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Absbmct. We first study L6vy measures, Poisson and Gaussian 
convolution semigroups on commutative hypergroups. Then we pre- 
sent a Lbvy-Khintchine type representation of a convolution semi- 
group (pJ,,, with symmetric L6vy measure 1 of the form p, = y,+e(tl), 
t 0, for some Poisson semigroup (e(tll)),,o and some Gaussian semi- 
group (Y,), = 0. 

1. Introduction. Limit theorems of random variables and distributions are 
of great interest in probability theory. The distributions occurring as limits are 
infinitely divisible and therefore can be embedded into convolution semi- 
groups. For that reason, convolution semigroups play an important role and 
are thoroughly studied on various algebraic-topological structures. 

On locally compact abelian groups, convolution semigroups are com- 
pletely determind by negative definite functions, as described for instance in 
Berg and Forst [3]. In [9] Lasser proved a LCvy-Khintchine representation for 
negative definite functions defined on the dual of a commutative hypergroup 
under the assumption that this dual admits a dual convolution structure. It is 
also possible to give such representations for certain classes of negative definite 
functions which are defined on the hypergroup itself. This was shown by Bloom 
and Ressel in 151. But these negative definite functions do not generally corre- 
spond to convolution semigroups. 

In concrete situations Ltvy-Khintchine type formulae are also available 
when the dual is not necessarily a hypergroup. Examples are given by 
Sturm-Liouville hypergroups (cf. [I] and [6]) and products of Stm-Liouville 
hypergroups with R" (see [13]). 

The aim of the subsequent discussion is to decompose convolution semi- 
groups on arbitrary commutative hypergroups into Gaussian and Poisson factors. 

The present paper contains some sections of the author's doctor thesis. 
Parts of the results below have been announced without proof in [Ill. 
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For a locally compact space K we reserve the symbols A1(K) c 
J ib ,  (Q c A+ (K) for the sets of probability measures, bounded nonnegative 
and nonnegative measures on K, respectively. C, (K) c Co ( K )  c C, (K) denote 
the spaces of continuous functions on K which are compactly supported, 
vanish at infinity, and are bounded, respectively. %(x) stands for the neigh- 
borhood base of an element x E K. The symbols q,-lim and T,-lim denote vague 
and weak limit relations of sequences or nets d measures, respectively. 

A commutative hypergroup ( K ,  *) consists mainly of a locally compact set 
K and a bilinear, associative, commutative and weakly continuous convolution 
s on A b ( K ) .  Moreover, there exists a neutral element e e K  (i.e. the point 
meashe E ,  is the neutral element of the convolution *), and a continuous 
involution x I+ x-  on K such that e E supp ( E , * E ~ )  iff x = y - for arbitrary 
x, y EK. If the convo~ution operation is fixed, the hypergroup is denoted by 

, K instead of ( K ,  *). 
For A, 3 c K  we use the abbreviation A*  3 : = U,,,,y, {x] * (y), where 

the symbol {x) * { y )  stands for supp(~,*s,). We set f - (x) := f (x-) for X E K ,  
p - ( A )  := p(A- )  for pczAf(K), and Bore1 sets A c K; here A- denotes the 
image of A under the involution mapping -, whereas 2 is the cIosure of a set 
A c K. 

The dual space K" of a commutative hypergroup is defined by 

where f ( x * y - )  := j' f d.zX*ey- for admissible functions f : K + C. The dual 
space K A  furnished with the topology of uniform convergence on compact 
subsets of K  becomes a locally compact space. The Fourier transformation 
A : Ab (IT) + Cb (K A )  is defined by p~ 6 ,  where 

fik) := j' j d p  for ~ E A ~ ( K ) ,  X E K " .  

The inverse Fourier transform ,i of a measure , u E M ~ ( K " )  is given by 

,G(x):= J ~ ( x ) p ( d ~ )  for X E K .  
K " 

Moreover, we denote the Haar measure and the Plancherel measure of K by 
w, and n,, respectively, and define gj : = (gxK)" for g~ 9' (KAY a,). For 
,U E A% (K) ,  f, h E CO (K ) ,  the functions p*f, f * h E CO (K )  are given by 

for x E K, respectively. 
For details and further information about hypergroups we refer to Jewett 

[S] and to the monograph of Bloom and Heyer [4]. 
For the entire paper let K be a commutative hypergroup. 

