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DILATION THEOREMS
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Abstract. Let Q(4) be a positive operator-valued measure
defined on a measurable space (X, ZX). This means that
Q{A): L, (M, #, p)—~L, (M, #, u) with Q(4) f= 0 for f > 0. Then
Q() has a “dilation” of the form §(4) = 4E“ 1, E® 1, in (2, #, P).
Namely, for some “identification” map i: Q-— M, the equality
(@(4) f)oi = §(4) (foi) holds. The indicator operators 1., are taken
for a set e(4) with some o¢-lattice homomorphism e: X —» &. Other
dilation formulas of that type are collected.

1. INTRODUCTION

Let (M, .#, p) be a probability space, and for Ze.# let 1, denote the
indicator operator (of multiplication by an indicator function) of the form

(12 f) (m) = 15(m) f (m).

A map Z-1,, Ze 4, is the simplest example of a positive operator-valued
measure in L,(M, .#, p). A less trivial example is given by the formula

) QZ)=B,...B, 1, pA, ... A,, Zecd,

where A4,, .., 4,,, By, ..., B,, are arbitrary positive operators in L, and e is
a o-lattice endomorphism of .#. For example, 4;, B; may be indicator opera-
tors, conditional expectations or operators T generated by a measurable trans-
formation T: M — M. Q (') may be quite complicated, especially for large m. It
is worth noting that nonnegative operator-valued measures (semispectral mea-
sures) play an important role in the noncommutative statistics (see, for exam-
ple, [2]). That is why it seems to be interesting that pretty simple formulas for
any positive operator measure can be obtained by using the following “dila-
tion” idea. Namely, Q can be represented as follows:

Q@) f)oi=0(2) (foi),
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where i is an “identification map,” i: Q@ — M is defined on a larger probability
space (Q, #, P) with Q > M, and (() is of the form (1) with m not greater
than 2 and with A4;, B; of the following forms:

(i) the indicator operator 1o, Q,€%;

(ii) the conditional expectation E“ with respect to a o-field &/ c &F;

(iii) the operator T generated by a measurable transformation T: Q — Q,
ie. Tis given by the formula

(TH (w) =f(Tw), wel.

For example, we have the formulas like

(2) Q.’(') = 4E¥ 1e(-) E? l.Qo
or
) 0¢)=2E“1,,T

Let us mention that constructing a dilation of a positive operator measure
via a larger probability space we follow a general idea of Rota [3] (see also [5]).

In the whole paper, a map e (") (which appeared in (2) and (3)) will always
transform o-field .# into & as a g-homomorphism of lattices.

Our main goal is to prove several results in the spirit of (2) or (3). To
formulate them precisely, let us begin with some notation and definitions.

Let (M, .#, p) be a finite regular measure space, and let X be a topological
space with a o-field X' of its subsets containing all Borel sets.

Denote by W the space of all bounded linear operators acting in
Ll (M * M ’ ﬂ-)

DEFINITION. A map Q: X — W is said to be a regular positive operator
measure (shortly, PO-measure) if the following conditions are satisfied:

1° Q(A)f=0 for 0< feL,;

20 Q(U.2,4)f=Y,0(4) ffor feL, and pairwise disjoint 4,s, the

series being convergent in L, (M, .4, pu);

3° Q@ is regular in the sense that for each ¢ > 0 and each 4 X there exist
a compact set Z and an open set V< X such that

[Q-2)1ydu<s, ZcdcV;
M

4° Q(X) 1, < 1y
We say that a PO-méasure satisfies (*) when

(* R&Q(X)fdus §fdu, 0<feL,.

