn [ 5 ]  
and later by Orey [la to a Hausdorff topological state space. Cogburn points 
out in [ 5 ]  that "the existence of a a-finite invariant measure v 4 p = u x n 
a given distribution) is a more difficult question" and leaves this problem open. 
Orey also mentions this problem (see Problem 1.3.1 on p. 916 in [16]) as one of 
his open problems. We present here a sufficient condition for the existence of 
a non-trivial, a-finite, and locally finite invariant measure for Cogburn's Mar- 
kov chains. Under appropriate conditions (mentioned at the end of this sec- 
tion), this invariant measure will be absolutely continuous with respect to 
a given #I. 

We exploit here the method given by Skorokhod in [18]. Also, in the final 
step of the proof of the theorem in this section, the formula for the invariant 
measure v in terms of the invariant measure 1 for P, that we use here was given 
in [18], and thus perhaps could have been omitted at the expense of creating, 
however, a hard-to-follow proof. Skorokhod's concern in his paper was to 
establish the uniqueness of the invariant measure, whereas our concern here is 
simply to establish the existence of a non-trivial, a-finite, and locally finite 
invariant measure. Our idea is simply to find an appropriate function g so that 
{J 5 ((x, $1, -)#I (d (x, 8))> is a tight sequence for a given distribution fl, thus 
yielding an invariant probability measure for P,, and then finding an invariant 
measure for P through Skorokhod's formula. We feel that the condition for the 
existence of a a-finite invariant measure that we present here is new. Final- 
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ly, even though we say our approach is as given in [18], Skorokhod's approach 
is essentially the same as Foguel's in E7] and Skorokhod's formula (that we use 
in Step V) is essentially the same as Harris' (see [7], equation (3.10)). 

We now present our theorem. A reader, familiar with [18], can skip easily 
Steps 1, II, and V in the proof of Theorem 3.2. 

Let (X, d) be a locally compact Wausdorff second countable topological 
space and (@, 44) be a complete metric separable space. We will write 

where t!? = sZ and = ni,,ai, a, = 9 with product topology in 6 and 0. 
Let (Pe(., -1: O E  @) be a given family of transition probabilities on 

(X, d), and Y, = (X,, ffl)  be the Markov chain with initial distribution j? and 
transition probability P( (x ,  8), F) given by 

where (0,; is defined by 

T being the left shift on 6. 
Notice that if X is discrete, then 

and 

This is exactly the Markov chain investigated by Cogburn [5] and later by 
Orey 1161. 

PROPOSITION 3.1. (i) P {rn = T~ B I =. (x, 8)) = 1. 
(5) P"((x, g), F) = P e , . . . ~ e n - l ( ~ ,  (F)m-). 

Proof. We have 

First, we use induction to prove (ii). For n = 1, by definition, we have 

Suppose that, for k > 1, 

then for k + 1 we have 
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Therefore (ii) is true. Now, we have 

= ~ " ( ( x ,  B),  XX(T"@) = P~. . -P~ , , - , (X ,  X) = 1 ,  
which is (i). ea 

Let jl = m x n, where m is a probability measure on X and n: is a probabili- 
ty measure on 6. Let C,(a) be the class of all bounded real continuous func- 
tions on 62 that vanish at infinity and g E C, (a), 0 < g C 1. In what follows, we 
define the function. Pg(-, .);-as in [18], on (a, 9) as follows: 

Note that for any sequence a,, 0 < a, < 1, 

Thus, it is clear that P, is a transition probability on (O, 9) if 

00 

(3.2) ~ , , , - , [ C g ( Y J = o o ] = l  for all ( x , ~ ) E B .  
r = l  

We can now state our results. 

