
PROBABItITY 
AND 

MATHEMATICAL STATEllCS 

ASYMPTOTIC BEHAVIOR 
FOR SURVIVING BROWNIAN MOTION 

ON THE S E W I ~ ~ S K I  GASKET WITH POISSON OBSTACLES 

BY 

KATaRZYNA PIETRUSKA-PAEUBA* (WARSZAWA) 

Abstract. A Brownian motion on the Sierpiriski gasket gets 
absorbed at the boundary of a cloud of balls with centers distributed 
according to an independent Poisson law. The aim of this paper is to 
investigate the asymptotic behavior of the probability that up to time 
t the process in question has traveled far provided it has not been 
absorbed. 

1. INTRODUCTION 

The results of this paper are a continuation of [6].  We consider Poisson 
cloud of points N falling onto the Sierpinski gasket $9. It is defined on some 
probability space (a, d, P)  and has intensity vdp (v > 0 is a fned positive 
parameter, p is the xdf-Hausdorff measure on the gasket). Let fZf),,, denote the 
Brownian motion on the gasket. Assume that the Brownian motion in question 
and the Poisson cloud are independent. 

The Poisson points are understood as centers of balls with fixed radius 
a > 0; the Brownian motion gets absorbed at the boundary of these balls (this 
corresponds to Dirichlet boundary conditions imposed on the boundary of the 
balls). 

In [6] it is proved that 

< lim sup log k Cexp { (z~*g*~))l - ~ ~ 2 / { d ~ + 2 ) ,  
tds/(ds + 2 )  \ t-tm 

* The work was partially supported by KEN grant 2 P30102507 Procesy dyfuzji ofcaktalnej 
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where C and D are some positive constants, ZLo,,l denotes the Brownian trajec- 
tory from time 0 to t, and ds (= (Zog3)/(logS)) is the spectral dimension of the 
gasket. 

Ex texp ( - vp (ZIo,,l)}] corresponds to the Brownian motion evolving in 
the environment with random Poisson obstacles ("traps"). When a = 0, the 
obstacles reduce to single points. As the Brownian motion on B is point- 
-recurrent, this assumption is not a qualitative change. It is elementary to see 
that 

E x  Cexp { - VP (Z[O,t,))l = B @ Px CT > tl , 

where' T denotes the hitting time of the obstacles. A similar relation holds for 
obstacles with positive radius: 

where Zf0,,, is the Wiener sausage modeled on the trajectory from time 0 to t. 
By introducing minor changes into the proof of (I) we get 

G lim sup log Ex Cexp { - Vp (Z?~,t~)ll $ - ~ , , w ( d .  + 2) 
tds/(dda + 2) t-'m 

These inequalities are a gasket counterpart of the famous Wiener sausage 
asymptotics due to Donsker and Varadhan (see [2]). 

The goal of this work is to investigate the asymptotic behavior of the 
probability that up to time t the process has traveled "far" (at distance - ta) 
provided it has not been killed. The results we obtain are similar to those in the 
Euclidean space (see Sznitman [9]). We were able to modify the methods from 
the Euclidean case to the present setting. 

To state the results we need the following 

DEFINITION 1. For t, x, a > 0, Z G ~  let us define 

F,  (t, Z, X) = P@ Pz [T > t ,  supd(Zs, 2,) 2 xtaJ. 
s C t  

In this paper we investigate the asymptotics of Fa. Since different phenome- 
na prevail for a in various regimes, the asymptotics will depend on a (which 
was also true in the Euclidean space). We obtain the following: 

1. If a E (0, ds/(d, + 2)), then 

< lim sup logFe(t, z, x) 2/(& + 2) 
d + 2 C - C' 

t+  m 
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2. If or = ds/(ds + 21, then 

logFa(t, z, x) - Z V ' / ( ~ ~ + ~ )  - D l  x < lim inf tds,lds + 2, 
t- m 

3. If 01~(d,/(d,+2), I), then 

(4) -Dl x < lim i d  
logF,(t, 2, x) < Iim sup log Fa (t? 29x1 < - C2 vxadfpl. 