2. Convolution semigroup. In this section we introduce the notion of 
convoIution semigroups on commutative hypergroups. 
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2.1. DEFINITION. (a) We c d  a family , in Mi (K) a (continuous) con- 
volution semigroup if 

&*&=A+* for all s, t > 0 and .r;lim & = E ,  
t - 0  

(b) For a convolution semigroup (pt)t,o on (K, *) the (infinitesimal) gene- 
rator A is defined by 

for all 

1 
A4  := lim- k t * # - $ )  

t+o t 

- 

1 
ED (A) : = $ E CO ( K ) :  lim - &*$ - $) exists and belongs to C, (K) 

t'0 t 

Here the limits are understood as limits with respect to the topology of 
uniform convergence on C, (K). 

The symbol 1, denotes the characteristic function of the set A c K. Hence 
the function 1, assigns to each x E K the value 1; it is therefore the constant 
character of the hypergroup. 

23. D m m o ~ .  Let Aac(KA):= (cel ,+gn,~AC(KA):  C E C ,  Q E C ~ ( K ~ ) ) .  
We say that the function $t E C (K ") is strongly negative definite if the following 
holds : 

(1) For p ~ & l , , ( K " )  with - fi  3 0, i ( e )  = 0 we have j$dp  G 0. 
(2) $(I,) > 0 and $a = $(x )  for all x € K A .  

We denote the set of all strongly negative definite functions by S N ( K A ) .  

The following characterization of strongly negative definite functions is 
due to Voit [15], Theorem 3.7. 

2.3. THEOREM. If(pf)f,o denotes a convolution semigroup on K, then there 
exists a uniquely determined function IJI E SN ( K  ") with $(I,) = 0 which satisfies 
ji, = e-* for all t > 0. Conversely, if$ is a strongly negative definite function on 
K A  with $(I,) = 0, then there exists a uniquely determined convolution semi- 

- 
group kth>o on K such that f i t  IsuPP(nK) = -e @l.wpp(zK1 for all t > 0- 

We first study generators of convolution semigroups and their domains. 

2.4. LEMMA. Let A be the generator of a convolution semigroup (pJtrO on 
the hypergroup K .  Then for every neighborhood U of e E K there exists a function 
4 E D (A) which satisfies 

(2.1) 4 0 ,  # f O ,  and supp(4)cU.  

Proof. Choose a neighborhood V E 42 (e) such that V* Pc U (cf. Lemma 
3.2 of [8]). Moreover, let f E C,(K) with f 2 0, supp Cf)  c V and f not iden- 
tically zero. We regard the resolvent Q ,  = I," e-'p,dt as the potential of the 
submarkovian semigroup (e-t p,),,, and conclude from Theorem 6.4.16 in 
Bloom and Heyer (41 that q, is perfect. This means in particular that there 



exists a measure 0 E A! (K) with 

(2.21 "*el < a l l  .*el f e l ,  and = pl on CV 
The function + := (pl-a*g,)*f now has the properties (2.1). In fact, (2.2) 
ensures that # 2 0 with 4 $0 since f 2 0 and f f 0. Moreover, 
supp (Q , - a * Q ,) c and hence 

Finally, it follows from the general theory of resolvents of one-parameter 
contraction semigroups that 4 = el * ( f  - a * f )  E D (A); cf. Corollary IX.4.2 in 
Yosida [16]. rn 

2.5. LEMMA. Let A denote the generator of u convoIution semigroup (p,),,, 
on K and U an open and relatively compact subset of K. Suppose that E > 0 and 
f EC,(K), f 3 0, with supp(f) c U .  Then there exists a finction 
g E D [A)nC, (K) with g 3 0 and supp (g) c= U such that 11 f - gll < e .  

P r o  of. Choose V1 E % (e) such that V1 * supp Cf) c U (see Lemma 3.2D in 
Jewett [a]). By Proposition 1.2.28 in Bloom and Heyer [4] the function f is 
a-uniformly continuous. This means that there exists an open set V2 /,E ($2 (e) such 
that 
(2.3) I f  It) - f (41 < & 

for all s ,  ~ E K  satisfying E,*E,-(V~) > 0. For X E K ,  Y E  V2 and t ~ { x ) * ( y - )  
c { x )  * V; , Lemma 4.1B of [8] yields (x) * ( t  - ) n V2 f 0. Hence (2.3) implies 

(2.4) I f  ( x*Y-)- f  (x)l G SIf (0- f  (x)l &,*&y- tat) G E .  