M
In the whole paper we keep the notation

MXZ={AXB; AcM, BEX}, MxZ={AXZ; Ac M},
MM, ={AUB; Ac M, Be #,}
for any o-fields #, #,, #,, Z, and Z < {1,2,...}.
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2. DILATION THEOREMS FOR PO-MEASURES

In this section we prove several theorems keeping the notation adapted in
the Introduction. In particular, the spaces (M, .#, u) and (X, X) are fixed, and
0O denotes a PO-measure Q: X —» W. We start with the following result:

THEOREM 1. There exist a measurable space (2, F), two measurable maps
i, j from Q onto M, a c-field of = &, and a c-lattice homomorphism e: X —» %
such that for every PO-measure Q: X — W there exists a probability measure
P on (Q, &) for which the following formula holds:

@ . (@A f)oj=Ef Lyy(foi), AeX.
Proof. We put
Q=MxMxXx{1}HuM x{2}),
F =o((M x M xZx{1}u(A x{2})),
imn,x,)=m, im2)=m, jmnx,1)=njm2)=m,
o = {(MxAxX x{1}}u(4Ax{2}); Ae#},
e(A)=MxMxA4x{1}, AdeZ,
P(AxBxAx{1})= {(Q(4)1)15dp,

M

P(Ax{2}) = £(1M—Q(X) 1,) dp.

P defined as above can be extended in a unique way to a probability measure
P on # (see the Appendix).
Now, let us observe that, for ge L, (M, .#, u), the formula

) f (goj)dP = | gdu
(M xBxXx{1)hu(Bx{2}) B
holds.
Indeed, for g = 1., we have
(lcoj)dP = [} Lo xcxxxpocxzy 4P
(M x Bx X x{1})uB x {2}) (M xBXxXx{1})u(B*{2})

= P((M x(BnC) x X x {1})u((BNC) x {2}))
A.E(Q (X)1,) anCd#'l'Aj; Ianc(ly—Q(X)1,)du

= [ lgncdu = {1cdu,
B

and (5) follows.
Since the o/-measurability of the left-hand side in (4) is obvious, to prove
formula (4) it is enough to show the equality of integrals
f(@(M1,)0jdP =[1,4(1,0i)dP
S

S
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for
S=MxBxXx{1}))uBx{2})eo.

By (5), we have
Q) 1,0jdP = [Q(A)1,dp.

(M xBxXx{1hu(Bx{2})

On the other hand,

1.4(1,400)dP = | L x Mx x x {13y x (23 4P
(MXxBXXXx{1)u(BX{2). - MxBxAx{1}
=P(AxBx4x{1})= [(Q(4)1,)1zdp,

M
so we get formula (4). m

THEOREM 2. There exist a measurable space (2, &), a one-to-one measu-
rable map T: Q— Q, a measurable map i: Q -+ M (onto), a o-field o < F,
a o-lattice homomorphism e: ¥ — F such that for every PO-measure Q satisfying
condition (x) (see the Definition), there exists a probability measure P on (2, F)
preserved by T, for which the following formula holds:

©6) QU f)oi=2Ef 1,4 T(foi), AeZ.
Proof. Let us put
Q=MxMxXx{1})uMxM x X x {2} )u(M x {3}),

F =g ((MxMxZx{1})(MxMxZx{2})0(M x{3})),
Tm,n,x,)=n,m,x,2), Tm,n,x,2)=(nm,x,1), T(m,3)=(m,?3),
e(4) = MxMxAx{2},
i(=mfor all w=(m,..)eR, ie i(w) is the first coordinate of w,
o = {(AxMxX x{1Du(Ax M x X x{2})u(4d x {3}); Ae M},
P(AxBxAx{1})=[(Q(4)1,)du, P(AxBxAx{2})=|(Q(4)1y)dp,

B A

P(Ax{3) = | (2—Q(X) IM—j—i>du for ¢(4) = [ Q(X)1,dp

A

(observe here that the Radon-Nikodym derivative dg/dy <1 u-a.e. since
¢ (4) < pu(4) by (x)).