THEOREM 3.2. Suppose that there exists a strictly positive function g E C, (Q), 
0 < g < 1, such that 

(i) P(~,,-, am=, g (YJ = m) = 1 for all (x, g); 
(ii) for fi  almost ( x ,  B), there exists a Borel subset B ((x, 8)) of 8, containing 

(x, g), such that 
P , , ~ ( X E F  ((x, 8)) i.0.) = 0; 

(iii) limn ,,J...Jr1[7=,( 1-gCy,, T'@))P~;,(x', dyl)...Pe;-,(y,-,,dy,) = O  
unijiormly for (x', @ in each B((x ,  8)); 

(iv) for any bounded continuous function f on 4 

Pf  (x, 8 )  = jf dv? w q o ,  $1, dCvY @I) 
is continuous. 

Then there exists a non-trivial a-finite and locally finite (that is, finite on 
compact subsets) invariant measure ,u on (51,s) for the transition kernel P. 

Remark. Let us remark that in [q Foguel proved the above theorem for 
a Markov process (with non-random transition probabilities) under the Feller 
condition (our assumption (ii) above) and an assumption (assumption (2.1) 
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in [7]) which implies our conditions (i), (ii) and (iii) above for some bounded 
continuous function with compact support with B((x, g)) = l2 for each (x, 8). 
[His function /I in his Section 3 (see his limit statement (3.3)) happens to be this 
continuous function with compact support.] Note that our Theorem 3.2 under 
assumptions (i)-(iv) for some continuous g with compact support (when O is 
a singleton set) follows easily if we observe that the transition probability P,, in 
this case, acts on a compact space and, as such, has an invariant probability 
measure, which, in turn, gives a a-finite invariant measure for P. 

- Proof of Theorem 3.2. Notice that condition (i) implies that P, is 
a transition probability on 9. Now we separate the woof into several steps. 

Step I. Let (YJ be a copy of the Markov Chain (YJ with the same tran- 
sition probability P. Then we have 

where f and h are bounded Bore1 measurable functions on a. To prove this 
notice that 

This establishes Step I. 

Step 11. In this step, we show that for rn 2 1 

To prove this, let (FA be a copy of the Markov chain (Yn) so that has also 
P as its transition probability. Now we use induction to establish the expres- 
sion for P r .  Using induction, then we have 
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which, by Step I, is equal to 

This establishes Step TI. 

Step 111. In this step, we establish that the sequence of probability measures 

is tight, that is, for s > 0 there is a compact set F c such that for all rn 2 1 

To prove this, notice that for a sequence (a,), 0 < ai < 1, 

Therefore, with probability one, by assumption (i), 
m n-1 m 

(3.3) g(Y1)+ (n  (l-g(y&)g(yJ) = 1- n (l-g(G)) = 1.  
n = 2  k = l  k =  1 

Let E > 0. For each positive integer N ,  define the set a,(&) by 

(x, 8): P , , ~ ( Y , E B ( ( X ,  8)) for all n 2 N) > 1-8, 

N E 
and .. .I (1 - B ( ~ i .  Ti @I) PO; (x', dyl). . . Po;-, (yN-l , dyN) < 5 

i =  1 

for every (x' , @) E B ((x , a)) 
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It is clear that f iNje )*c  QN+, ( E )  and that 

by condition (ii), where QN(&) is the closure of fiN (8). This means that there 
exists No such that 

Now, by condition (iii), fox (x, g) E bZ, (E), whenever (x', a') s B ((x, @)), we have 
. - 

Choose S < e/[2 (No + I)]; since g E C, (a), there is a compact subset F c 62 
such that g (x, g) < 6 for (x, g) I F .  Note that for (x, g) E aN,, ( E )  and all 
(xr  , @) E B ((x, g)), we have 

Let rn 2 No + 1. We have, for (x, g) E QN, (E), 

Let 

D = {a: Y,(co)~F((x, g)) for some n N o ) .  
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By (3.31, we obtain 

p,"- I,,,x,i31, (x, f3 G E(, , - ,  (1,) 

since (x, g) E LINo ( E ) .  Therefore, 

P;((x, g), F 3  6 E+P,,,-,CD) G 2 ~ .  

