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OPERATORS ON MARTINGALES, Φ-SUMMING OPERATORS, AND THE
CONTRACTION PRINCIPLE

Stefan Geiss

Abstract: For the absolutely Φ-summing operators T : X → Y between Banach
spaces X and Y we consider martingale inequalities of the type
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where (dk)N
k=0

⊂ LX
1 (Ω,F ,P) is a martingale difference sequence and (ai)

∞
i=1 is

a sequence of normalized functionals on X, and we show that these inequalities are
useful in different directions. For example, for a Banach space X, x1, . . . , xn ∈ X,

independent standard Gaussian variables g1, . . . , gn, and 1 ≤ r < ∞ we deduce that
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where f = (dk)N
k=0

is a scalar-valued martingale difference sequence such that
(|dk|)N

k=1
is predictable, 0 = τ0 ≤ τ1 ≤ . . . ≤ τn = N is a sequence of stopping

times, and
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