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Abstract. Let Q ( A )  be a positive operator-valued measure 
defined on a measurable space (X, q. This means that 
Q ( A )  : L, (M, A, p) + L, (M, A, p) with Q (A) fa 0 for f 3 0. Then 
Q (-1 has a "dilation" of the form o(d) = 4Ed le(dl  Ea loo in (8, f, P). 
Namely, for some "identitication" map i :  i2 -t M, the equality 
(Q (d)fl o i = @ [ A )  Cfo i )  holds. The indicator operators I,,, are taken 
for a set e(A)  with some CT-lattice homomorphism e :  C + g. Other 
dilation formulas of that type are collected. 

Let (M, A, p) be a probability space, and for Z E A  let IZ denote the 
indicator operator (of multiplication by an indicator function) of the form 

A map Z  -, I,, Z E ~ ,  is the simplest example of a positive operator-ualued 
measure in L,(M, &, p). A less trivial example is given by the formula 

(1) Q(Z)=B, ... B,l,(z,A, ... A,, Z E A ,  

where A,, . . ,  A,, B, ,  .. ., B, are arbitrary positive operators in L, and e is 
a a-lattice endomorphism of A. For example, A,, Bi may be indicator opera- 
tors, conditional expectations or operators Fgenerated by a measurable trans- 
formation T: M + M. Q (-) may be quite complicated, especially for large m. It 
is worth noting that nonnegative operator-valued measures (semispectral mea- 
sures) play an important role in the noncommutative statistics (see, for exam- 
ple, [2]). That is why it seems to be interesting that pretty simple formulas for 
any positive operator measure can be obtained by using the following "dila- 
tion" idea. Namely, Q can be represented as follows: 
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where i is an "identification map," i: 0 4 M is defined on a larger probability 
space (9,F, P) with Q = My and g(-) is of the form ( 1 )  with m not greater 
than 2 and with Aj,  Bf of the following forms: 

(i) the indicator operator lnD, SZ, €9; 
(ii) the conditional expectation Ed with respect to a cr-field ad  c F; 
(iii) the operator 7 generated by a measurable transformation T: D + 0, 

i.e. is given by the formula 

For example, we have the formulas like 

Let us mention that constructing a dilation of a positive operator measure 
via a larger probability space we follow a general idea of Rota [3] (see also [5 ] ) .  

In the whole paper, a map a t )  (which appeared in (2) and (3)) will always 
transform a-field X into P as a a-homomorphism of lattices. 

Our main goal is to prove several results in the spirit of (2) or (3). To 
formulate them precisely, let us begin with some notation and definitions. 

Let (M, 4, p) be a finite regular measure space, and let X be a topological 
space with a a-field Z: of its subsets containing all Bore1 sets. 

Denote by W the space of all bounded linear operators acting in 
Ll ( M ,  A, P I .  

DEFINITION. A map Q: ,Z + W is said to be a regular positive operator 
measure (shortly, PO-measure) if the following conditions are satisfied: 

l o  Q(A)f 20 for 0 < f € L , ;  
2" Q (u:=, A,) f = x,: , Q ( A 3  f  for f  E L, and pairwise disjoint A,'s, the 

series being convergent in L, (My A, p); 
3" Q is regular in the sense that for each E > 0 and each A E E there exist 

a compact set Z and an open set V c  X such that 

j Q ( V - Z ) l M d p c ~ ,  Z C  A c V ;  
M 

4' Q ( X )  1, < 1,. 
We say that a PO-measure satisfies (u) when 

(*I 1 Q ( x ) f d p  G j f d ~ ,  0 < f ELI-  
M M 

In the whole paper we keep the notation 

d,uA2 = ( A u B ;  A E A , ,  BE&,)  

for any a-fields A, A,, A2, C, and Z c ( 1 ,  2 ,  . ..). 
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2. DILATION THEOREMS FOR PO-MEASURES 

In this section we prove several theorems keeping the notation adapted in 
the Introduction. In particular, the spaces (M,  .A, p) and (X, 1) are fixed, and 
Q denotes a PO-measure Q: E + W. We start with the following result: 

THEOREM 1. There exist a measurable space (St, 6), two measurabie maps 
i, j from D onto M, a a-$eld d c F, and a a-lattice homomorphism e: E + S 
such that for every PO-measure Q :  ,Z 4 W there exists a probability measure 
P on (a, 9) far which the following formula holds: 

Proof .  We put 
D = (M x M x X x {l))u(M x {2)),  

P ( A x I 2 ) )  = J(lM-Q(X)lM)dp. 
A 

P defined as above can be extended in a unique way to a probability measure 
P on 9 (see the Appendix). 

