INDEPENDENT MARGINALS OF OPERATOR-SEMISTABLE AND OPERATOR-STABLE PROBABILITY MEASURES*

BY

ANDRZEJ ŁUCZAK (LODŻ)

Abstract

We investigate independent marginals of full opera-tor-semistable and operator-stable probability measures on finite--dimensional vector spaces. In particular, it is shown that for purely Poissonian operator-semistable and operator-stable distributions their independent marginals have decomposability properties of the same kind. Operator-semistability and operator-stability of independent marginals of Gaussian measures are studied in detail, and a description of independent marginals of an arbitrary operator-semistable or operator-stable distribution is obtained.

Introduction. Let μ be a probability measure on a finite-dimensional real vector space V with σ-algebra $\mathscr{B}(V)$ of its Borel subsets. A projection T on V will be called an independent marginal of μ if

$$
\mu=T \mu *(I-T) \mu \quad(I-\text { the identity operator })
$$

i.e. if T and $I-T$ are independent random variables from probability space $(V, \mathscr{B}(V), \mu)$ into V (the same name will be sometimes applied also to the measure $T \mu$). The aim of the paper is to investigate properties of measure $T \mu$ for T being an independent marginal of μ, and μ being a full operator-semistable or operator-stable probability distribution on V. Problems of this type have been considered in [2], [6], and [9], and in this work we generalize and complete some of the earlier results. In particular, we show that for purely Poissonian operator-semistable and operator-stable distributions their independent marginals follow, in principle, the same pattern of decomposability. Operator-semistability and operator-stability of independent marginals of Gaussian measures are studied in detail, and, finally, a description of independent marginals of an arbitrary operator-semistable or operator-stable distribution is obtained.

[^0]1. Preliminaries and notation. Throughout the paper, V will stand for an r-dimensional real vector space with an inner product (\cdot, \cdot) yielding a norm $\|\cdot\|$, and the algebra $\mathscr{B}(V)$ of its Borel subsets.

An infinitely divisible measure μ on V has the unique representation [m, D, M], where $m \in V, D$ is a non-negative linear operator on V, and M is the Lévy spectral measure of μ, i.e. a Borel measure defined on $V_{0}=V-\{0\}$ such that

$$
\int_{V_{0}}\|u\|^{2} /\left(1+\|u\|^{2}\right) M(d u)<\infty
$$

The characteristic function $\hat{\mu}$ of μ takes then the form

$$
\hat{\mu}(v)=\exp \left\{i(m, v)-\frac{1}{2}(D v, v)+\int_{V_{0}}\left[e^{i(v, u)}-1-\frac{i(v, u)}{1+\|u\|^{2}}\right] M(d u)\right\}
$$

(see e.g. [7]). The measure [$m, D, 0]$ is called the Gaussian part of μ, the measure $[0,0, M]$ is called its Poissonian part; μ is called purely Gaussian if $M=0$, and purely Poissonian if $D=0$.

A probability measure on V is called full if it is not concentrated on any proper hyperplane of V.

The main objects of our considerations will be full operator-semistable and operator-stable probability measures on V and their independent marginals as defined in the Introduction. For a more detailed description of these measures, the reader is referred to [3] and [5] (operator-semistable) and [1], [4] and [8] (operator-stable). Here we only recall that if μ is a full opera-tor-semistable measure, then it is infinitely divisible and

$$
\begin{equation*}
\mu^{a}=A \mu * \delta(h) \tag{1}
\end{equation*}
$$

for some $0<a<1, h \in V$, and a non-singular linear operator A in V. Measures satisfying (1) will be called (a, A)-quasi-decomposable, and for full measures quasi-decomposability is equivalent to operator-semistability. Furthermore, there are decompositions

$$
\begin{equation*}
\mu=\mu_{1} * \mu_{2}, \quad V=V_{1} \oplus V_{2} \tag{2}
\end{equation*}
$$

such that V_{1} and V_{2} are A-invariant subspaces of V, μ_{1} is a purely Poissonian (a, A)-quasi-decomposable measure concentrated (and full) on V_{1}, and μ_{2} is a Gaussian (a, A)-quasi-decomposable measure concentrated (and full) on V_{2}.

We let $\boldsymbol{G}_{a}(\mu)$ denote the set of the operators A 's which can occur in equation (1).