- t - )m ta t-cm ta 

4. If ct = 1, then 

- I l l  X-D' ~ ~ w / ( ~ w - ~ J  < liminf IogF,@, 23x1 

t -  m ta 

< lim sup log Fb, 0 ,  z , x )  < - CZ yxadf - I - C3 .pw/(dw- 11 

ta t + m  

where C,, C,, C,, Dl and D2 are arbitrary positive constants, d ,  = log, 5 is the 
dimension of the walk, d, = (2 log 3)/(log 5) is the spectral dimension of the 
gasket. 

The critical values of the parameter a are gasket counterparts of the crit- 
ical values in Rd &th spectral dimension replacing the Hausdorff dimension 
df (as in all problems of this sort; in Rd there is no distinction between them, 
ds = d,  = 4. 

The lower and the upper bounds are dealt with separately. ~ e t  us now 
describe how the bounds are obtained. 

To get the lower estimate we impose some additional properties on the 
process and then estimate the resulting probability. To get the proper asymp- 
totics one makes the process rush through a long "cylindrical tube" of length 
proportional to ta, and then stay in a "big ball" with radius of order t l / (d f+dw)  
(d, is the dimension of the walk, log 5/log2). The difficulty one had to deal with 
is the absence- of translation invariance of state-space and consequently the 
lack of any Girsanov-type formula which was used in the Euclidean space. 
Instead we discretize the problem and then use some hitting time estimates. 
This is done in Section 3. 

To get the upper bound, we need a process on a compact state-space, but 
with no restrictions regarding its size. Therefore the approach from [6] - project- 
ing the process onto the unit triangle - would not work. Instead we require the 
process stay up to time tin a "big ball" - of size comparable to C- t if ldf+dw). The 
exponential contribution of this assumption is asymptotically insignificant 
(see Theorem 2). Moreover, we were able to adapt the notion of "clearings" 
(where the process moves freely) and "forest" (where it risks to be killed 



with a big probability) from [9] and without any change in the exponential 
asymptotics one can assume that it kept clear from the forest for a reasonably 
long time and did not enter it deeper than tli(dftdwl too often. After we assume 
this, the proof of the upper bound goes like in [6] and [9]. 

Before we get down to any estimates, we must single out the behavior 
in v - this is done by an appropriate scaling beforehand (see Section 4.1). Also, 
not all the numbers are permitted in the scaling (which is, basically, binary) 
- we again have to substitute some close binary number for the number we 
would like to have for the scaling factor. 

- k t  me finally thank Professor Alain-Sol Sznitman for conjecturing the 
gasket counterpart of the Euclidean space-results and for encouraging discus- 
sions, 

2. A SURVEY OF THE PROPERTm 
OF THE BROWNIAN MOTION ON THE SIERFm!iXI GASKET 

Let us summarize the notation used and list the properties of the Brow- 
nian motion on the SierpSski gasket we shall make use of (see [I]). 

Let 
1 JJ ao = Io,Ol, a1 = (0, 11, a2 = (z, , ), = {a,, al,  az), 

where ao, a l ,  a2 are the vertices of an equilateral triangle of unit size. Let 4, be 
this equilateral triangle. We define inductively 

and we put 

where VM denotes the symmetric image of VM in the symmetry with respect to 
the y-axis. Now we let 

$M=2Mg0, M E Z ,  and B,= U 8,. 
MdO 

93, is called the (infinite) Skrpiizski pre-gasket. Its closure (in the Euclidean 
topology) is the 2-dimensional Sierpihski gasket and it wil l  be denoted by 3. 

More notation: a gM-triangle is the closed set of points in $9 that lie inside 
an equilateral triangle, which is the translation of 2M90 and whose vertices are 
the three neighboring points in 3,. The collection of all closed $,-triangles 
will be denoted by 9,. 

The gasket can be endowed with the natural shortest path metric (which 
better suits our purposes): for x, ~ E B ,  define d(x, y) to be the infimum over 
the Euclidean length of all paths joining x and y on the gasket. 
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It extends uniquely (the limit procedure) to the whole gasket Q. This 
metric in equivalent to the Euclidean metric on the plane, in fact 

Ix-YI B d ( x ,  y) < 2Ix-yI. 

By 3, we shall denote the closed ball in the gasket metric, of radius 2M, 
centered at zero, and by FM we denote the intersection 

B,n{(x, ~ ) E R ~ :  x 2 0). 