Now we show that, for m 2 1 and any (x, g) E CJN0 (E), 

To this end, we need the Feller property for the transition kernel Pg that we 
will establish in Step IV. Notice that the compact subset F above has the 
property that F is a G,-set and that, for any (x, ~ ) E Q ~ ~ ( E ) ,  

Let us suppose that there is some (xo ,  go) E a,, ( E )  - ONo ( E )  such that, for a posi- 
tive integer my 

P7((xo, go), F) < 1 - 3 ~ .  

This means that there is an open set K F P K such that 

Let f be a continuous function on 51 such that 0 < f < 1, f = 1 on F and 0 
on Vc. Then we have 

Since the transition kernel P," has also the Feller property, this means that 
there must exist some (x, B ) E  DNo(&) such that 

which implies that 
P:((X, @, F )  < I - 3 ~ .  

This is a contradiction. 
The rest of the proof of Step 111 now follows easily. 

Step IV. In this step, we show that there exists an invariant probability 
measure for Pg. 

First, notice that for any bounded continuous function f on 51, f 2 0, 

which is an infinite sum of nonnegative bounded continuous functions (be- 
cause of condition (iv)) and, as such, is lower semicontinuous. Also, notice that if 
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f above is bounded by M y  then 

P , C M - f l ( x ,  8) = ~ - ~ , . f ( ( x ,  $I), 
which is also lower semicontinuous so that P, f is also upper semicontinuous. 
It follows that, for any bounded continuous J; P, f is also continuous. Now we 
define, for any probability measure A on P, the probability measure P ,  h by 

P,A[B) = JP,(Ix, g), B)A(d(x, g)). 
Notice that if ,la + A weakly in P (a), then for any bounded continuous function 
1 oq D we have 

jfd(Pg1,) = S[Sf ( O t Y  @))P, ( (x ,  e ' ) Y  d(YY @))I IZ,(d(x, Q) 
-JUf (by @-))P,((.> 81, d c ,  a)] A(d(., 8,) = lfdcP,a), 

so that P, A, 4 P, R weakly as n 4 m. 
Let US now write, for any Bore1 subset F c a, 

.. - 
Notice that 

also, 

It is now clear that, for any bounded continuous function f on a, 

Since 52 is a metric space, given any compact subset P c S2, F is also a Gbset so 
that there is a sequence of continuous functions uniformly bounded by 1, 
converging pointwise to I,. This means that, for every compact set PEO, 

vo(F) = P,vo(F). 

By regularity of the measures, it follows that vo = P,vo .  This completes the 
proof of Step IV. 

Step V. Let A be the invariant probability measure for P,. Define v on 
IQ1 g) by 

m n-1 

v(F)  = JE(x,Lq [~F(YI>+ C n (l-g(Yk))JF(Yn] 4 4 x 5  Q). 
n = 2 k = 1  

The formula for this v is actually a formula that probably was first considered 
by Harris (see [7]). We have taken it from [I 83. Notice that 52 is n-compact and 
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also, if F is a compact subset of 9, there is a positive number M such that 

since g is strictly positive and continuous on 0, so that 

This means that v is a o-finite, non-trivial and locally finite measure on IR. 
Let us now establish that v is invariant for P. (Our proof here is quite 

different from that.given in Lemma 6 of [18].) Observe that 
. - 

m n-1 

v ( F )  = J'E,,,-, 1, ( ~ 1 )  da +I ~ ( ~ , f i  ( C n (1 - 0 ( ~ $ 1  IF ( y ~ > d a  

= S P ( ( X ,  a,, F ) ~ A + J E , ~ , ~ ) [  x (n ( ~ - ~ ( Y ; ) ) I , ( Y J  
n = 2  k = l  