By Lemma 2.4 there exists a function 4~ D(A) such that 

0 ,  supp(~)cVlnV2,  and j # d o , = l .  

Therefore, supp (4 * f )  = supp (4) * supp df )  c Vl * supp Cf) c U, and 4 *f > 0. 
Moreover, from (2.4) and (2.5) we infer for every X E K  that 

Finally, convolution with a C,(K)-function is a bounded linear operator on 
C,(K); hence D(A)sC,(K)€D(A). rn 

We say that K is a Godement hygergroup if the unit character 1, E K  A is 
contained in the support of the Plancherel measure x, of K .  There are many 
examples known which lack this property; for instance Sturm-Liouville hyper- 
groups with exponential growth (see Section 3.5 in Bloom and Heyer [4] for 
more detailed information). 

2.6. LEMMA. Let (p&,, denote a, convolution semigroup on K .  Then we 
have , 

I 
lim sup - ~ , ( C U )  < oo 

t -0 t 
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fir every open U E 9 (e). Furthermore, kt 6 > 0. If the hypergroup K enjoys the 
Godernent property, then we can find to > 0 and a relatively compact open set 
U, E 4Y (e) such that 

1 
12.7) - p , ( C ~ o )  < 6 for all 0 < t < to.  

t 

P r o  of. Let a E K denote the unique positive character in supp (nK) (cf. 
Theorem 2.1 1 in [14]), and $ E SN (K ̂)  the strongly negative definite function 
corresponding - to (PJ,,~ according to Theorem 2.3. The continuous function 
$ satisfies I) (a) = I) ( B )  = $ (a) 3 0. Hence we may choose a neighborhood V of 
u in K-ch that 

(2.8) I$ (XI(  d $ (a) + 612 for all x E K 

Since Vnsupp (nJ # 0, there exists a function 4 E C,(KA) having the following 
properties: 

The inequality Re $ 3 0 implies 

and hence Lebesgue's theorem yields 

Moreover, the real-valued function # satisfies 1 = $(e) = 11$11, by (2.9); hence 
the set U, : = {x E K :  $(x) 2 9) is an open neighborhood of e which is also 
relatively compact by Theorem 2.2.32 (vi) in Bloom and Heyer [4]. 

Given an open neighborhood U of e there is a function g -  EP (A)  with 
g(e) = 0 ,  g 2 l,,,c,. Here A denotes the generator of (pJtao. From (2.8) to 
(2.10) we conclude that 

1 1 1 
limsup ;,q(CU) < lim - (I  gdpt-g(e))+l imsup - ~ , ( C U , )  

t-ro t-0 t t -0  t 

If K is a Godement hypergroup (i.e. 1 ,  = a E supp (n,)), we find with the 
help of (2.8) and (2.10) the following inequality: 

1 2 
lirnsup - , U ~ ( ( C U ~ )  < lim - J ( l - $ ) d k  = 2 J $ $ d n K  < 2 $ ( l K ) + 8  = 6 ,  

t-0 t t-0 t 

since 1 = GI (1,) = e-@ll") implies $ ( 1 3  = 0 .  
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3. Uvy, Poisson and Gaussian measures. We introduce Lbvy measures in 
two different ways and discuss the relation between them later. The following 
definition is suggested by the theory of probability measures on Banach spaces 
(see for instance Section 5.4 in Linde [lo]). We say that 1 E k+ (K) is symmetric 
if 1 = A-. 

3.1. DEFINITION. A symmetric A E A +  (K) is said to be a symmetric ab- 
stract LCvy measure if the function 

is the -Fourier transform of a probability measure e ( l )  on K. We call a (A) the 
Poisson measure related to A. 

An arbitrary measure A E At+ (K) is an abstract Ldvy measure if L+R- is 
a symmetric abstract Levy measure. 