P defined as above can be extended in a unique way to a probability
measure P on (Q, #). Since the o/-measurability of the left-hand side in (6) is
obvious, it is enough to show the following equality:

) f(@UNoidP =2[1,4 T (foi)dP for Ee.
E E
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To this end, let us observe that, for feL,(M,.#,u) and
E=BxMxXx{1})uBxM x X x {2})u(B x {3}), we have

8) j'(foi)dP=2jfd,u.
E B

Indeed, for f= 1., Ce.#, we have

j‘(lCOI)dP= j- ICXMXMX{l}dP

E BXMxXx{1}

+ j ICKMXMX{Z}dP+ j. lcx{3}dP
Y BXMXXx{2} Bx{3)

- P(BACx M x X x {1})+ P(BAC x M x X x {2))+ P(BAC x {3})

d
Q(X)1gacdu+ [ (Q(X)13) 1p~cdu+ § (2—Q(X)1M“E€>du
M BnC H
lenCdﬂ=2I1cdﬂ,
M B

and (8) follows.
Now it is easy to prove (7). Indeed, fo_r Ae# we have

.
2

Ile(A) T(,0i)dP = j Lia % 4 x X x (13)0(M x 4 x X x 2}yo4 x (3 4P
E BXMxA4x(2}

= _‘- 1(M><A><Xx(2})dP=P(BXAXAX{Z})=I(Q(A)1A)dlu:

BxMxAx{2) B

and, by (8)',
j(Q(A)IA)oidP = 2£Q(A) 1,du,

E
which completes the proof. a
Remark. Theorem 2 may be rewritten by changing (6) into

©) Q) f) 0i = 2EF Tl (foi).

Indeed, .in this case, in the proof it is enough to put
e(d) = MxMxAx{1} (instead of M x M x4 x{2}).

THEOREM 3. There exist a measurable space (2, #), a measurable map
i: Q > M (onto), o-fields of , B = F, a o-lattice homomorphism e: X - %, a set
Q,€F such that, for every PO-measure Q: X — W satisfying (%),

(o) there exists a probability measure P on (Q, %) for which the following
formula holds:

) (@A) f)oi=4EF 1., EF 1o, (foi), AdeZ;
(B) there exists a probability measure P on (Q, F) for which
9) Q) Noi=4Ef 15, E2 1,4 (foi), AdeZ.
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Proof. We pﬁt
Q=MxMxXx{1})uM x M x X x{2})u(M x {3}),
F =0 ((MxMxZx{1})AM X MxZx{2})U(M x{3})),
iw=m for all w=(m,...)eQ,
A ={(AxMx X x{1})u(AxMxX x{2})u(4 x {3}); Ae#},
B=0c[{(MxBxAx{1})u(M xBxAx{2}); Be #, A eZ}u{Mx{3))}],

- “e(A)=MxM><Ax{2}, Qo=MxMxXx{1}.

To prove (), let us define

Q(A)=AIlQ(X) 1, dp.

We define a probability measure P on (£, #) by putting
P(AxBxAx{1})= [ (Q(4)1,)15dp,

M

(10) P(AxBxAx{2}) = [ 1,.8(Q(4) 1) 15du,
M

d
P(Ax{3) =] (2—Q(X) 1M—a—§) d,

A

and then extending it to a c-additive measure on & (see the Appendix).
Now, let us remark that, for

E=BxMxXx{1})uBxMxXx{2})uBx{3}) with Be#,
the equality
(1 [ (foi)dP =2 { fdu

holds for feL,(M, #, p).
Indeed, for f = 1., Ce #, we have

j(lcoi)dP= j. Licx M x X x {1pu(C x M x X x 2puc x 3p 4P
E (BxMXxXx{1DUuBxMxXx{2hu(Bx{3h
=P((BNC)x M x X x {1})

+P((BNC)x M x X x {2})+P((BNC)x {3})

= [ QX) 1prcdu+ § 13 cQX) 1 du+ | (2—Q(X) IM—g-Q)dﬂ
M M BAC I

=2 | 1cdp,
B
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so we get (11). Clearly, (11) implies
f @) NoidP=2[(Q(4) f)du, feL (M, 4, p).
E B

Since the o7/-measurability of the left-hand side in (9) is obvious, to get formula
(9) it is enough to show that for Ae.# and E as above we have

(12) [ Loy B 1g,(1,0)dP =} | Q(A)1,dp
E B

(then, by a standard argument we get easily formula (12) for feL, (M , J{ > 1)
instead of 1,). The left-hand side of (12) can be written in the form

J  EFh()dP (o),

MxBxAx{2)
where
(13) h(m,...)=1g,(1,00) (m, ...)
{IA(m) for (m,..)eMxMxX x {1},
o elsewhere,

where @ = (m, ...) is an arbitrary point in Q.
Let us remark that if geL, (@, P)) is #-measurable, then

(14) [ gdP= | gdP.