(the first and the third expressions above cancel since 1 is invariant for P,). 
This completes Step V and the proof df the theorem. rn 
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Let us remark that we would often like to have the invariant measure 
v (for P) to be absolutely continuous with respect to the initial distribution 
/l for the Markov chain (Y,). This, of course, will necessitate imposing some 
conditions on the transition kernels P,(x, -), Of@. One easy condition is, of 
course, that 

~ ( F ) = O * P o ( ~ , F T T ) = O  for all XEX and 868, 

where FTr = (YE X I b, T B ) E  F} . If this condition holds, it is obvious that the 
invariant measure v obtained in Step V is absolutely continuous with respect to 
.fi. In  the remainder of this section, we present two results relevant to the 
problem of the existence of a a-finite invariant measure for P (in the context of 
Theorems A, C and D in [g], pp. 65-70). These results, even though likely 
known to experts, are recorded here (as we have not found them in the litera- 
ture in the form we present them here). 

Let us first note the following definition. A set F E 9s is closed if /I (F)  > 0 
and I, < PI, as., where f l  is a given measure (not necessarily finite) on 
(a, 9) and 

PI,(x, 8)  = P ( b ,  B), F). 

The conservative set C is defined by 

where u IS), t6 strictly positive and (UP, f) = (u, P f )  for f E L ,  (8). The 
set C is independent of u, see [a]. In what follows, we assume, like in [8], p. 2, 
for each (x, g ) ~  8 ,  P ((x ,  81, .) 4 j?. 

PROPOSITION 3.3. Suppose that 8 = C .  Then the following are equivalent: 
(1) P is fl-irreducible, that is, for any F with /I(F) > 0 /I-a.s., 

P(,,gl (Y, E F for some n 2 I )  > 0. 

(2) 6 = {F €9 I IF = PIF /l as . )  is trivial 
(3) P is /I-recurrent, that is, for any F with #l(F) > 0 #?-u.s., 

(4)  Q is minimal closed, that is, if F c D and fi(S1-F) > 0, then F is not 
closed. 

(5) If P f  = f, f E L ,  0, then f is a constant fi-a.s. 
(6) If f€L&,IB), ff 0, then z,"=,pkf = a, /l-a.s. 

We omit the proof which is not difficult. Note that when 8 = C and one of 
the conditions in Proposition 3.2 holds, then there exists a a-finite P-invariant 
measure on equivalent to jl provided the condition of Theorem D (on p. 70 
of [8]) holds. This then leads to the well-known fact that if P satisfies the Harris 
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condition, then there exists a 0-finite P-invariant measure equivalent to fi  (see 
Theorem E on p. 73 in [a]). We close this section with the following result for 
the case when X is countable and /I = u x n (like in [5] ,  tc being the counting 
measure on X), x being a given stationary probability measure on (a, a). 

PROPOSI~ON 3,4. P is #LirreducibEe $for any y E X and BE a, 71 (B) > 0, 
m 

P ( 8 0 . . . ~ k - l ; ~ , y ) ~ a ( ~ k 8 ) > 0  for (p - )  almost all ( x , g ) ,  
k =  1 

where P(8, .  . . Bk-l ; ;x ,  y) means the entry on the x-th row and the y-th column of 
the product of-the k stochastic matrices Po,, Pel ,  . . ., Ph- , .  s 

4. Markov random walks, attractom, and invariant measures. In this sec- 
tion, we consider a special class of Markov chains with random transition 
probabilities involving transformations from Rd into Rd of the form 

where x, is a fixed element in Rd and A is linear. The reason for including this 
section is to provide a concrete example of Cogburn chains and at the same 
time to show connections between the invariant measures, left and right attrac- 
tors for the Markov random walks that we get from these chains. Similar 
results as presented here appeared earlier in [3]; but the discussion involved 
only a finite number of transformations and the proofs there are not valid for 
an arbitrary family of such transformations. 

Let 8 be a compact metric space and {W,: B E @ )  be a family of trans- 
formations of the form (4.1) such that 

(4.2) We ( x )  = Ae (x) + Be. 