3.2. Remarks. (1) We do not require the finiteness of the integral in (3.1). 
If the integral does not exist as a real number, the Fourier transform d the 
corresponding Poisson measure vanishes. If R E  A+ (K) is a symmetric abstract 
Lkvy measure such that {(I- Re x )  dL < a~ for all characters 2 E K " , then it is 
clear that the related Poisson measures (e(tA)),,o form a convolution semi- 
group on K. 

(2) The exponential of a finite measure is defined by 

" 1 
e x p o : =  C G @ " ~ & ! ( K )  for ~ E & $ ! ( K ) ,  

Ic=o 

where p4 denotes the k-th convolution power of p with respect to *, and 
p*O : = E,. Now, if p E Aft ( K )  has no mass at the neutral element e E K, then p is 
an abstract Lkvy measure, and 

Therefore, we take (3.2) as the definition of e ( p )  for arbitrary measures 
p E At: (K), and call e (ji) again a Poisson measure. 

In order to introduce Gvy  measures which are related to convolution 
semigroups, we need the following lemma. Along with the abbreviation 
K x  := K\{e) we set 

For a Bore1 set B c K and p E At ( K )  let p ( B denote the measure 
P ( * ~ B ) .  

3.3. LEMMA. Let (&> be a convolution semigroup on K .  Then there exists 
a uniquely determined measure A€&+(KX)  such that 
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Proof.  Let A be the generator of (p,),,,. We define 
1 n(#) = JSda := lim- ! # a p t  = A$-(e) 

I'O t 
for arbitrary 4- ED (A)nCc(KX). The assertion is proved once we have shown 
that for every f EC,(K') the family fdk)t ,o is a Cauchy net for t. +0. 
In fact, choose U €9 (e) with supplf) c CU and let E > 0. Lemma 2.5 
ensures the existence of a function #- ED (A)nC, (K ") which satisfies 
supp(#) c C f i  and 114- f 11, < E. Hence, by (2.6), there exists C > 0 such that 

for sufficiently small s, t > 0. Here the constant C may be chosen indepen- 
dently of s, t and E .  

We call L E A +  ( K )  the L&vy measure of the convolution semigroup (p,),, , 
if I ((a)) = 0 and 

3.4. LEMMA. If A,, and A,, are the Lkuy measures of the conuolution semi- 
groups and ( V J ~ , ~ ,  respectively, then R,+h, is the Ldvy measure of 
&*~t)r ,o-  

Proof.  If A- denotes the generator of ( p ; ) , ,  ,, we see for f E Cc (K ")n  
n D  ( A - )  and t > 0 that 

The first term on the right-hand side converges to zero if t + 0. Moreover, by 
definition, 

1 J f d l v  = lim - J f dv, 
t+o  t 

and the continuity of the convolution semigroup (VJ,,~ yields 

lim 1 A- fdv ,  = A-f  (e) = J f dAP. 
t-'O 

Hence 

(3.4) 
1 

lim - j f dpt*vt = J f d(;lP+Rv) 
t-m t 

whenever f E Cc (K ' ) n D  (A- ) .  Now, equality (3.4) can be shown for arbitrary 
f €CC(Kx) by the same method as in the proof of Lemma 3.3 using the 
denseness of C,(Kx)nD(A-) in Cc(Kx). 
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3.5. EXAMPLE. Let 1~ Ab, (K) be a finite Lkvy measure. Standard argu- 
ments show that T, - A  (K) is the generator of the convolution semigroup 
(e (ti)),, , . Moreover, A is the related Levy measure. In fact, for g E C, (K ")we have 

1 
lim - 1 g de (ta) = [(Ti - ( K )  idCo(Rl) g -1 (e) = g dA. 
t-0 t 

3.6. D E ~ O N .  A convol~tion semigroup (pJtr on K is called Gaussian if 

1 
lim - pt (CU) = 0 
t+o t 

for every Open set U containing e € K .  
A'measure p (K)  is said to be Gaussian if there exists a Gaussian 

convolution semigroup with pI = p. 
We say that the generator A of a convolution semigroup is of local type if 

supp(A+) c supp (4) for all 4 ED (A). A generator A is of local type iff 
A 4  (e) = 0 for all 4 ED (A) with e $ supp (4) .  

