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INDEPENDENT MARGINALS OF OPERATOR-SEMISTABLE 
AND OPERATOR-STABLE PROBABILITY MEASURES * 

Abstract. We investigate independent marginals of full opera- 
tor-semistable and operator-stable probability measures on linite- 
-dimensional vector spaces. In particular, it is shown that for purely 
Poissonian operator-semistable and operator-stable distributions their 
independent marginals have demrnposability properties of the same 
kind. Operator-semistability and operator-stability of independent 
marginals of Gaussian measures are studied in detail, and a descrip 
tion of independent marginal$ of an arbitrary operator-semistable or 
operator-stable distribution is obtained. 

Introduction. Let p be a probability measure on a finite-dimensional real 
vector space V with a-algebra g ( V )  of its Bore1 subsets. A projection Ton 
V will be called an independent marginal of p if 

p = Tp+(I - T) p (I - the identity operator), 

i.e. if T and I- T are independent random variables from probability space 
(K /,(V), p) into V (the same name will be sometimes applied also to the 
measure Tp). The aim of the paper is to investigate properties of measure Tp 
for T being an independent marginal of p, and p being a full operator-semi- 
stable or operator-stable probability distribution on V. Problems of this type 
have been considered in [2], 161, and [9], and in this work we generalize and 
complete some of the earlier results. In particular, we show that for purely 
Poissonian operator-semistable and operator-stable distributions their inde- 
pendent marginals follow, in principle, the same pattern of decomposability. 
Operator-semistability and operator-stability of independent marginals of 
Gaussian measures are studied in detail, and, finally, a description of inde- 
pendent marginals of an arbitrary operator-semistable or operator-stable dis- 
tribution is obtained. 

* Work supported by KBN grant 2 1020 91 01. 
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1. Preliminaries and notation. Throughout the paper, V will stand for an 
r-dimensional real vector space with an inner product (., -) yielding a norm 1I.I1, 
and the algebra B(V) of its Borel subsets. 

An infinitely divisible measure p on V has the unique representation 
[m, D, M I ,  where rnE V, D is a non-negative linear operator on V, and M is the 
Lkvy spectral measure of p, i.e. a Borel measure defined on = V- (0) such 
that 

The characteristic function fi  of p takes then the form 

(see e.g. [?I). The measure [m, D ,  01 is called the Gaussian part of p, the 
measure [0, 0, is called its Poissonian part; p is called purely Gaussian if 
M = 0, and purely Poissonian if D = 0. 

A probability measure on V is called fill if it is not concentrated on any 
proper hyperplane of E 

The main objects of our considerations wil l  be full operator-semistable 
and operator-stable probability measures on V and their independent mar- 
ginal~ as defined in the Introduction. For a more detailed description of these 
measures, the reader is referred to [3] and [5] (operator-semistable) and [I], 
[4] and [8] (operator-stable). Here we only recall that if p is a full opera- 
tor-semistable measure, then it is infinitely divisible and 

(1) pa = A p  * 6 (h) 

for some 0 < a < 1, k E V, and a non-singular linear operator A in V. Measures 
satisfying ( 1 )  will be called (a, A)-quasi-decomposable, and for full measures 
quasi-decomposability is equivalent to operator-semistability. Furthermore, 
there are decompositions 

such that Vl and V, are A-invariant subspaces of V, p, is a purely Poissonian 
(a, A)-quasi-decomposable measure concentrated (and full) on V,, and p, is 
a Gaussian (a, A)-quasi-decomposable measure concentrated (and full) on V,. 

We let G,(p) denote the set of the operators A's which can occur in 
equation ( 1 ) .  

Full operator-stable measures are characterized by the following condi- 
tion : 

There exists a non-singular operator B in called an exponent of p, such 
that for each t > 0 

E 6, (p) , where tB = e ( ' ~ g ' ) ~ .  
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Moreover, decompositions (2) also hold with and V .  being B-invariant, 
p, - purely Poissonian concentrated on Vl, p, - Gaussian concentrated (and 
full) on V2, and for i = 1, 2 

p:=tBpi*S(hr[i)) ,  t > 0 ,  
with some y.  

2. Marginds of operator-semistable measures. We begin with the following 
generalization of Theorem 6 of [a. 

THeom~ 1. k t  p = [m, 0, MI be laf i l l  (a, A)-quasi-decomposabEe probability 
measure on. I/, and let T be an independent marginal of p. Then there exists 
a positive integer n such that TAn = An T, and, consequently, 7'' is (an, An)-quasi- 
-decomposable. 