Then, if O i ~ @ ,  O S i G n ,  for X E R ~  we have 

W,,, KI,- 1 - KO ( x )  = A@, A@,- . . . Aeo (x) 

+ A B ~ . . - A U ~ B B ~ + A B ~ . . - A ~ ~ B ~ ~ +  ... + A B , , B e , - l + ~ e , ,  

we, K1 - . . We,, (x) = Aeo AB1 . . . Aen (x) 

+AeoAel - . -Aon- lB~n+ ... +AeoBB1+BBO. 

Let (e,J be an indecomposabIe Markov chain with state space O and 
transition function P such that the (initial) distribution no of to is invariant 
with respect to P. Then the stationary process gotten by taking x, as the 
distribution of 5, is ergodic (see [4], Theorem 7.16, p. 136). 

Let 6 = OZ' ,  d = niGZ+ ai, ai = .B, where is the class of Bore1 subsets 
of 8. Let x be the probability measure on (6, &) induced by the stationary 
ergodic process ({A, so that it is stationary and ergodic with respect to the 

9 - PAMS 17.1 
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left shift T on 6 given by 

T ( 0 ,  0 ,  . . . where 8= (go, %,, O,, . . .). 
Let n* be the unique probability measure on (d, a) such that, for any 

finite-dimensional rectangle of the form A(") = (g :  Oi E Ai, 0 G i < n) , 
3~.*(A("))=n{& Oi~A,- i ,O<i<n}.  

Let us assume that 

(4+4) n* is stationary and ergodic. 

[Lit-us rimark that-if B is finite and P is a strongly ergodic stochastic matrix 
with a stationary distribution x, such that R, (0) > 0 for each I3 E 8, then n; in- 
duced by n, and P, as well as the corresponding n*, as defined above, is 
stationary and ergodic.] 

Let us write E = Rd and = E x &. For (x, $1 E a, let 

(4.5) @(x, @ = (%,(x), ~ g ) .  
Let d be the Bore1 subsets of E and R = d x 3, and for FE* let 

Consider the Markov chain (x) on O with transition function R so that 
= @"(Yo). Let us now make the following assumptions: 

(i) For some M , ,  M, > 0 and all O E  O, 

IlAell s  MI, IlBell s  n/fz- 
(ii) For n 2 0, X E  E, and r 2 0, the sets 

(4.6)- {BEG: IIWe -... WBo(~)II sr) and {BEG: IIK ,... &,,(x)II<r} 

are in a. 
(iii) There are real numbers b < a < 0 such that 

Taking f (8) = log llAell and using the ergodic theorem (and (4.6)), we infer 
that 

1 n - 1  

(4.7) the limit lim log 11 Ask 11 exists and is not greater than o < 0 
n-+mnk=O 

for all BED c 6, where n (D) = n* (D) = 1 ; moreover, for BED, x E E, 

Thus, it follows from (4.3) and (4.8) that, for BED and X E  E, 

(4.9) Z (8) = lim We1.. . &, (x) exists, 
n-+ m 

and this limit is independent of x because of (4-3) and (4.7). 
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Now suppose that Yo has distribution fl such that 

/ ? ( ~ x x ) = x ( B ) ,  g c d .  
Given E > 0, let A be a compact subset of E and r > 0 such that 

and T C * { ~ E ~ :  11z(8)11 6 r )  > 1-E.  
Given x ~ E K ,  there exists N > 0 such that, for n 2 N ,  

It follows from the definition of n* that 

For n sfliciently large we obtain 

fl@-"({YEE: llyll < 31-1 x 8') > 1 - 3 ~ .  

This means that the sequence fin, given by 

is tight, and converges weakly to some probability measure fi0 E P (62) such that 
Po = P o . @ - '  and 

(4.10) f l o ( ~ x B ) = n : ( B ) ,  B c d .  
Now notice that i f f ,  is any continuous function on E with compact 

support and f (x , g) = fo (x) for (x , g) E i2, then 

= 1 f (z (e')) x* (dB) .  