The Sierpiriski gasket supports the following characteristic numbers: 

- log3 d ,= - -  - 1.58496.. . (fractal dimension of g), 
log 2 

2log3 d s = - -  - 1.36521.. . (spectral dimension of B), 
log 5 

d 2df =-=-- log - 2.32193.. . (dimension of the walk). " d ,  log2 

These numbers fulfill: 

Let p, be the measure which puts mass (3) 3-, at each point in KM. 
Now we state the following (Lemma 1.1 of [I]): 

L e m  1 .  1. There exists a unique measure p on (R2,  g(Il2)), supported on 
9 such that p(AM) = 3-, for all A E&, M €2; 

2. {p,) converges to p in the vague topology; 
3. p is a multiple of the Hausdog  xdf-measure on 93; 
4. p (go) = 1. 

Barlow and Perkins [I] give a construction of the process Z,, called the 
Brownian motion on the Sierpiriski gasket (the construction of the Brownian 
motion on the Sierpinski gasket was carried on earlier by Goldstein [4] and 
Kusuoka [5 ] ,  but in [I] very precise estimates on the transition density were 
given, therefore we choose the approach from that paper). It is a strongly 
Markov Feller process which has a continuous symmetric density p( t ,  x ,  y), 
satisfying (Theorem 1.5 of El]) 

(6) ~ t - ~ ~ ~ ~ e x p { - c ( d ( x , y ) t - ~ j ~ w ) ~ w / ( ~ ~ - ~ )  ) < - - ~ ( t ,  x ,  Y )  

< ~ t - ~ s l ~  exp ( - c (d (x , y) t - Lidw)dwi(dw- l) 1 
(here and in the sequel, lower case c denotes a generic positive constant). 

The process admits a discrete scaling: for r~k%(%), 

9 - PAMS 17.2 
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In particular, for the process starting from the origin, 

AIl this translates into terms of density as (Theorem 7.8 of [I]) 

The last properties we need are the following sample path and hitting time 
estimates from [I]: 

PP For.. all x E $9 and all t, 6 E (0, a) 
. . 

(8) P, [sup d (Z,, 2,) 61 G c exp ( - c (at - lldw)dw/(dw- 

s s t  
1. 

EI If TQ is the hitting time of the Q-grid (the grid with mesh r = 29, then for 
1 > 0 and ~ € 9 ,  

3. ASYMPTOTIC LQWER BOUND 

This section is devoted to establishing the lower-bound asymptotics for F,. 

THEOREM 1. Let X E R ,  z E 9. Then: 
1. If u ~ ( 0 ,  ds/(dS+2)), then 

2. If ol = d$(d, +2), then 

4. If a = 1,  then 

lim inf log F a  (t, Z Y  x)  
t" 

> - D l x .  
t+ m 

where Dl and D ,  are arbitrary positive constants. 

Proof. The idea that lies behind the proof is as follows: we shall force the 
process to move to the end of a long cylindrical "tube" in a relatively small 
time, and then to rest in a "big ball" attached to this "tube," its sizes being 
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properly balanced. We should also assume that no Poisson point fell onto the 
a-neighborhood of this set. 

To begin with, let us define the set where the process will be living up to 
time t, Let 

be a fixed number. Defme 1 to be the union of two half-lines, meeting at the 
origin (see Fig. 1): . 

. . 

6 
XI, x2): xa = 7 x 1  for x, 2 0, 

-5 
x2): x2 = - T X ~  for x1 6 0. 

Let z E 9 be fixed. Then d = dist (z, I) is well defined and finite. Let 5 E 1 be 
the point on I which realizes this distance (if there are more than one such 
points, pick the one that lies closer to the origin). As d is finite and does not 
vary in t, and we will be interested in the long-time asymptotics, we can 
without loss of generality assume that z itself lies on I, and hence z = L 

- .. 
Fig. 1. The set I ,  

& will then be a "subinterval" of E (the distance is now measured along 2, see 
Fig. 1) such that 

def I ,  1, =(z-tC, z+tP+xtU). 

Suppose that r = 2@ is a positive number (Q - an integer) and define 

In the sequel U, wilI be called the cylinder. 



To the cylinder U, we attach the ball (in gasket sense), centered at the 
def 

point 1 3 p  ( t )  = z +xta, with radius 2", where n is the unique integer satis- 
fying 

(15) 2" (t/v)li(d~+dw~ < 2" + 1. 

By T/, c 99 we denote the resulting set (the union of the cylinder and the 
ball), and by c B its a-neighborhood. 