MxBxAx{1} MXxBxAx{2}

Indeed, for g = 1., 4, we have
j gdP= _“ lMxCxA'x(l}dP

MxBxAx{1} MxBxAx{1}
=P(Mx(BNC)x(4xA)x{1}) = [ (Q(4x 4)13) 1p.cdp
M
and

gdP= I . lMxCxA’x{Z}dP
MxBxAx{2} MxBxAx{2}

= P(Mx(BNC)x (4x 4)x{2}) = [ (Q(4 x A)13y) 15, cdp.
M
Putting g = EZh in (14), we obtain
EZhdP=4[ | ERhdP+ |  EfhdP].

M xBxAx{2} MxBxAx{1} M X BxA4x{2}
Setting
Z=MxBxAx{1})u(M xBxA4x{2})
we have
[} EZhdP =% {EZhdP =% (hdP
MXBXAx{2} z z
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since Ze4%. Evidently,
j' hdP = j hdP,

z MxBxAx{1}

so it remains to show that

[  hdP=[Q)1,du
B

MxBxAx{1}

for h given by (13). This is easy to check because
hdP = _‘. 1AxBxXx{1} dpP

MXBxd4x{1} MxBxAx{1}

= P(AxBxAx{1}) = Q(4)1dp.

To prove (B) it is enough to define P by changing P into P, {1} into {2},
{2} into {1} in formulas (10). The rest of calculations is in fact a repetition of
those for P. m

3. FINAL REMARKS

3.1. It is interesting to compare our construction of dilations via con-
ditional expectation with the classical Naimark dilation theorem [1]. If
H=L,(M, #, p), then for any measure space (N, ./, v), H can be treated as
the subspace of L,(M x N, #®.A", u®v) corresponding to the orthogonal
projection E¥ being conditional expectation with respect to o = #Q(N, ).
If (N, 4, v) is rich enough, then for any semispectral measure Q (*) acting in
H there exists a spectral measure E (') acting in # = L,(M XN, 4QN", u®@v)
such that Q()=E“E()|z. More precisely, (Q()f)oi=E“E(foi),
feL,(M, 4, p), i(m, n) =m for meM, neN.

There is a temptation to specify the spectral measure E (*) or to use another
operator-valued measure which would be natural in the case of a function #.

Our all efforts have been devoted to find an operator measure E () as close
as possible to the indicator measure 1, with e (") being a homomorphism of set
lattices (cf. formulas (2) and (3)).

3.2. It is sometimes useful to give a theorem about a measure in terms of
integrals. In particular, our representations of positive operator measure Q ()
correspond to some representation of the positive transformation

o> 0@ ={ o(x)Q(dx).

More precisely, let (X, 2, 1) and (M, .#, p) be regular finite measure spaces.
By a positive transformation

Q:L,(X,Z, )~ B(L,(M, A, )
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we mean a linear mapping satisfying
0(@)f20 for 920, f20, geL (X, Z,2), feL (M, 4, p),

0 (p,) > O(p) strongly in B(L,(M, 4, p)) for ¢,/ o.

To present the consequences of our previous results we give the following
corollary to Theorem 3.

COROLLARY. There exist (Q, &), measurable maps i: Q- M, j: Q- X,

Qy, Q€ F, ofields of < F and B = F such that for every 0 there exists a
probability measure P on (Q, ¥) such that

(@) f) 0i = 4EF (9 0j) 1o, EF 19, (f 0i).

APPENDIX

We shall keep the notation used in the previous sections. In particular,
(M, A, p), (X, Z), @ will denote the same objects as in the Definition. Proving
the dilation theorem (in any version that has been formulated in the paper) we
defined a set function P on some decomposable family of sets and then we got
a probability measure on & by the unique extension of P. Qur aim is to
indicate the method of this extension. For the sake of simplicity we shall
confine ourselves to the following case:

Let Q=MxX, F = MQL =0(¥), where § ={Ax4: AecH, AeX}.
For S=AxAe%, we set P(S) = IMQ(A)l dp. Then P can be extended, in
a unique way, to a measure on F.