Full operator-stable measures are characterized by the following condition:

There exists a non-singular operator B in V, called an exponent of μ, such that for each $t>0$

$$
t^{B} \in \boldsymbol{G}_{t}(\mu), \quad \text { where } t^{B}=e^{(\log t) B} .
$$

Moreover, decompositions (2) also hold with V_{1} and V_{2} being B-invariant, μ_{1} - purely Poissonian concentrated on V_{1}, μ_{2} - Gaussian concentrated (and full) on V_{2}, and for $i=1,2$

$$
\mu_{i}^{t}=t^{B} \mu_{i} * \delta\left(h_{i}^{(i)}\right), \quad t>0
$$

with some $h_{t}^{(i)} \in V_{i}$.
2. Marginals of operator-semistable measures. We begin with the following generalization of Theorem 6 of [6].

Theorem 1. Let $\mu=[m, 0, M]$ be a full (a, A)-quasi-decomposable probability measure on V, and let T be an independent marginal of μ. Then there exists a positive integer n such that $T A^{n}=A^{n} T$, and, consequently, $T \mu$ is $\left(a^{n}, A^{n}\right)$-quasi--decomposable.

Proof. Put

$$
U=T(V), \quad W=(I-T)(V)
$$

and let S_{M} be the support of the Lévy measure M. By virtue of [6] and [9] we have

$$
\begin{equation*}
S_{M} \subset U \cup W \tag{3}
\end{equation*}
$$

From the fullness of μ, and thus M, it follows that $\operatorname{Lin} S_{M}=V$ and, consequently,

$$
\operatorname{Lin}\left(S_{M} \cap U\right)=U, \quad \operatorname{Lin}\left(S_{M} \cap W\right)=W
$$

Equality (1) implies that $a M=A M$, which in turn yields the A-invariance of S_{M}.

Let $\left\{v_{1}, \ldots, v_{k}\right\} \subset S_{M} \cap U$ be a basis in U, and let $\left\{v_{k+1}, \ldots, v_{r}\right\} \subset S_{M} \cap W$ be a basis in W (we have assumed that $\operatorname{dim} U=k$ and $\operatorname{dim} W=r-k$). According to (3) and the A-invariance of S_{M}, for each $m=0,1, \ldots$ and each $i=1, \ldots, r, A^{m} v_{i}$ is either in $S_{M} \cap U$ or in $S_{M} \cap W$. Let us represent the sequence $\left\{A^{m} v_{1}, \ldots, A^{m} v_{k}, A^{m} v_{k+1}, \ldots, A^{m} v_{r}\right\}$ as a sequence of 0 's and 1 's, where 0 at the i-th place means that $A^{m} v_{i} \in S_{M} \cap U$ and 1 at the i-th place means that $A^{m} v_{i} \in S_{M} \cap W$ (for instance, if $m=0$, we have the sequence $\{0, \ldots, 0,1, \ldots, 1\}$). Condition (3) together with the fullness of M implies that exactly k elements of $\left\{A^{m} v_{1}, \ldots, A^{m} v_{r}\right\}$ are in $S_{M} \cap U$, and $r-k$ elements are in $S_{M} \cap W$; in other words, in our representing sequences there will be exactly k zeros and $r-k$ ones. Since there are only $\binom{r}{k}$ such different sequences, we can find elements $v_{i_{1}}, \ldots, v_{i_{k}}$ and two positive integers m_{1}, m_{2},
such that

$$
m_{1}<m_{2}, \quad m_{2}-m_{1} \leqslant\binom{ r}{k}
$$

$$
A^{m_{1}} v_{i_{1}}, \ldots, A^{m_{1}} v_{i_{k}} \in U \quad \text { (the zeros) }
$$

$$
A^{m_{1}} v_{j} \in W \text { for } j \notin\left\{i_{1}, \ldots, i_{k}\right\} \quad \text { (the ones) }
$$

and

$$
A^{m_{2}} v_{i_{1}}, \ldots, A^{m_{2}} v_{i_{k}} \in U, \quad A^{m_{2}} v_{j} \in W \text { for } j \notin\left\{i_{1}, \ldots, i_{k}\right\}
$$