For sufficiently large t the Hausdorff measure of F/," will not exceed 

- P ( u ; ) + P ( B ( P ( ~ ) ,  zn+a)) 

< 6 (2tp + xt") (r  + a)df - + 4 - 3  (r + a)df + (2 + 6) ( t / ~ ) ~ f l ( ~ f + ~ w )  

(E corresponds to having radius 1 +a/2" rather than 1 - a disturbance 
which can be made arbitrarily small by letting t co, which we will do 
anyway3. 

The last quantity will be denoted by v,. Recalling that 

we see that when t --+ ao, u, asymptotically behaves as 

We are now ready to get the estimates (10H13). Let now s = At" < t ,  with 
a A whose value will be chosen later on. 

The event 

(T > t)n(supd(Zs, 2,) > xt"} 
s s t  

will hold if we assume that the process does not exit T/, up to time t and moves 
in the following way: first it goes to the right end of the cylinder in time smaller 
than s < t and then does not leave the ball up to time t, provided no Poisson 
points fell onto T/;". 

Let 8 be the right end of the cylinder, 

def 
W = ( x E U ~ :  d t z ,  X )  = t f l+xta+r).  
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From the strong Markov property of the process and the definition of v, we 
obtain 

where T' denotes the hitting time of the set A. 
If y E g, then d ( y ,  aB ( p  (t), 2")) 3 2" -r - to, behaving asymptotically 

as 2" (this follows.from the way in which n and P were defined - from (14) 
- ! and (15)). consequently, using now the scaling of the principal eigenvalue of the 

LapIacian (IZ(2U) = j A ( U ) )  we get (c is some constant which can be made 
arbitrarily close to 1 by using t large enough) 

where S1 = sup,(,, l (B) < oo, with (1) standing for the coI1ection of all open 
balls with radius 1. 

To estimate 

we will analyze the journey of the process along the @-grid (recall that 
Q = log r). As the distance of z from the Q-grid is bounded by r, we can and will 
assume that z itself belongs to 9,. 

To be more precise, we will be looking only at the moves along 2. Let q be 
the "first" point from the @-grid that lies on I ,  no closer than W along 1 (possibly 
q E 9). Formally, 

(the distance measured along E all the time, see Fig. 2). 

,&I - the set F, :, - points of the pgrid 

Fig. 2. Steps on the Q-grid 



Let 

be the number of g-triangles between z and q along 1 (Fig. 2). Let TiQ, 7'je, . . . be 
consecutive hitting times of the p-grid, 

Observe that the event being investigated, d, will hold if the k-th hitting 
time T,P occurs at time smder than s and at each step (by step we mean a step 
on the g-grid) we pass to the next-door neighbor on the right (see Fig. 2). 

BY symmetry, 
P,  [dl 3 (ilk p, [TkP < s1. 

To estimate the probability that (T,P G s), we will use the following 
Tauberian theorem which can be found in [I] or [3]: 

If Y is a nonnegative random variable, then 

for all I, t > 0. 
This can be checked also elementarily. 
By (9) we obtain 

E, [exp { - ATf}] 2 exp ( -cay 5' +@} 

and using A = ( 2 c . ~ ~ + ~ ( k / s ) ) ' ~ ( ~ - ~  we get 

Recalling that - - 

1 d ( z ,  q)  tfl+xto 
s = At", y =- and k  =--- w- 

dw r r 

we obtain 

whose logarithm will asymptotically behave as (recall that f l <  a) 
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Dividing now by P8/(da+2) (when U E  (0, d$(dS + 2))) we get an expression 
that vanishes exponentially. When dividing by t" (the case of a E [d$(d, + 2), 11) 
we asymptotically contribute with 

For a < 1 we can choose A = (x/r)cdw-I (which, in order to get Af 6 t, 
may require looking at big times at once, correct in this setting) contributing 
with - (x/r) (log4 - 1). For a = 1 we are constrained to A < 1; therefore the 
best we can- get is .. - 

Collecting (16H19) we obtain 
1. for a E (0, d$(dS + 2)), 

2. for a = d$(d, + 21, 

3. for a ~ ( d , / ( d , + 2 ) ,  1) 

logF,(t, 2, x )  Iim inf 
t" 