To prove this, it is enough to show that P is additive and o-subadditive
on ¥. We split the proof into several steps.

Step 1. P is additive on 9.

We need some notation. Let S = 4 x A€¥. By a partition of § we mean
a system of mutually disjoint rectangles S;= 4;x 4; (j =1, ..., k) such that
S= U _,S;-Let A=4,U ... UA, and A= 4,0 ... ud,, whers A, and A,,
are mutually disjoint. A farmly of rectangles S,,,; =A,x4; (« —1 a;
0=1,...,d) is said to be a simple partition of 8.

Now, let IT={S,,...,S,} be an arbitrary system of rectangles

S, =A,xA4,e%9, x=0,..,k.
Let us put
A ={APn ... nAF: n,=+1, x=0,..., k},

D ={4Pn ... 04 n,=+1, x=0,..., k},
where B" = B or B° depending on n =1 or —1.

12 — PAMS 172
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Put I1* = {AxA: Aesd, 4eD}.

Following Sikorski [4], let us remark that

(1) I = {Sell*: ScS,} is a simple partition of S,;

(2) Sp < S;u ... US, implies II§ < Mfu ... VIIE;

(3) rectangles S, and S, are disjoint if and only if the systems II and
IT% are disjoint;

@) if IT = {S,, ..., S,} is a partition of some rectangle S then II*is a
simple partition of S and II* = M}v ... VII}.

~ Now we are in a position to show that, for an arbitrary partition IT of
a rectangle Se%, we have

PE)= ) P(5),

S'el

which means the additivity of P on %. Indeed, let S = A x 4, and assume that
I is a simple partition of S. Let 4 = 4,u ... U4, and 4 = 4,0 ... U4,. Then

PE)=[ 0 1,dn= ) Z [ Q(4)1,,dn

«=16=1M
il T PUxdy= 3, PO,

Now, let IT = {S,, ..., S;} be an arbitrary partition of S. By (1)-4) and the
equality just proved, we have
k

PEO)= Y PE)=Y ¥ PE)= Z P(S)= Y P(S).

S’elr* x=0 S'ell S’ell
Step 2. P is subadditive on 4.
Indeed, let So = J'_,S,, 5,69 x=0,..,k Put IT={S,, ..., 5}.
.~ Then, by (1)+4), we have
k

PS)= Y PE)<S Y Y P()= Z P(S,).

S'el$ x=1 S’ell’*

Step 3. For every rectangle S = 4 x 4 x % and ¢ > 0, there exist compact
sets Ke.# and ZeX and open sets Ue#, VeZX such that

KcAcU, ZcdcV
and
(15) PUxV)—e< P(S) < P(KxZ)+e.

Indeed, by the regularity of y and Q (assumption 3°), one can find compact sets
Kc A and Z < 4 such that

p(A\K) < g2 and [Q(A\Z)ldp<e¢/2.
M
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Then we have
PES)= [0 1 du= [ QZ)1xdp+ § Q(2Z)1axdu+ | Q(A\Z)1,dp
M M M M

S P(KXZ)+ [ Lygdp+ [ Q(A\Z)1,,du < P(K x Z)+e. .
M M

The proof of the left-hand side in (15) is similar.
Step 4. P is o-subadditive on %.
Indeed, let

Sc S, S=A4x4, S,=A4,x4,

x=1
For ¢ > 0, let K, Z be compact sets as in Step 3. There exist open sets U, o A,
and V, o 4, such that

P(U,xV,)< P(S,)+¢2".
Since KxZ < |)>_, (U,xV,), we have also

k
KxZc |J(U,xV,) for some k.
x=1

By Step 2, we have
. k k
P(KxZ)< Y P(U,xV)< Y P(S)+e.

x=1 x=1

Thus, P(S) < Y"_, P(S,)+2¢ and, consequently, P(S)< Y P(S,). =
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