Putting

$$
u_{1}=A^{m_{1}} v_{i_{1}}, \ldots, u_{k}=A^{m_{1}} v_{i_{k}}, \quad w_{j}=A^{m_{1}} v_{j} \text { for } j \notin\left\{i_{1}, \ldots, i_{k}\right\}
$$

and $n=m_{2}-m_{1}$, we get

$$
u_{1}, \ldots, u_{k} \in U, \quad A^{n} u_{1}, \ldots, A^{n} u_{k} \in U
$$

and

$$
w_{j} \in W, \quad A^{n} w_{j} \in W \text { for } j \notin\left\{i_{1}, \ldots, i_{k}\right\} .
$$

Since $\left\{u_{1}, \ldots, u_{k}\right\}$ form a basis in U and $\left\{w_{j}\right\}$ form a basis in W, we obtain

$$
A^{n}(U)=U, \quad A^{n}(W)=W
$$

showing that $T A^{n}=A^{n} T$.
Iterating equality (1) gives the formula

$$
\mu^{a^{n}}=A^{n} \mu * \delta\left(h_{n}\right),
$$

and, consequently,

$$
(T \mu)^{a^{n}}=T \mu^{a^{n}}=T A^{n} \mu * \delta\left(T h_{n}\right)=A^{n} T \mu=A^{n} T \mu * \delta\left(T h_{n}\right)
$$

so $T \mu$ is (a^{n}, A^{n})-quasi-decomposable. -
Our next aim is to investigate (a, A)-quasi-decomposable Gaussian measures. We begin with a simple characterization of operators A 's for which a full Gaussian distribution can be (a, A)-quasi-decomposable.

Proposition 2. Let $\mu=[m, D, 0]$ be a full Gaussian measure on V, and let $a>0$. Then

$$
G_{a}(\mu)=\sqrt{a} D^{1 / 2} O D^{-1 / 2}
$$

where O is the orthogonal group on V.
Proof. It is easy to verify that a Gaussian measure $\mu=[m, D, 0]$ satisfies equation (1) if and only if

$$
\begin{equation*}
a D=A D A^{*} \tag{4}
\end{equation*}
$$

It is immediately seen that for any orthogonal H and the operator A defined as

$$
A=\sqrt{a} D^{1 / 2} H D^{-1 / 2}
$$

equality (4) holds, which proves the inclusion

$$
\sqrt{a} D^{1 / 2} O D^{-1 / 2} \subset G_{a}(\mu)
$$

Assume now that (4) holds. The fullness of μ implies the invertibility of D, and we have

$$
a I=D^{-1 / 2} A D A^{*} D^{-1 / 2}=\left(D^{1 / 2} A^{*} D^{-1 / 2}\right)^{*} D^{1 / 2} A^{*} D^{-1 / 2}
$$

which means that the absolute value of the operator $D^{1 / 2} A^{*} D^{-1 / 2}$ is $\sqrt{a} I$. The polar decomposition formula gives the equality

$$
D^{1 / 2} A^{*} D^{-1 / 2}=H\left|D^{1 / 2} A^{*} D^{-1 / 2}\right|=\sqrt{a} H
$$

for some orthogonal H, so

$$
A=\left(\sqrt{a} D^{-1 / 2} H D^{-1 / 2}\right)^{*}=\sqrt{a} D^{1 / 2} H^{*} D^{-1 / 2}
$$

showing that $A \in \sqrt{a} D^{1 / 2} O D^{-1 / 2}$.
Remark. The above proposition can be thought of as an "operator-semistable" counterpart of Theorem 4.6.10 from [4], which gives a characterization of the set of exponents of Gaussian measures.

Now we shall analyse conditions of quasi-decomposability of independent marginals of full Gaussian measures.

Proposition 3. Let $\mu=[m, D, 0]$ be a full (a, A)-quasi-decomposable Gaussian measure on V, and let T be an independent marginal of μ. Then $T \mu$ is (a, A)-quasi-decomposable if and only if A and T commute.