The following characterization of Gaussian convolution semigroups is 
well known in the group setting (compare for instance Berg and Forst [3]). For 
commutative hypergroups admitting a dual convolution structure this charac- 
terization is due to Heyer [7]. 

3.7. TI-JEOREM. Let K be a commutative hypergroup and (pJtzO a conv~lu- 
tion semigroup on K with U v y  measure 1 and generator A. Then the following 
conditions are equivalent: 

(1) (pt)t>o is a Gaussian conuolution semigroup, 
(2) A is of local type, and 
(3) R = 0. 

P r o of. For the equivalence (1) e (2) see Proposition 2.12 in Rentzsch and 
Voit [f2]. The inclusion (1) (3) is clear as 

1 
AlK" = z,-lim - p t I K X .  

t - 0  t 
To prove (3) * (2) take a function # ED(A) which vanishes in the open 

neighborhood U of e. We have to show that A4(e) = 0. This is clear by (3.3) if 
supp ( 4 )  is compact. Otherwise, let E > 0 and choose g E C, ( K  ") such that 
supp (g) c CU and ((4- -g (J ,  < E .  Using (3.3) we conclude that 

By condition (3) and inequality (2.6), the right-hand side of the last inequality 
becomes arbitrarily small. 

4. The lLivy-Rhintchine formula. Before we state our main theorem we 
need some additional lemmata. For 3, E A+ (K) we call a Bore1 subset B c K 
a I-continuity set if R(8B) = 0, where aB is the boundary of B. 
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4.1. LEMMA. Let K be a Godement hypergroup, and a conoolution 
semigroup on K with LLvy measure A. Then 

1 
14-11 z,-lim - pt ICU = RJ CU 

t+O t 

fop. every open A-continuity set U E @ (e).  

Proof.  Let U be as above. By standard arguments it follows that 

{use, for'instance, Satz 30.2 of Bauer [2]). Let E > 0. By (2.7) we can choose 
V E 42 (e) and to > 0 such that 

1 
(4.2) - p , (Cv)+L(Cv)  < E for all t < to. t 

For some 4 E C, (K ) with 1 2 @ 2 lvnCu and an arbitrary function f E C, ( K )  
we have 

Hence ~,-lim~,,t-~p,IGU = A1 CU together with (4.2) yields the assertion. 

4.2. LEMMA. For each convolution semigroup (,ut)trO on K with LBvy mea- 
sure A we have 

= for all s > 0 .  
t-0 

Moreover, if K is a Godewtent hypergroup, then 

(4.4) = e ( s l l l C ~ )  for all s > O  
t-ro 

and each open A-continuity set U E @ (e). 

Proof.  Writing $ for the strongly negative definite function associated 
with (,ut),, according to Theorem 2.3 we conclude for every x E K A and s > 0 
that 

Hence (4.3) follows from the LCvy continuity theorem (cf. Theorem 4.2.11 in 
[4 ] )  by noting that ps E A' ( K ) .  

Assertion (4.4) follows easily from Lemma 4.1 by using again the LCvy 
continuity theorem. ia 
13 - PAMS 18.1 
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Unfortunately, we do not know whether the second statement of Lem- 
ma 4.1 remains true without the additional Godement property. But, if a hyper- 
group does not enjoy the Godement property, it is possible to modify the 
convolution so that the unit character belongs to the support of the Plancherel 
measure of the modified hypergroup. If 6: E K A denotes a positive character of 
the hypergroup (K, *), the modified convolution o on K is defined by 

for x, y E K. For details we refer to the original paper by Voit [I51 or to [4]. 
- TO stress the underlying convolution in the construction of Poisson 

measures we write for 1 E A'! ( K )  

e* (a) : = e - a ( K )  
1 

A? and eo (4 : = e-'" C - 1% C F !  k > O  k > O  k !  
referring to the respective convolutions on K. 

4.3. LEMMA. Let p, v E A'' (K) ,  X E A!: (K), and u E K " a positive character 
be such that 

(4.6) m ( ~ p )  : = e,  (6:;l) o v ,  

where m := ( ladp)- '  = $(or)- ' .  Then 

1 1 
s : = I  - d e 0 ( d )  = (e*(A)^(a))-' < m, g : = I  -dv < m, 

M M 
and 

(4.7) P = e * ( 4 * y ,  

where y : = g - l  ( a - I  v) E A1 ( K ) .  