Proof.  Put 
u=T(V, W=(I-T')(V), 

and let S,  be the support of the Lkvy measure M. By virtue of [6] and [9] we have 

From the fullness of p, and thus M, it follows that Lin S ,  = Vand, consequently, 

Lin (S,n U )  = U, Lin (S,n W) = W. 

Equality (1) implies that aM = AM. which in turn yields the A-invariance 
of S,. 

Let {v,, ..., v,] c S,nU be a basis in U ,  and let { v k f  ,, ..., v,.} c S,nW 
be a basis in W (we have assumed that dim U = k and dim W = r - k). Accord- 
ing to (3) and the A-invariance of s,, for each rn = 0, 1 ,  . . . and each 
i = 1, . . ., r, Am vi  is either in S,nU or in S,n W. Let us represent the sequence 
{Am v,, . . . , Am vk ,  Am vk+ %, . . . , Amv,.) as a sequence of 0's and l's, where 0 at 
the i-th place means that A" v, E S,nU and 1 at the i-th place means that 
Am vi E S,n W (for instance, if m = 0, we have the sequence (0, . . ., 0, 1, . . ., 1)). 
Condition (3) together with the fullness of M implies that exactly k elements of 
{Am v,, . . ., Am v,) are in S,nU, and r- k elements are in S,n W; in other 
words, in our representing sequences there will be exactly k zeros and r-k 

/ '. 
ones. Since there are only such different sequences, we can find elements (J 
vil, ..., vi, and two positive integers m,, m,, 

, , 

such that 

and 

Am' v i l ,  . . ., Am' vik€ U (the zeros), 

A"' v j €  W for j$  (i,, .. ., i,) (the ones) 

Am2vil ,..., Am2vi ,~U,  A m 2 v j € W  for j#{ i l  ,... ,ik}. 
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Putting 
u1 = Am' vr l ,  . . . , uk = Aml vik, wj = Am' v j  for j #  ( i l ,  - . ., i k )  

and n = m, -mi, we get 

ulr ..., u ~ E U ,  Anul ,..., A n u k € U  
and 

w ~ E W ,  A n w j ~ W f o r j $ { i  l y . . . , i k ) .  

Since {u , ,  . . . , u,] form a basis in U and {w,) form a basis in K we obtain 

showing that TAW = A" T. 
Iterating equality (I) gives the formula 

pa" = Anp*S(hJ, 
and, consequently, 

Our next aim is to investigate (a, A)-quasi-decomposable Gaussian mea- 
sures. We begin with a simple characterization of operators A's for which a full 
Gaussian distribution can be (a, A)-quasi-decomposable. 

PROPOSI~ON 2. Let p = [m, D ,  0] be a full Gaussian measure on V, and let 
a > 0. Then 

G, Q = & D ~ J ~  OD - lI2, 

where 0 is the orthogonal group on Z 

Proof. It is easy to verify that a Gaussian measure p = [m, D ,  0] satisfies 
equation (1) if and only if 

(4) aD = ADA". 

It is immediately seen that for any orthogonal H and the operator A defined as 

equality (4) hoIds, which proves the inclusion 

J D I I ~  O D - ~ I ~  c G.(P). 

Assume now that (4) holds. The fullness of p implies the invertibility of D, 
and we have 

which means that the absolute value of the operator DlJ2 A* D-ll' is &I. The 
polar decomposition formula gives the equality 
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for some orthogonal H, so 

showing that A E OD-1iZ. FA 

Remark. The above proposition can be thought of as an "operator-semi- 
stable" counterpart of Theorem 4.6.10 from [4], which gives a characterization 
of the set of exponents of Gaussian measures. 

Now we shall analyse conditions of quasi-decomposability of independent 
marginals of full Gaussian measures. 

PROPOSITION 3. Let p = [my D, Oj be a f i l l  (a, A)-quasi-decomposable 
Gaussian wasure on and let T be an independent marginal of p. Then 
Tp is (a, A)-quasi-decomposable ij and only if A and T commute. 

Proof. Put P = I - T .  Then 

pa = (Tp*Ppp = (Tp)O*(PpF = Tpa*Ppa 
and 

Ap = ATp* APp. 

From equality (1) we get 

Tpa*Ppa = ATp*APp*G(h); 
thus 

(5) Tpa = TA Tp* TAPp* 6 (Th). 

If A and T commute, we have TAP = 0, so (5 )  becomes 

Tpa = ATp*G (Th), 

which means that Tp is (a, A)-quasi-decomposable. 
Now, assume that Tp is (a, A)-quasi-decomposable. Then 

Tpu = ATp*S(h'), 

Tpa = TATp* B (Th'), 

which together with (5) leads to the equality 

TATp* 6 (Th') = TATp* TAPp* 6 (Th). 