Proof. Put $P=I-T$. Then

$$
\mu^{a}=(T \mu * P \mu)^{a}=(T \mu)^{a} *(P \mu)^{a}=T \mu^{a} * P \mu^{a}
$$

and

$$
A \mu=A T \mu * A P \mu
$$

From equality (1) we get

$$
T \mu^{a} * P \mu^{a}=A T \mu * A P \mu * \delta(h)
$$

thus

$$
\begin{equation*}
T \mu^{a}=T A T \mu * T A P \mu * \delta(T h) \tag{5}
\end{equation*}
$$

If A and T commute, we have $T A P=0$, so (5) becomes

$$
T \mu^{a}=A T \mu * \delta(T h)
$$

which means that $T \mu$ is (a, A)-quasi-decomposable.
Now, assume that $T \mu$ is (a, A)-quasi-decomposable. Then

$$
T \mu^{a}=A T \mu * \delta\left(h^{\prime}\right)
$$

so

$$
T \mu^{a}=T A T \mu * \delta\left(T h^{\prime}\right)
$$

which together with (5) leads to the equality

$$
T A T \mu * \delta\left(T h^{\prime}\right)=T A T \mu * T A P \mu * \delta(T h)
$$

Since all the measures involved are Gaussian, the above equality shows that $T A P \mu$ is a degenerate measure and, consequently,

$$
\begin{equation*}
(T A P) D(T A P)^{*}=0 \tag{6}
\end{equation*}
$$

By Proposition 2, A takes the form $A=\sqrt{a} D^{1 / 2} H D^{-1 / 2}$ for some orthogonal H, so (6) leads to the equality

$$
a T D^{1 / 2} H D^{-1 / 2} P D P^{*} D^{-1 / 2} H^{*} D^{1 / 2} T^{*}=0
$$

12 - PAMS 18.1
and multiplying on the left by $D^{-1 / 2}$ and on the right by $D^{1 / 2}$, we get

$$
\begin{equation*}
D^{-1 / 2} T D^{1 / 2} H D^{-1 / 2} P D^{1 / 2} D^{1 / 2} P^{*} D^{-1 / 2} H^{*} D^{1 / 2} T^{*} D^{-1 / 2}=0 \tag{7}
\end{equation*}
$$

Put

$$
D^{-1 / 2} T D^{1 / 2}=R .
$$

Then $R=R^{2}$; moreover,

$$
\begin{equation*}
R^{*}=D^{1 / 2} T^{*} D^{-1 / 2}=D^{-1 / 2} D T^{*} D^{-1 / 2} \tag{8}
\end{equation*}
$$

Since T is an independent marginal, we have, according to [6] and [9],

$$
\begin{equation*}
D=T D T^{*}+P D P^{*} \tag{9}
\end{equation*}
$$

so

$$
T D=T D T^{*}=D T^{*}
$$

Thus (8) leads to the equality

$$
R^{*}=D^{-1 / 2} T D D^{-1 / 2}=D^{-1 / 2} T D^{1 / 2}=R,
$$

showing that R is an orthogonal projection. Furthermore,

$$
R^{\perp}=I-R=D^{-1 / 2}(I-T) D^{1 / 2}=D^{-1 / 2} P D^{1 / 2}
$$

Consequently, equality (7) takes the form $R H R^{\perp} H^{*} R=0$, so

$$
R H R^{\perp}\left(R H R^{\perp}\right)^{*}=0
$$

which means that

$$
R H R^{\perp}=0, \quad \text { i.e. } \quad R H=R H R
$$

Since H is orthogonal and R is an orthogonal projection, the last equality means that H and R commute. Thus we have

$$
D^{-1 / 2} T D^{1 / 2} H=H D^{-1 / 2} T D^{1 / 2}
$$

which, in turn, gives

$$
T D^{1 / 2} H D^{-1 / 2}=D^{1 / 2} H D^{-1 / 2} T
$$

Multiplying both sides by \sqrt{a}, we finally obtain $T A=A T$, which completes the proof.

The last two results lead us to an example of a full (a, A)-quasi-decomposable Gaussian measure having r independent one-dimensional marginals which are not (a^{n}, A^{n})-quasi-decomposable for any n.