P r o  of. Definition (4.5) of the bodified convolution in K implies 

1 1 - ~ E , O E ~  = 
1 

for x, ~ E K .  
a ~ ( x )  4 4  

Hence, by the Fubini-Tonelli theorem, 

Thus s, g < m. Writing 

G :=! s (A M e o ( a ~ $ ~ & f 1 ( K )  

we obtain from (4.6) 

m ( w )  = s (a f l )og (w)  = sg(a(fl*y)).  

This yields that ,u = c * y ,  since u is positive. Therefore, we have to show 
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that c = a, (A) and s-I = e, (A) A (a) = exp ( j  ( a  - 1) djl). Using (olll)Ok = 

I (k  = 0 ,  1 ,  2 ,  . . .) we conclude for characters X E K "  that 

Thus s = sd (1,) = exp (j (1 - ct)  d l ) .  The Fourier transformation is a one- 
-to-one mapping, and therefore a = e,(A). H 

4.4.. THEOREM. Let K be a second countable commutative hypergroup and 
let (pt),,,, be convolution semigroup on K with Lkvy measure I .  Assume that 1 is 
symmetric. Then IZ is a a-finite abstract symmetric Ltvy measure with 

(4.8) 1 (1-peX)dA < m for all X E K " .  

2~ Moreouer, there exists a Gaussian semigroup (yJr,o such that 
.y 

(4-9) pi=yt*e(tA) for every t > 0 .  

Proof.  ( 1 )  Let a E K " denote the uniquely determined positive character 
in the support of the Plancherel measure of K (cf, Theorem 2.11 in [I51 or 
Theorem 2.3.19 in [4]). If we modlfy the convolution * with respect to a accord- 
ing to (4.9, then (K, 0) is a Godement hypergroup (see Theorem 2.3.6 in [4]). 
Writing m, : = ( l a  dK)-' = A (a)-' and applying (4.5), it is easy to show that 
(m,(ap,)),,, is a convolution semigroup on K with respect to the convolution 0. 
The L6vy measure of (m,(a,uJ),,o is given by the limit relation 

1 
z,-lim - mt (apt) 1 K " = (an)! K " . 

t-0 t 
Moreover, urZ E A+ (a is symmetric. Since K is second countable, we may 
choose open, symmetric A-continuity sets U, E 4Y (e),  n E N ,  with U, J { e ) .  From 
(4.4) it follows that 

(4.10) z,-lim e ,  (s (a&))  for all s > 0, n E N ,  
t-0 

where An denotes the finite measure II(CU,. 
(2)  If we consider the representation 

(4.11) e. m,(u&) 1 CU, 0 e. - mt (ap,)l Un = e. m t ( a ~ )  for s, t > 0, (" ( " )  
we know from (4.3) that the right-hand side of (4.11) converges to m,(ctpJ for 
t -, 0 .  Therefore, Theorem 5.1.4 in [4] together with Prohorov's theorem and 
(4.10) shows that the sets 
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are relatively compact in the weak topology. Taking limits t + 0 on both sides 
of equation (4.11), we see by the continuity of the convolution together with 
(4.3) and (4.10) that 

(4.13) e,(~ct;1~)ov,,=m,ap~ for  EN, s > 0 ,  

where vsn E A' ( K )  denotes an accumulation point of the set (4.12). But (4.13) 
refers exactly to the situation (4.6) in Lemma 4.3. Therefore, by (4.7) there exist 
probability measures y,, E A' (K) such that 

(4.14) e, (sAJ*yS, = ps for all n E M ,  s > 0. 

In .the remaining part of the proof we do not need the setting of modified 
hypergroups and use the symbol e(-) instead of e,(-) for the corresponding 
Poisson measures. 