Now, Iet us observe that, for g€L,(M, A, p), the formula 

(5)  S (9 0.i) dP = f g d~ 
( M  x B x X x {1J )u (B  x {2)) B 

holds. 
Indeed, for g = l,, we have 

= 1 l,ncdp = J lCdP, 
M B 

and (5) follows. 
Since the &-measurability of the left-hand side in (4) is obvious, to prove 

formula (4) it is enough to show the equality of integrals 



for 
S = ( M x B x X x { l ) ) u ( B x ( 2 ) ) ~ d  

By (51, we have 

S &(A)l,ojdf'= SC?(A)~,~P. 
( M  x B x X x {l))u(BX (2)) 3 

On the other hand, 

so we get formula (4). 

THEOREM 2. There exist a measurable space (52, F), a one-to-one measu- 
rable map T: i2 + 52, a measurable map i: 62 4 M (onto), a a-field d c F, 
a 0-lattice homomorphism e: Z -, 9 such that for every PO-measure Q satisfying 
codition (*) (see the Definition), there exists a probability measure P on (a, 2,) 
preserved by T for which the foIIowing formula holds: 

Proof.  Let us put 

i (o) = rn for all o = (rn, . . .) E a, i.e. i(w) is the first coordinate of w ,  

P(Ax{3})=1 dp for e ( A ) = J ~ ( ~ ) l , d p  
A M 

(observe here that the Radon-Nikodym derivative d ~ / d p  d 1 p-a.e. since 
e (A) d P (A) by (*I). 

P defined as above can be extended in a unique way to a probability 
measure P on (0, a. Since the &-measurability of the left-hand side in (6) is 
obvious, it is enough to show the following equality: 

(7) j (Q(A)J)oidp = 2S l , ( A l ~ ~ o i ) d ~  for E E ~ .  
E E 
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To this end, let us observe that, for f€L,(IM, A!, p) and 
E = ( B  x M x X x (l))u(B x M x X x {2) )v(B x (311, we have 

Indeed, for f = I,, C E At, we have 

= 2 j l s n c d ~  = 2S l c d ~ ,  
M B 

and (8) follows. 
Now it is easy to prove (7) Indeed, for A E  A we have 

which completes the proof. a 

Remark. Theorem 2 may be rewritten by changing (6) into 

Indeed, . in this case, in the proof it is enough to put 
e ( A ) = M x M x A x { l }  (instead of M x M x A x { 2 ) ) .  

THEOREM 3. There exist a measurable space (52, P), a measurable map 
i: Q + M (onto), a-fields d ,  c 9, a a-lattice homomorphism e :  Z + 9, a set 
Q, E 8 such that, for every PO-measure Q : Z + W satisfying (*), 

(a) there exists a probability measure P on (52, F) for which the following 
formula holds: 

(9) (Q ( A )  J) o i = 4E$ le(d) E? lRo Ifo i), A E E; 

(p) there exists a probability measure P on (a, 9) for which 
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Proof. We put 

F = t7 ((A x A x z x (l))u(& x & x z x (2})u(A x {3))), 

i ( w ) = m  for all w =(m, ...) €62,  

To prove {a), let us define 

We define a probability measure P on (9, F) by putting 

and then extending it to a a-additive measure on 9 (see the Appendix). 
Now, let us remark that, for 

E = ( B x M x X x { l } ) u ( B x M x X x { 2 ) ) u ( B x ( 3 } )  with B E A ,  

the equality 

1 ( f o i ) d ~  = 2 j fdp 
E B 

holds for f E L1 (M, A, p). 
Indeed, for f = Icy C E A ,  we have 

= j Q ( X ) l ~ , c d p + j  l ~ n c Q ( X ) l M d ~ +  j 
M M BnC 
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so we get (11). Clearly, (11) implies 

j ( Q ( A ) f l o i d P = 2 1 ( Q C A ) f ) d ~ ~  ~ E - ~ ( M , J , P ) .  
E B 

Since the &-measurability of the left-hand side in (9) is obvious, to get formula 
(9) it is enough to show that for A E &  and E as above we have 

(then, by a standard argument we get easily formula (12) for f EL, ( M ,  A!, p)  
instead of 12). The left-hand side of (12) can be written in the form 

where 

1,(m) for(m, ...) ~ M x M x X x { l ) ,  

= {O elsewhere, 

where w = (m, ...) is an arbitrary point in B. 
Let us remark that if  EL, ((SZ, P)) is B-measurable, then 

Indeed, for g = 1, ,., we have 

and 

= P(M x(BnC) x ( A  x A')x {2)) = (Q(A x A') l , ) fB , , dp .  
M 

Putting g = Ef h in (14), we obtain 

j E F h d P = $ [  j EFhdP+ J E f h d B ] .  
M x B x A X { Z )  M x B X A X ( 1 )  M X B X A X { Z )  

Setting 

we have 
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since Z E g. Evidently, 

so it remains to show that 

for h given by (13). This is easy to check because 

To prove (p) it is enough to define P by changing P into P, (1) into (21, 
(2)  into {I} in formulas (10). The rest of calculations is in fact a repetition of 
those for P. 