2 -D,x; 
t+m 

4. for a = 1, 

lim inf logF,(t, 2, x) 2 -Dl x - D ~  ~ l + l l ( ~ w - ~ ) .  

t+a, t 

The constants are equal to 

1 C 
Dl = 6(r+~)~~- '+-( ' fog4-  I), D, = ,"w,(dw-l,. r 

If we pick r = 1, we get exactly the statement of the theorem. The proof is 
complete. rn 

4 THE UPPER BOUND 

To obtain the upper bound, we tend to somehow reduce our situation to 
the one that involves a process on a compact space. The usual (folding) projec- 
tion (see [6]) will not yield much - one will not be able to control how 



far the process would go before time t, since the projected process will be 
confined to a small set, with size fixed once and forever. Instead, we follow the 
approach from [9] and request that the process does not leave a "big ball;" this 
procedure will add up an error that wiII be asymptotically negligible. 

Observe that once we know that the process has survived up to time t, we 
can conclude that it has spent most of its time in the area where nor too many 
obstacles were present. In this section, we shall define the areas where the 
process moves easily (the "clearings") and those where it risks to be killed (the 
"forest"). We shall see that one can reduce the whole situation to the one where 
the process is forced to stay in a big ball 9 and does not enter too deeply nor 
too frequently into the forest. As singling out the dependence on v is desired for 
our purposes, we rescale the problem first. 

4.1. Resealing. The new space units we would like to have are ( t / ~ ) l I ( ~ f + ~ ~ ~ ,  
so the resulting time units should be equal to tdsl(4+Z)v2/(d=+2) (recall that 
d,/(d, + d,,,) = d$(d, + 2) and d J(df + d,) = 2/(d, + 2)). We face again (see [6]) 
the nuisance of the lack of continuous scaling: we are permitted to use only the 
numbers that are an integer power of 2. Instead, we rescale with a close admis- 
sible number and then estimate the error. 

What we do is the following: if 
2" < (t/v)l/(*f +dw)  < 2"+ i.e. ( t / ~ ) ' I [ ~ f ' ~ ~ l  = 2" 0 ( t )  with 0 (t) E [l , Z), 

then we use 2" instead of (t/v)ll(*f f d w ) .  

This way we will be studying the process starting from the point 
z ( t )  = z/2", evolving up to time t/5", among the obstacles with radius a/2", 
whose centers constitute the Poisson point process with intensity v - 3". If we 
Put 

= ( t)  = t/5n = t d ~ l ( d s + 2 )  ,,ZNds+ 21 C8 ( t) ldw, 

then t and s simultaneously go to + oo. In terms of s, the new intensity v, 
(which now depends on time) equals s/[0 (t)jdf +dw (and s 2 v,  2 s/15), and the 
new radius of the obstacles is lis-lidf (0 (t))' + dwldf  with ti = av1Idf. The process is 
studied up to time s. 

Once we are done with the scaling, we are ready to pursue the reduc- 
tion step. 

4.2. The reduction theorem. For an integer N 2 1 and s 2 1 we define 

This ball can be partitioned into a number of smaller triangles from Yo 
meeting only at the vertices (Yo is the collection of the "gasket-triangles" with 
vertices from the O-grid go - each smaller triangle has sides with length 1); 
number of those triangles equals 2 + 3N - 3[1092s1. Without loss of generality we can 
and will assume that the Poisson point process does not charge the O-grid 9, 
(vertices of the triangles). 
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We shall now adapt for our purposes the notions of "clearing-forest" from 
[9]. We will use the technique of enlargng the obstacles and then discretizing 
the possible obstacle set (see [8]). As the process has good recurrence prop- 
erties (see Theorem 5 of [6])  we will not have to distinguish between the 
"good" (well surrounded) and "bad" obstacles to be neglected. The microscopic 
recurrence makes all the obstacles count for our purposes. 

Let us pick one particular O-triangle A c 9. Fix a binary number b = 28. 
Let us write f for the number 2i10g2~s"d~11, the largest binary number smaller than 
s1Idf. We then chop the sides of A into Z/b intervals (of length b/s" each), which 
yields smalIer triangles. 

Introduce now a binary number r and denote by ClCA) the event that 
"there is a clearing of size r in the triangle A," which means that the union of 
those small triangles where no Poisson points fall has relatively big measure: 

where U, is the (random) subset of A obtained by tahng the union of those 
small triangles where no Poisson point falls, and 

Let B (w) denote the union of those O-triangles A from 9 where clearing is 
present. B(w) will be called the clearing, and B\B(o) = PIw) the forest. 