It follows that, for A c E, 

(4.1 1) f lo (~xd)  = n * ( B ~ d :  z ( B ) E A ) .  
Now, i f  we give Yo the initial distribution #lo, then the process Y, = @"(Yo) 

becomes stationary. Let f be any continuous function with compact support 
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on E. Using the ergodic theorem on (9, F, 8,) and @, we infer that the 
limit 

exists for Po-almost aII (x, g). It is easy to see that 0,. ( x ,  g) is independent of x, 
and then since x is ergodic, it is a constant, which is easily seen to be 

Since we have assumed that x and n* are both stationary and ergodic with 
respect to the left shift on 6, it is known (see [4], Corollary 6.24, p. 116) that 
either x = a* or x is orthogonal to x*, that is, there is a shift invariant subset 
B c such that n: (9 = 1 and R* ( )  = 0. In the case when 8 is finite and the 
transition matrix P is symmetric or has identical rows, it is clear that n = 7t*. 

Let us now define the sets A, and AI($) as follows: 
1. A, c E and A, is the support of the probability measure BO(. x d), 

where 8, is the unique @-invariant measure on (62, S), satisfying (4.10). We will 
call A, the right attractor. 

2. A~ ( g )  c E and it is given by ( y  EE ( given any open subset N(y)  con- 
taining y, for any x in E there are infinitely many n such that 
W," Won-, . . . Woo (x) E N (y)) . We will call A, (g) the left attractor. 

Note that when 7 ~ .  = x*, it follows from (4.11) that (since E is second 
countable) there is a set Do c 6 with x(DO) = 1 such that, for each 8~ Do, 
A, c A, (g). Also, when a = x*, if y 4 A,, then there is an open set N Cy) con- 
taining y such that 

so that, for any X E E ,  

and, consequently, y#~,($) a-a.e. Thus, we have proved the following: 

THEOREM 4.1. If R and n* are both stationary and ergodic on d with respect 
to the left shift ft then under assumption (4.6) there is a unique @-invariant 
probability measure 8, on 9, whose 6-marginal is x. Furthermore, when x = n*, 
there is a set Do c d with n(DO) = 1 such that, for any  ED,, A,(@ = A,, 
A, being the support of the E-marginal of 8,. 

Note that when 8 is finite, it is easy to find conditions for x = n*, as we 
mentioned earlier. When 8 is not finite, it is not so clear when (4.4) holds or 
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when x = n*. Instead of (4.41, let us now assume that 

(4.13) a(D+) = 1, where D* is given by 

D* = {BE 6: sup 11 w ~ .  . . wB, (x)]( < ca for x E E ) .  
a 3 0  

mote that (4.13) holds if for each W,, B E  8, the corresponding A, has its norm 
less than a number p < 1.1 

We can now state and prove the following theorem: 
I 

I THEOREM 4.2. Assume (4.6) and (4.13). Suppose that euery basic open set 
(that is, every open rectangle) in & has n-measure positiue. Suppose also that, for 
B E @ ,  each entry in W, (as a matrix with respect to a fixed basis) is a real 
continuous function of 8. Then there exists D c @ such that n(D) = 1 and, for 
any 6 85 in D, A,(#) = A,(@); moreover, the left attractor A,(@, B E D ,  is the 
support of the E-marginal of fl,, where f lo€  P(Q), Po = Po 9 - I  such that its 

I 8-marginal is  n. 

~ Proof. We separate the proof into several steps. 