Since all the measures involved are Gaussian, the above equality shows that 
TAPp is a degenerate measure and, consequently, 

(6) (TAP) D (TAP)" = 0. 

By Proposition 2, A takes the form A = &D'/' HD-'/' for some orthogonal 
H, so (6) leads to the equality 

a ~ ~ 1 / 2  HD- 112 PDP* D- 112 H* 0112 T* = 0, 

12 - PAMS 18.1 



and multiplying on the left by D-'t2 and on the right by D 1 i 2 ,  we get 

Then R = R2; moreover, 

Since T is an independent marginal, we have, according to [6] and [9], 

SO 

T D  = TDT* = DT'. 

Thus (8) leads to the equality 
R* = ~ - 1 / 2  ~ ~ ~ - 1 i z  = ~ - 1 1 2  ~ ~ 1 1 2  = R,  

showing that R is an orthogonal projection. Furthermore, 

~1 = 1 - R  = ~ - 1 / 2 ( 1 - ~ ) ~ 1 / 2  = ~ - 1 / 2 ~ ~ 1 / 2 -  

Consequently, equality (7) takes the form RHR' H* R = 0, so 

which means that 

RHRL = 0, i,e. RH = RHR.  

Since H is orthogonal and R is an orthogonal projection, the last equality 
means that H and R commute. Thus we have 

6)  - 112 ~ ~ 1 / 2  H = HD - 112 ~ ~ 1 1 2 ,  

which, in turn, gives 

~ ~ 1 1 2  ~ J D - 1 1 2  = ~ 1 / 2  ~ ~ - 1 1 2  

Multiplying both sides by A, we finally obtain TA = AT, which completes the 
proof. rn 

The last two results lead us to an example of a full (a, A)-quasi-decom- 
posable Gaussian measure having r independent one-dimensional marginals 
which are not (an, An)-quasi-decomposable for any n. 

EXAMPLE. Let TI,  . . ., T, be one-dimensional orthogonal projections, and 
let 0 < A, < .. . < Ar. Put 

r  
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and let p = [0, D, 01. We have 
r r 

D = T D q  = CDTT; 
i =  1 i =  1 

thus T,, ..., T, are independent marginals of p. Let M be an orthogonal 
operator, and put 

A = &D112 HD-lI2 for some a 7 0. 

By Proposition 2, p is (a, A)-quasi-decomposable. Now, for any integer n, 

so An commufes with if and only if H" does. Hence, if we have chosen Ed in 
such a way that 

then by Proposition 3 none of the marginals T's will be (an, A")-quasi-decorn- 
posable for any n. 

Our final goal in this chapter is to give a description of independent 
marginals of an arbitrary full (an, An)-quasi-decomposable measure. We have 

THEOREM 4. Let p = [my D ,  M ]  be a full (a, A)-quasi-decomposable 
measure on and let T be an independent marginal of p with T ( V )  = W .  Then 
there are decompositions 

such that v1 is a purely Poissonian (an, An)-quasi-decomposable (for some n) 
measure concentrated on Ul , and v, is a Gaussian measure concentrated on U , .  

Proof.  Put P = I- T, W = P(V), and let again S ,  stand for the support 
of M .  For SM relation (3) holds; thus putting 

we get 

Now, let us take into account decompositions (2). The Poissonian part p, lives 
on V,, so we have V1 = Ul@ Wl. Restrict for the moment our attention to the 
subspace Vl and the measure p, . We have S ,  c U, u W,. Thus denoting by TI 
the projection onto U ,  with kernel W,, and by P, the projection onto W, with 
kernel U,, we infer from [6] and [9] that T, and P, are independent marginals 
of p,, so by Theorem 1 we have 

TIAn=AnTl, P IAn=AnP1  for somen, 

and 7'' ply P ,  p1 are (an, An)-quasi-decomposable. 



Now we shall analyse the Gaussian part. It is concentrated on V,, so we 
have 

D (v) = 0 (V,) = V2. 

Since T and P are independent marginals of p, relation (9) holds. Thus 

and, similarly, 
P(v,) c v2. 