Define now the successive excursion times of the process Zt(w) (our Brow- 
nian traveler) at distance 1 into the forest as follows: 

D,,, = inf{t 2 A,: Zt~(B1)E) = A A + ? B l ) c O e ~ , , ,  

A,+,-= inf{t 2 Dm,,: Z,EB} = A,+A109An = D,+I+TB*@D,, 
--. 

where B1 = {X E 9: d (x, 3) < 1) is defined to be empty if B is empty, and TB 
denotes the hitting time of the set B. 

Finally, let N ,  stand for the number of excursions completed by time s, and 
L, for the fraction of time spent in the excursions up to time s: 

We have now prepared the notions and notation for the following reduc- 
tion theorem: 



THEOREM 2. For any given q > 0 and z  E S, 

----- 1 
(20) lim lim lim lirn lirn -log P,@PzIt, [{T > s) 

N-tm r - r O n o + m b + m t + m  ~ ( t )  

where s(t) and z(t) were deJined in Section 4.1, the limit in r and b is taken over 
binary numbers, and P, is the law of the rescaled cloud. 

COMMENT 1. The theorem states that if the process is known to have 
survived up to time s, then, asymptotically up to exponential error it has stayed 
in the big ball, and the process kept clear from the forest for a reasonably long 
time. Excursions at distance 1 for the rescaled process correspond to the excur- 
sions at distance comparable with tll(df +dw) of the initial process. The constant 
q can be understood as a small number - in the next section it will be made 
going to zero. 

The proof is similar to the proof of the reduction theorem from [B], so we 
omit it. r 

43. Asymptotic upper bound. In this section we will derive an upper bound 
estimate for the probability that the Brownian motion gets at distance at least 
xta provided it has survived up to time t. These bounds will provide a counter- 
part to the lower bounds from Section 1. 

Recall that for t ,  x ,  a > 0 and ZE% we defined Fa by 

F,(t, z, x) = P @ P , [ T  > t ,  supd(Z,, Zo) 2 x tq .  
sst 

We will estimate 

Let us start with the case a = d$(d,+2), which is more complicated than 
other cases and requires subtler methods. We are now in a position to prove 

THEOREM 3. For any ~ € 3 ,  and x € R f ,  

where the constant C1 neither depends on z  nor on x and is given by 

C ,  = 5 inf [A0 (u) +&,u (u)] 
UEUO 

(Uo is the collection of all open subsets of So, and A0 the principal eigenuaiue 
of the generator of the reflected Brownian motion on Fo, killed upon coming 
to au). 
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Proof. Since the proof goes similarly to the one in [8], we give only the 
two parts that we had to change in the present setting. 

First, resealing: we begin by rescaling the whole situation in convenient 
time and space units, as at the beginning of Section 4.1: If 

2" < (tlV)lJ(df +dw) < 2"+ 1, 

i.e., 

(21) (~/v) ' /(~I+~w) = 2" %(t) with B (t) E [I, 2), 

then 2% be taken as the new space unit. 
This. leads uB to stu+ing the process up to time t/5" ef s (t), the Poisson 

obstacles get the new intensity 

the new radius of obstacles is 

see Section 4.1. 
The expression we want to bound from above will then be of the form 

v21(d." 2) [6 (t)]dw 
~ O ~ P ~ @ P , ( , ~  [T > s, supd (Z, ,  2,) > xsl - l tdf  v11df-2J(dsi 2, 

s 0) u 8 s  
1, 

where Pt is the distribution of the new (resealed) obstacles, and T is the en- 
trance time into those obstacles. 

Next, the lemma (a gasket counterpart of Lemma 3.2 from [9]):  

LEMMA 2. Let @: [0, TJ + B be a continuous function such that d (@ (0), 0) 
< 1. Let 9 = B(0, 2N2['092s1). k t  no be a fixed positive integer. Suppose that 
B c 9 is a set constructedfiom no more than no 0-triangles. Let I > 0, Q > 0 be 
given. Then 

p (We (@)n(992zp) 2 edf -' (4 sup d (@ (t), @ (0))- 6no (41+ l ) ) - ~ ~ f  (12n0 -2), 
O G t 8 T  

where We (@) = (x E 3: d (x, (8  (t): t E [0, a)) < @) is the sausage of radius 
modeled on the trajectory of 9 from time t = 0 to t = T. 