Example. Let T_{1}, \ldots, T_{r} be one-dimensional orthogonal projections, and let $0<\lambda_{1}<\ldots<\lambda_{r}$. Put

$$
D=\sum_{i=1}^{r} \lambda_{i} T_{i}
$$

and let $\mu=[0, D, 0]$. We have

$$
D=\sum_{i=1}^{r} T_{i} D T_{i}=\sum_{i=1}^{r} T_{i} D T_{i}^{*}
$$

thus T_{1}, \ldots, T_{r} are independent marginals of μ. Let H be an orthogonal operator, and put

$$
A=\sqrt{a} D^{1 / 2} H D^{-1 / 2} \quad \text { for some } a>0
$$

By Proposition 2, μ is (a, A)-quasi-decomposable. Now, for any integer n,

$$
A^{n}=a^{n / 2} D^{1 / 2} H^{n} D^{-1 / 2}
$$

so A^{n} commutes with T_{i} if and only if H^{n} does. Hence, if we have chosen H in such a way that

$$
H^{n} T_{i} \neq T_{i} H^{n}, \quad i=1, \ldots, r, \text { all } n,
$$

then by Proposition 3 none of the marginals T_{i} 's will be (a^{n}, A^{n})-quasi-decomposable for any n.

Our final goal in this chapter is to give a description of independent marginals of an arbitrary full (a^{n}, A^{n})-quasi-decomposable measure. We have

Theorem 4. Let $\mu=[m, D, M]$ be a full. (a, A)-quasi-decomposable measure on V, and let T be an independent marginal of μ with $T(V)=U$. Then there are decompositions

$$
U=U_{1} \oplus U_{2}, \quad T \mu=v_{1} * v_{2}
$$

such that v_{1} is a purely Poissonian (a^{n}, A^{n})-quasi-decomposable (for some n) measure concentrated on U_{1}, and ν_{2} is a Gaussian measure concentrated on U_{2}.

Proof. Put $P=I-T, W=P(V)$, and let again S_{M} stand for the support of M. For S_{M} relation (3) holds; thus putting

$$
U_{1}=\operatorname{Lin}\left(S_{M} \cap U\right), \quad W_{1}=\operatorname{Lin}\left(S_{M} \cap W\right)
$$

we get

$$
\operatorname{Lin} S_{M}=U_{1} \oplus W_{1}
$$

Now, let us take into account decompositions (2). The Poissonian part μ_{1} lives on V_{1}, so we have $V_{1}=U_{1} \oplus W_{1}$. Restrict for the moment our attention to the subspace V_{1} and the measure μ_{1}. We have $S_{M} \subset U_{1} \cup W_{1}$. Thus denoting by T_{1} the projection onto U_{1} with kernel W_{1}, and by P_{1} the projection onto W_{1} with kernel U_{1}, we infer from [6] and [9] that T_{1} and P_{1} are independent marginals of μ_{1}, so by Theorem 1 we have

$$
T_{1} A^{n}=A^{n} T_{1}, \quad P_{1} A^{n}=A^{n} P_{1} \quad \text { for some } n
$$

and $T_{1} \mu_{1}, P_{1} \mu_{1}$ are $\left(a^{n}, A^{n}\right)$-quasi-decomposable.

Now we shall analyse the Gaussian part. It is concentrated on V_{2}, so we have

$$
D(V)=D\left(V_{2}\right)=V_{2} .
$$

Since T and P are independent marginals of μ, relation (9) holds. Thus

$$
T\left(V_{2}\right)=T D\left(V_{2}\right)=D T^{*}\left(V_{2}\right) \subset V_{2}
$$

and, similarly,

$$
P\left(V_{2}\right) \subset V_{2}
$$

Putting $T\left(V_{2}\right)=U_{2}$ and $P\left(V_{2}\right)=W_{2}$, we obtain the decomposition $V_{2}=U_{2} \oplus W_{2}$. Let R be the orthogonal projection onto V_{2}. We have $D=R D$, so R and D commute. Furthermore,

$$
\left(T \mid V_{2}\right)^{*}=R T^{*}\left|V_{2}, \quad\left(P \mid V_{2}\right)^{*}=R P^{*}\right| V_{2}
$$

which together with the equality
gives

$$
D=T D R T^{*}+P D R P^{*}
$$

$$
\begin{aligned}
D \mid V_{2} & =T D R T^{*}\left|V_{2}+P D R P^{*}\right| V_{2} \\
& =\left(T \mid V_{2}\right)\left(D \mid V_{2}\right)\left(T \mid V_{2}\right)^{*}+\left(P \mid V_{2}\right)\left(D \mid V_{2}\right)\left(P \mid V_{2}\right)^{*}
\end{aligned}
$$