3.1. It is interesting to compare our construction of dilations via con- 
ditional expectation with the classical Naimark dilation theorem [I]. If 
H = L, (M, M, p), then for any measure space ( N ,  N, v), H can be treated as 
the subspace of L,(M xN,  A @ M ,  p@v) corresponding to the orthogonal 
projection Ed being conditional expectation with respect to d = A@(N, a). 
If (N, N, v) is rich enough, then for any semispectral measure Q(.) acting in 
H there exists a spectral measure E (.) acting in 3f = L, (M x N ,  A @ N ,  p @ v )  
such that Q (.) = Ed E (.)I,. More precisely, (Q (.) f l  o i = Ed E Ifo i), 
f EL,(M, A ,  p), i(m, n) = m for  EM,  EN. 

There is a temptation to specify the spectral measure E (.) or to use another 
operator-valued measure which would be natural in the case of a function %. 

Our all efforts have been devoted to find an operator measure E (.) as close 
as possible to the indicator measure I,(., with e (+) being a homomorphism of set 
lattices (cf. formulas (2) and (3)). 

3.2. It is sometimes useful to give a theorem about a measure in terms of 
integrals. In particular, our representations of positive operator measure Q (.) 
correspond to some representation of the positive transformation 

More precisely, let (X, E, 1) and (M, A ,  p) be regular finite measure spaces. 
By a positive transformation 

0: L,  tX, E, 4 -+ B(L,  ( M ,  A ,  p)) 
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we mean a linear mapping satisfying 

To present the consequences of our previous results we give the following 
corollary to Theorem 3. 

C O R O L L ~ Y .  There exist (0, P ) ,  measuruble maps i: B -+ M ,  j :  St + X, 
a,, Q1 €9, a$ields d c pnd LZI c P such that for every a there exists a 
probability tieasurk ' P  on (a, F) such that 

We shall keep the notation used in the previous sections. In particular, 
(My A, p), (X, Z), Q will denote the same objects as in the Definition. Proving 
the dilation theorem (in any version that has been formulated in the paper) we 
defined a set function P on some decomposable family of sets and then we got 
a probability measure on fl by the unique extension of P. Our aim is to 
indicate the method of this extension. For the sake of simplicity we shall 
confine ourselves to the following case: 

Let Q = M xX, 9 = A @ C  = a(g), where B = (Ax A: A E A ,  A E C ) .  
For S = A x A E ~ ,  we set P(S)  = j ,Q(A) 1,dp. Then P can be extended, in 
a unique way, to a measure on 9. 

To prove this, it is enough to show that P is additive and a-subadditive 
on 9. We split the proof into several steps. 

Step 1. P is additive on $. 
We need some notation. Let S  = A x A E 9. By a partition of S we mean 

a system of mutually disjoint rectangles Sj  = Aj x Aj Cj = 1 ,  . . ., k) such that 
k 

S = u j = l S j .  Let A = A , u  ... uA,and A = A l u  ... uA,,whereA,and A, 
are mutually disjoint. A family of rectangles SE,* = A, x A d  (a = 1, . . ., a;  
6 = 1, .. ., d )  is said to be a simple partition of S. 

Now, let n = {So ,  . . ., S,) be an arbitrary system of rectangles 

Let us put 
d = (Apn ... nAp: q,  = ) I ,  x = 0, ..., k), 

9 = (AFn ... nAp: q,  = f I ,  n = O ,  ..., k), 

where Bq = B or Bc depending on = I or - 1. 

12 - PAMS 17.2 
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Then we have 

< P ( K x Z ) + j  l A i K d p + l  Q(A\2)IMdp< P(KXZ)+E.  . 
M M 

The proof of the left-hand side in (15) is similar. 

Step 4. P is a-subadditiae on g. 
Indeed, let 

m 

S c  u S,, S = A x A ,  S , = A , x A x ,  
x = l  

For E > 0, let K, Z be compact sets as in Step 3. There exist open sets U, 3 A, 
and T/, 3 A, such that 

P(U,  x  K.',) c p ( S , ) - t ~ / 2 ~ .  

Since K x Z c u:, (U, x V,), we have also 
k 

K x Z c  U (U ,xT / , )  for some k. 
2=1 

By Step 2, we have 
k k 

P ( K x Z )  < P ( U , x  Vx) < c P ( S X ) + c .  
x=l x=l 

T ~ U S ,  P (s) < 6 = , P (s,) + 2.2 and, consequently, P (s) g x:=, P ( s ) .  H 
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