Proof. Let us put @(0) = xo. Without loss of generality we can assume 
that 

d(@(T), xo) = SUP d(@(t), xo) 
OStST  

(reduce the interval if necessary). 
The idea is to replace the given function by another one for which the 

parts of paths within BZ1 (i.e. the paths that enter into the set whose measure is 
to be estimated) are noncomplicated. 
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k Let = Ui=, A i ,  where k < no, A , ,  A,, ... , A, being pairwise interior 
disjoint 0-triangles. 

Define now 

s , I i n f { ~  < v i T :  @ ( u ) E I Q ~ ~  

(with the convention that id0 = a). 
Then let tl be given by 

def 
t, = sup {sl 6 u d T: @(u) and di(s,) belong to the same A:', i = 1 ,  .. ., k }  

for some A ' E ~  (note that there can be more than one triangle A ,  such that 
@(S1)EAZ1). Repeat the procedure and define 

and so on. Observe that necessarily @J (sl) and @ (3,) belong to 21-neighborhoods 
of two disjoint 0-triangles from go. As a consists of at most no triangles, after 
a finite number of steps - less than no for sure - we exhaust all the pos- 
sibilities. Therefore we obtain a finite sequence 

such that for u 4 U i G  [si, ti], @ (u) 4 BZ1, and 8 (st) and @ (ti) belong to the same 
A2' for some A E A. 

The new function, Y (t), will be defined as follows: !P(t) agrees with 8 (t) 
outside U i G A  [si, ti], and on each interval [si, ti] the function Y (.) follows the 
trajectory between 8(si) and 8 (ti) which realizes the distance between them (if 
there is more than one such trajectory, choose any of them). 

As for a path Y of length d (elementary check) 

we have 

(41+ 1) being the diameter of A2' and no being the maximal number of triangles 
involved; (22) in turn will be greater than (for the same reasons) 
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(where the inequality used the fact that the length of the path is greater than the 
distance between the initial and the end points). As the definition of 'P preserved 
the value at the endpoint (is. Y(T) = @(T)), the Iemma holds. H 

The conclusion of the proof relies on some estimates for the process with 
compact state-space. Recall that the ordinary projection (as in Rd) is useless 
here - it destroys the Markov property. Therefore we use the "folding projec- 
tion" of the Sierpinski gasket (see [dl), which transforms the Brownian motion 
on the infinite gasket onto the normally reflected Brownian motion on the unit 
gasket triangle (s.ee [7]) and then proceed as in [9]. s 

The reduction theorem and the aboGe are needed only for the most delicate 
case u = d,/(d, +2). For different u we do not need such subtle methods - one 
gets a counterpart of the lower bounds as in Theorem 1 using fairly crude 
estimates. We get the following 

THEOREM 4. Let F,( t ,  z ,  x) be as before. Then: 
1 .  If ~1 E (0, d,/{d,+ 2)), then 

2. If a E (d,/{d,+ 2), I), then 

- logFa ( t ,  z ,  x) lim 
t'= 

< - C 2 v x a d f - l .  
t + m  

3. If a = 1, then 

-- It, z, x)  lim < - cz v x l a d ~  - 1 - c3 Xd~l(d~.- 1). 

t'W t a 

The constants C,, C 2 ,  Cg are positive and neither depend on x nor on z. 

P r o  of. For a E (0, ds/(d,+2)), we use the natural bound from [ 6 ] :  

(C1 is the same constant as in Theorem 3). 
To get the estimate for a > d$(ds+2), we first observe that 

and 
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with some positive constant C, (see the proof of Lemma 2); therefore (use the 
estimate (8)) 

F a ( t ,  z, x) 6 exp (-vC2xtaadf-I) P,[supd(Z,, Z,)  > x t q  
s $ t  

6 exp {-vc2 xta adf-') c exp {- c (xt" t-lldw)dwlcdw-l' 1 9  

which, after taking the logarithm and dividing by ta, contributes asymptotically 
with - C2 vxadf-' for a < 1 and with - C2 vxadt- - C3 x ~ ~ / ( ~ ~ - ~ )  for u = 1. 
The theorem is established. 
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