Now restricting our attention to the subspace V_{2} and the measure μ_{2}, and denoting by T_{2} the projection onto U_{2} with kernel W_{2}, and by P_{2} the projection onto W_{2} with kernel U_{2}, we get

$$
D=T_{2} D T_{2}^{*}+P_{2} D P_{2}^{*}
$$

which means that T_{2} and P_{2} are independent marginals of μ_{2}. Finally, we have

$$
V=V_{1} \oplus V_{2}=\left(U_{1} \oplus W_{1}\right) \oplus\left(U_{2} \oplus W_{2}\right)=\left(U_{1} \oplus U_{2}\right) \oplus\left(W_{1} \oplus W_{2}\right)=U \oplus W
$$

and since

$$
U_{1} \oplus U_{2} \subset U, \quad W_{1} \oplus W_{2} \subset W
$$

we obtain

$$
U=U_{1} \oplus U_{2}, \quad W=W_{1} \oplus W_{2}
$$

Extending the projections $T_{1}, T_{2}, P_{1}, P_{2}$ in the natural way to the whole V (i.e. for instance T_{1} will be the projection onto U_{1} with kernel $U_{2} \oplus W_{1} \oplus W_{2}$) we shall get

$$
T=T_{1}+T_{2}, \quad P=P_{1}+P_{2}
$$

and

$$
\mu=\mu_{1} * \mu_{2}=T_{1} \mu_{1} * P_{1} \mu_{1} * T_{2} \mu_{2} * P_{2} \mu_{2}
$$

which gives

$$
T_{i} \mu=T_{i} \mu_{i}, \quad P_{i} \mu=P_{i} \mu_{i}, \quad i=1,2 .
$$

Thus we have

$$
\mu=T \mu * P \mu=T_{1} \mu * P_{1} \mu * T_{2} \mu * P_{2} \mu
$$

and applying T to both sides of the above equality we obtain $T \mu=T_{1} \mu * T_{2} \mu$. Putting $v_{1}=T_{1} \mu$ and $v_{2}=T_{2} \mu$, we obtain the desired decomposition.

Remark. Neither the measure ν_{2} nor the measure $P_{2} \mu$ need not be (a^{m}, A^{m})-quasi-decomposable for any m (however, their convolution being the Gaussian part μ_{2} of μ is (a, A)-quasi-decomposable). Nevertheless, this fact does not affect operator-semistability of the marginal $T \mu$ as is seen in the following corollary.

Corollary. Let T be an independent marginal of a full (a, A)-quasi--decomposable measure μ on V. Then $T \mu$ is operator-semistable.

Proof. In the course of the proof of Theorem 4 it was shown that $T \mu=T_{1} \mu * T_{2} \mu$ with $T_{1} A^{n}=A^{n} T_{1}$ for some n, which means that $A^{n}\left(U_{1}\right)=U_{1}$. Define an operator A_{n} by

$$
A_{n}= \begin{cases}A^{n} & \text { on } U_{1} \\ \sqrt{a^{n}} I & \text { on } U_{2} \\ \text { arbitrary } & \text { on } W\end{cases}
$$

Since $T_{2} \mu$ is Gaussian, it is ($\left.a^{n}, \sqrt{a^{n}} I\right)$-quasi-decomposable, and we have

$$
\begin{aligned}
(T \mu)^{a^{n}} & =\left(T_{1} \mu\right)^{a^{n}} *\left(T_{2} \mu\right)^{a^{n}}=A^{n} T_{1} \mu * \delta\left(h_{1}\right) * \sqrt{a^{n}} T_{2} \mu * \delta\left(h_{2}\right) \\
& =A_{n} T_{1} \mu * A_{n} T_{2} \mu * \delta\left(h_{1}+h_{2}\right)=A_{n}\left(T_{1} \mu * T_{2} \mu\right) * \delta\left(h_{1}+h_{2}\right) \\
& =A_{n} T \mu * \delta\left(h_{1}+h_{2}\right)
\end{aligned}
$$

showing that $T \mu$ is (a^{n}, A_{n}-quasi-decomposable, hence operator-semistable.
3. Marginals of operator-stable measures. In general, operator-stability exhibits much more regular behaviour as will be seen in the following counterparts of results about operator-semistability. In particular, we have

Theorem 5. Let $\mu=[m, 0, M]$ be a full operator-stable probability measure on V with exponent B, and let T be an independent marginal of μ. Then T and B commute, and $T \mu$ is operator-stable with exponent $T B$.