Putting T ( & )  = U ,  and P(V,.',) = W,, we obtain the decomposition 
Vz =- U,@ W,. Let R be the orthogonal projection onto b. We have D = RD, 
so R and D commute. Furthermore, 

( T  I V2)* = RT"I V2, (PI &)* = RP*I V2, 

which together with the equality 

D = TDRT* + PDRP* 
gives 

D  I V2 = TDR T* I V2 + PDRP* t V2 

Now restricting our attention to the subspace and the measure p2, and 
denoting b y  T' the projection onto U, with kernel W,, and by P2 the projection 
onto W2 with kernel U,, we get 

which means that T, and P, are independent marginals of p,. Finally, we have 

V =  Vl@V2 = ( U l B W l ) 6 ( ~ 2 0 W z )  = ( ~ ~ O ~ 2 ) O ( W ~ O W ~ )  = V O W ,  
and since 

U 1 0 U 2  c U, W1OW2 c W ,  
we obtain 

U  = U 1 @ U 2 ,  W = Wl@W2. 

Extending the projections T I ,  T,, Ply  P, in the natural way to the whole V  (i.e. 
for instance TI will be the projection onto U' with kernel U,@ Wl@ W,) we 
shall get 

T = T l + T , ,  P =  P1+P2 
and 

P  = Pl*P2 = T l ~ l * p , ~ l * T 2 ~ 2 * p 2 P z ~  
which gives 

q p  = =pi, Pip = Pipi, i = 1 ,  2. 

Thus we have 
p  = Tp*Pp = Tl,u*P,p*&p*P2p, 
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and applying T to both sides of the above equality we obtain T p  = T l p + T 2 p .  
Putting v, = T'p and v, = T,p, we obtain the desired decomposition. 

Remark. Neither the measure v, nor the measure P,p need not be 
(am, Am)-quasi-decomposable for any m (however, their convolution being the 
Gaussian part p, of p is (a, A)-quasi-decomposable). Nevertheless, this fact 
does not affect operator-semistability of the marginal T p  as is seen in the 
following corollary. 

COROLLARY. Let T be an independent marginal of a full (a, A)-quasi- 
-decomposable measure p  on K Then Tp i s  operator-semistable. 

Probf.  -In the course of the proof of Theorem 4 it was shown that 
T p  = Tl p* T2p  with Tl A" = A" TI for some n, which means that An (U,) = Ul . 
Define an operator A, by 

on U,, 

1 on.;, A,= %I- 

Since T'p is Gaussian, it is (an, J;;"~-quasi-dec~mP~sable, and we have 

showing that T p  is (an, AJ-quasi-decomposable, hence operator-semi- 
stable. 

3. Marginals of operator-stable measures, In general, operator-stability ex- 
hibits much more regular behaviour as will be seen in the following counter- 
parts of results about operator-semistability. In particular, we have 

THEOREM 5. Let p = [m, 0, be a full operator-stable probability mea- 
sure on V with exponent B, and let T be an independent marginal of p .  Then 
T and B commute, and T p  is operator-stable with exponent TB.  

Proof.  Putting U = T (V) and W = (I - T) (V), we have again relation 
(3), and the equality pt = P p  * 6 (ht) yields the inclusion tB (S,) c S,. Thus, for 
an arbitrary u E S,nU, tBu E S,nU, and the same is true for w E W. From the 
fullness of M we infer that tB(U) c U and P(W) c W, and differentiation at 
1 gives 3 (U) c U and B (W) c W. Since B is invertible, we get B (U) = U and 
B(W) = W, which means that T and B commute. Accordingly, 

showing that TB is an exponent of T p .  BI 
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PRO~SITION 6. Let p = [rra, D ,  01 be a full opqator-stable Gaussian 
measure on V with exponent B, and let T be an independent marginal of p. Then 
Tp is operator-stable with exponent TBT. 

P r o  of. According to Propositions 4.3.2 and 4.3.3 of [4], B is an exponent 
of p if and only if 

Multiplying the above equality by T on the left and by T* on the right and 
taking into account the relations TD = DT* = TDT* which follow from (91, 
we obtain 

Since TDT* is the covariance operator of the measure T', applying again the 
above-mentioned propositions from [4], we see that TBT is an exponent of 
Tp. 

By reasoning in a similar fashion to that in the proof of Theorem 4, we 
obtain the following result: 

THEOREM 7. Let p be a full operator-stable measure on V with exponent 3, 
and let T be an independent marginal of p with T (0 = U. Then there are 
decompositions 

such that v, is a purely Poissonian operator-stable measure concentrated on U ,  
with exponent TI B = BT,, and v, is an operator-stable Gaussian measure con- 
centrated on U 2  with exponent T2BT2, where TI and T2 are projections onto 
U, and U ,  , respectively, with kernels ker TI = U, W, ker T, = WIG W, 
W =  ( I -  T ) ( V ) .  
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