(3) Since the measures A,,  EN, are symmetric, the monotone conver- 
gence theorem shows for every X E K "  that 

(4.15) lim j (1 -3 dl, = lim (1 -Rex) d l  = J (1 - ReX) d l .  
n- m "-rn CU, 

With the notation e-" : = 0 this yields 

(4.16) lim a ( ~ A ~ ) ~ ( ~ ) = e x ~ ( s ~ ( ~ e ~ - l ) d ; l )  for s > 0 .  
n- co 

We use the Livy continuity theorem (cf. Theorem 4.2.11 in [4]) to conclude 
that sA is a symmetric abstract LCvy measure, and the sequence (e(sl,)), 
converges weakly to the generalized Poisson measure e(sA), s > 0. Again by 
(4.141, (4.16) and Theorem 5.1.4 in [4] we see that the set {ysn: n E N )  is rela- 
tively compact in the weak topology. For any accumulation point ys E A1 (K) 
of this set we then obtain the representation (4.9) by applying (4.14) and (4.16). 

For characters X E  K A we have ji1k) + 0. Hence e(A) A (x) # 0, and this 
shows (4.8). On the other hand, (4.8) and (4.9) imply that (e(tA)),,, and (yt),,, 
are convolution semigroups. 

(4) It remains to prove that (y,),,, is Gaussian. We show this together 
with the fact that l is the Lkvy measure of (e(tL)),,,. 

First we argue that A1 U, is a symmetric abstract Levy measure. In fact, for 
n~ N the function 

is continuous since it is the difference of two (continuous) negative definite 
functions. Moreover, it is easily verified that I), is strongly negative definite. 
Hence (e (tAl U,)),, , is a convolution semigroup for every n E N .  

We denote the LCvy measures of the convolution semigroups 
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respectively. Because of e (tR I Q)*e ( t lJ  = e(tA) and (4.91, Lemma 3.4 yields 
A,(,lv,,+A,~,, = A,(;i) and +A, = A. Therefore, for f E C , ( K x ) ,  f 2 0, we 
have 

1 f dAe(ln) < j f dJ+e{~~v,,) + j' f d R e ( l n )  = j f dhec~) J f dR@(,> + S f  = Sf 
B U ~  A,(An, = An = AlCU, (cf. Example 3.5), and hence Sf dl ,  = Sf dA if f i  is suf- 
ficiently large. Thus = A and A, = 0. Therefore ( y * ) , , ~  is necessarily 
Gaussian by Theorem 3.7. rn 

4.5. Remark. Consider the case where the Lkvy measure R of the con- 
volution semigroup (pt)tzO on K is not symmetric, but satisfies 

(4.17) [ ( 1  -x(dA t co for all ~ E K " .  

Then (4.9) is also available for some Gaussian semigroup (yd,,,. To show this, 
one can argue as in the proof of Theorem 4.4. Together with obvious changes 
we have, by the dominated convergence theorem, 

lim S ( l - 3 d d n  = lim 1 (1-2dA = I ( l - a d l  
n-r m n + W  CU, 

instead of (4.15). 

4.6. THEOREM. Let A E A +  ( K )  be an abstract Lhvy measure on K satisfy- 
ing (4.17). Then jl is the LPvy measure of (e(tA)),,,. 

We omit the proof since it is similar to part (4) of that of Theorem 4.4. r 

4.7. THEOREM. Let A,, R, E A+ ( K )  be a-$nite symmetric abstract Levy 
measures satisfying (4.8) and let y(') ,  y(') be Gaussian measures on K. Then the 
equality 

(4.1 8 )  y(')*e(A,) = f2)*e (A,) 

implies 1, = A, and y ( l )  = y('). 

Proof.  Choose Gaussian semigroups (yr)) t ) , , ,  such that ytil = y';:) 
(i = 1, 2). First we show that 

for every t > 0. In fact, if $i denotes the strongly negative definite function 
corresponding to ( y  j"), , (according to Theorem 2.3), for each x E K A we obtain 

(~i ']*(yi '))-*e(2tA,))~ (x) = exp [ - t  ( l l / i ~ ) + $ i ( 3 + 2  j (1-Rex)dli)],  

where the exponent on the right-hand side is real. Therefore (4.19) holds for all 
t > 0, since (4.18) implies (4.19) for the particular value t = 1. Theorem 4.6 
shows that 2 4  is the Livy measure of the convolution semigroup 
(yl')*(y?))- *e (2tRi)),, , . Lkvy measures are uniquely determined by the convolu- 
tion semigroups. Hence A, = 1, by (4.19). Finally, the Fourier transform 
e (A,)" = e(l,)" is positive, which yields y(ll = y(2). rn 
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