1 Step I. Let A,, A,, . . . , A, be open subsets of 6 such that 
I 

~ Then there exists Dl c 6, depending upon the sets A , ,  A,, . . ., A,, such that 
n(D, )  = 1 and, for  BED^, 

for infinitely many rn. 
To see this, define the sets Em c 6 by 

and let 
1 " 

g ($1 = lim sup - C IEm (8). 
n+w PIm,, 

Then we have 

g (T@ = g(@; 

moreover, 

Since n: is ergodic, g is a positive constant for x-almost all a This establishes 
Step I. 
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Step 11. There exists D c 8 with RID) = 1 such that D c D*, D* as in 
(4.13), and for BED, (4.8) holds, and also, given any basic open rectangle in b of 
the form A , x A , x  ... x A , x @ x @ x  ..., 

for infinitely many m. 
The proof of this step follows from that of Step 1 if we observe that d is 

a compact metric space and, as such, it is second countable. 

S tep  111. We show in this step that for % @ in D, D as in Step 11, 
At (iT) = Al (8). 

With no loss of generality, we can assume that, for all  ED, 

Let h E A1 (8). Then there is a subsequence (n,) of positive integers such that, for 
x E E, 

We ,k.., W B O ( ~ ) + h  as ~ + c o .  

Let @ED and 6 > 0. Fix an x E E. Let p be so large that ljx 11 c and 

Let U, be the open set (h' E E: Jl h' - hll < 6). Choose k so large that 

Let this k be now fixed. Because of the continuity assumption in the proposi- 
tion, there is a basic open set 

such that for any F E D  such that f 3 i f ~ k Y i ,  0 < i < nk, 

W&,k...w,(x)~U, and fi UAr,,ll<6/(2p). 
i = O  

By Step I, 0 < i < nk, for infinitely many rn. This means that there 
exists a subsequence (m$ such that, for each s 2 1, 

Notice that, for all s 2 1, if y, = . . . (x), then I l ~ , l l  < P and 
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This means that, for s >, 1, 

WBhm+nk.. . W B 6 ( x ) ~  U2dr 

so that A,(@ n U2, + a. Consequently, we have h c A, ( B f ) .  Thus, for 6 @ E D, 
A, @) c A, (83). 

Step IV. Let / I , E P ( Q  such that fi,Qi-' = 8, and flo(Ex&) = IT(@ for 
d c 6. (Such a Po exists by the same arguments used earlier.) Let 
p(A) = fro ( A  x 61, A  c E. Then, for BED, A, = supp b). 

To prove this let y A, (g). Then there is an open ball N, containing y such 
that N, n A, (6) = 0, and n (C) = 0, where for x ,  E E 

C = (g: Kd . . Woo (xO) E Ny i.0.). 

E x  C = {(x, g): W, ... W , , ( x o ) ~ N ,  i.0.) 

where NL is an open ball containing y, but with its diameter half that of N,. 
This means that 

PW;) > 0 * 8 0 ( E x C ) = z ( C )  > 0, 

which is a contradiction. Thus, y 4 supp(p). Thus, the support of ji is contained 
in A,@) for  ED. The converse is also clear by similar arguments. rn 

We conclude this section with a few computer-generated pictures of left 
and right attractors (for a finite 8). 

EXAMPLE 1. Here we take three maps W,, W2 and W3 from R2 into R2, 
where (x) = A, (x) + B,, x E R2, given by 

Here we take three different transition matrices P, one with identical rows (and 
symmetric) and the other two non-symmetric. In the picture, instead of giving 
P, we take the matrix 2, where Zij = 0 or 1 according as Pij = 0 or > 0. Note 
that if 

3 

Mij = Zij/( Zik), 
k =  1 

then the left attractors corresponding to P and M, but using the same maps 
W,, W2 and W,, are the same, and the same is true for the right attractors. 
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[Let us remark that when 8 is finite, then if we define P* by 

where Z, P = no and > 0 for all i, then A, (P) = A, (P*). Also, if PI E P, 
(that is, (Pl)ij > 0 iff (PJU > 0), then A, (PI) = A, (P,) and A, (PI) = A,(P,).] 

EXAMPLE 2. Here we take 12 maps K, I < i < 12, such that the corre- 
sponding A,'s and B,'s are given by 
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