Proof. Putting $U=T(V)$ and $W=(I-T)(V)$, we have again relation (3), and the equality $\mu^{t}=t^{B} \mu * \delta\left(h_{t}\right)$ yields the inclusion $t^{B}\left(S_{M}\right) \subset S_{M}$. Thus, for an arbitrary $u \in S_{M} \cap U, t^{B} u \in S_{M} \cap U$, and the same is true for $w \in W$. From the fullness of M we infer that $t^{B}(U) \subset U$ and $t^{B}(W) \subset W$, and differentiation at 1 gives $B(U) \subset U$ and $B(W) \subset W$. Since B is invertible, we get $B(U)=U$ and $B(W)=W$, which means that T and B commute. Accordingly,

$$
(T \mu)^{t}=T t^{B} \mu * \delta\left(T h_{t}\right)=t^{T B} T \mu * \delta\left(T h_{t}\right),
$$

showing that $T B$ is an exponent of $T \mu$. \quad

Proposition 6. Let $\mu=[m, D, 0]$ be a full operator-stable Gaussian measure on V with exponent B, and let T be an independent marginal of μ. Then $T \mu$ is operator-stable with exponent TBT.

Proof. According to Propositions 4.3.2 and 4.3.3 of [4], B is an exponent of μ if and only if

$$
D=B D+D B^{*}
$$

Multiplying the above equality by T on the left and by T^{*} on the right and taking into account the relations $T D=D T^{*}=T D T^{*}$ which follow from (9), we obtain

$$
T D T^{*}=T B D T^{*}+T D B^{*} T^{*}=(T B T)\left(T D T^{*}\right)+\left(T D T^{*}\right)(T B T)^{*}
$$

Since $T D T^{*}$ is the covariance operator of the measure $T \mu$, applying again the above-mentioned propositions from [4], we see that TBT is an exponent of $T \mu$.

By reasoning in a similar fashion to that in the proof of Theorem 4, we obtain the following result:

Theorem 7. Let μ be a full operator-stable measure on V with exponent B, and let T be an independent marginal of μ with $T(V)=U$. Then there are decompositions

$$
U=U_{1} \oplus U_{2}, \quad T \mu=v_{1} * v_{2}
$$

such that v_{1} is a purely Poissonian operator-stable measure concentrated on U_{1} with exponent $T_{1} B=B T_{1}$, and v_{2} is an operator-stable Gaussian measure concentrated on U_{2} with exponent $T_{2} B T_{2}$, where T_{1} and T_{2} are projections onto U_{1} and U_{2}, respectively, with kernels $\operatorname{ker} T_{1}=U_{2} \oplus W$, $\operatorname{ker} T_{2}=U_{1} \oplus W$, $W=(I-T)(V)$.

REFERENCES

[1] W. N. Hudson and J. D. Mason, Operator-stable laws, J. Multivariate Anal. 11 (1981), pp. 434-447.
[2] - and H. G. Tucker, Operator-stable distributions with independent marginals, Z. Wahrsch. verw. Gebiete 58 (1981), pp. 285-297.
[3] R. Jajte, Semi-stable probability measures on \boldsymbol{R}^{N}, Studia Math. 61 (1977), pp. 29-39.
[4] Z. J. Jurek and J. D. Mason, Operator-Limit Distributions in Probability Theory, Wiley, New York 1993.
[5] A. Łuczak, Operator semi-stable probability measures on \boldsymbol{R}^{N}, Colloq. Math. 45 (1981), pp. 287-300; Corrigenda to "Operator semi-stable probability measures on $\boldsymbol{R}^{N "}$, ibidem 52 (1987), pp. 167-169.
[6] - Independent marginals of infinitely divisible and operator semi-stable measures, J. Multivariate Anal. 28 (1989), pp. 9-19.
[7] K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York 1967.
[8] M. Sharpe, Operator stable probability distributions on vector groups, Trans. Amer. Math. Soc. 136 (1969), pp. 51-65.
[9] J. A. Veeh, Infinitely divisible measures with independent marginals, Z. Wahrsch. verw. Gebiete 61 (1982), pp. 303-308.

Faculty of Mathematics, Łódź University ul. Stefana Banacha 22, 90-238 Łódź, Poland
E-mail: anluczak@math.uni.lodz.pl

[^0]: * Work supported by KBN grant 210209101.

