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Abstract. A stochastic model of a stain of pollution is proposed. 
The asymptotic shape of the edges of a stain is examined. The descrip- 
tion is kept at the elementary level of probability theory. 

Introduction. We would like to start with not a very serious, but funny 
example, known to older mathematicians from their own childhood. This 
example, however, shows the essence of the phenomenon we would like to 
describe. 

Let us imagine some ink flowing slowly onto a sheet of blotting paper. At 
first, the blot is only one point but, as the ink flows faster, it shortly grows 
bigger and bigger. We shall assume that the stain of ink which appears in this 
way is spreading out radially from the centre of its initial source. At each 
moment the shape of the stain is random. On the edge of the stain we can most 
often observe little 'springs' of its further expansion, appearing irregularly, with 
some or without any preference of specific direction. 

The stain just described shows some similarities to less amusing but real 
events like an oil leak onto the surface of the ocean, caused by a broken, not 
moving tanker or the radioactive pollution caused by a damaged nuclear 
power station. It may happen that the stain grows unboundedly and rapidly 
resembling rather a kind of explosion. A disaster area caused by a dramatically 
growing population of animals is a good example of such a stain. Let us 
imagine that after having eaten everything around themselves the animals 
gather in groups in some points of the edge of devastated region. These points 
of the gathering of animals are just 'springs of further expansion' of the 
stain. 

The same complexion may be worn by a stain of polution caused by 
a growing number of different negative effects of civilization. 

* Research supported by KBN grant 2 P03A 048 08. 



200 E. Hensz-Chgdzyliska et al. 

The aim OF this work is an attempt to describe the above phenomenon 
mathematically. We keep the description at the level of standard stochastic 
notions. We treat the stain or, more specifically, its edges as a realization of 
a two-parameter stochastic process 5 (t, a) parameterized with time t and direc- 
tion a of stain expansion. 

We make a natural assumption that with probability one the trajectory 
[ ( t ,  a) is a nondecreasing continuous function of time t for every a. It is also 
natural to demand the continuity of [ (t, a) with respect to a. 

Obviously, we assume that, in some scale of time t, the increments of 
{(t, E) are chaotic. Those chaotic increments correspond to 'springs of 
expansion' mentioned above. Roughly speaking, in our rather elementary 
model we are not trying to describe the diffusion which is as a rule behind the 
evolution of the stain. We rather want to describe the final effects of this 
diffusion: growing the stain realized by randomly appearing (in a poissonian 
way) 'springs of expansion' with their shapes depending on the intensity of 
increase. 

Of course, there are many ways of choosing the model for random factors 
influencing the evolution of the stain in such a way that the discussed postu- 
lates are satisfied. 

We decide that the velocity 

exists and, in fact, all our assumptions on 5 will concern K We define V as 
a stochastic integral of the form 

where n = (n: (s), s 2 0) is a positive increasing point process with independent 
integer increments, counting the springs of expansion. A nonnegative stochastic 
process h (s, a) should have a rather elementary structure describing random- 
ness of expansion in the direction a. 

We want to embrace both cases: of unbounded expansion (explosion) and 
stabilization (petrification) of the stain 5. That is why it seems to be necessary 
to assume additionally that in (1) the integrand h also depends on t. Thus 
we set 

t 

(1') V(t, a) = Sh,(s, a)dn(s). 
0 

Without more specific assumptions it seems to be rather hopeless to 
obtain some results concerning the asymptotic behaviour of the stain for large 
t we are interested in. That is why we confine ourselves to the process h of 
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[elementary) form 

where f is a continuous nonnegative function describing the shape of the 
'springs of expansion' and a nonnegative monotone function $ describing the 
intensity of stain expansion. The random directions a,, ((n = 1, 2, . . .) are in- 
dependent identically distributed, independent of the process x. 

For the sake of simplicity, we shall assume that the process n is a homo- 
geneous Poisson process with parameter i, = 1. 

In spite of all its randomness, the stain often has a tendency to reach 
finally some specific shape after a long observation. 

In the described model we are able to show a number of asymptotic 
properties of a function a -t { ( t ,  a) for large t. This results in specific limit 
theorems. In particular, we prove a kind of laws of large numbers about round- 
ing out of a stain or its petrification which in turn are the main goal of the 
paper. 

1. Notation and defmitions. Let us begin with some notation and defini- 
tions. Some assumptions made here will be obligatory in all that follows and as 
a rule they will be omitted in the formulation of theorems and lemmas. 

Let G be a metric abelian compact group (of directions). Let f be a con- 
tinuous nonnegative function defined on G x [0, m). We put additionally 
f(a, t) = O  for ~ E G  and t ~ ( - ~ ~ 0 ) .  

Let $ be a continuous positive monotone function defined on LO, a). 
Let x = (n(t): t 2 0) be a Poisson process with parameter A = 1. Denote 

by zi the time of occurrence of the i-th event for the process x. 
Moreover, let (ai: i = 1, 2, ...) be a sequence of G-valued indepen- 

dent identically distributed random variables independent of the process 
(z ( t ):  t 2 0). 

For a E G let us put 

and 

A two-parameter stochastic process 5 = ( t ( t ,  a): t 2 0, U E  G) is called 
a stain (with continuous time). V(t, a) is called a velocity of expansion of 
the stain 5 at the moment t in the direction ol. The function f is called a spring 
of further expansion of the stain. Finally, IJI is called an intensity function 
of 5. 



Actually, the stain (1.2) is of the form 

In the sequel we distinguish two cases: 
lo the function f has a compact support, say G x [O, b]; 
2" the function f does not depend on t~ [O, co). 
The case lo corresponds to the situation when the random factor of the 

velocity 

in (1.1) is temporary, that is, it disappears for t > zi, + b. 
The case 2" corresponds to the situation when all the factors (1.4) act 

constantly. 
One of the natural questions concerning the asymptotic behaviour of 

a stain is a comparison of the behaviour with the circle. Main results of our 
work are just devoted to the description of a situation which will be called 
rounding out of the stain. 

Precisely, putting 

we say that the stain < rounds out when 

If the limit (1.5) exists with probability one (in probability, respectively), we 
shall say that the stain rounds out strongly (weakly, respectively). 

We say that a stain 5 petri@ if there exists a random function (q (a))aec 
such that 

lim supjt(t, a)-~(a)! = 0 
t -)m ~ E G  

with probability one. 

2. Maim results. Let 5: = t(t, a) be a stain of the form (1.3). Obviously, we 
can write 5 as 

All the results formulated in the sequel concern the asymptotic behaviour 
of a stain 5 of the form (2.1) as t + oo. They depend heavily on the rate of 
increase (decrease) of the intensity function t,b (t) as t + co. That is why we 
introduce two classes of t,bls. 
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DEFINITION 1. We say that $ € 8  if $ is nondecreasing and 

DEFINITION 2. We say that $ EB if $ is nondecreasing and 

For example, $ (t)  = t' with r > 0 belongs to both classes d and W whereas 
$( t )  = d belongs neither to C nor to 8. 

~ 6 r e  generally, one can easily check that all the increasing functions 
varying regularly with exponent r > 0 belong to bnB. 

THEOREM 1. Let c = [ ( t ,  ol) be of the form (2.1) with a function f having 
a compact support. Assume additionally that G-valued random variables 
ai (i = 1, 2, . . .) are uniformly distributed (with respect to the Haar measure). 

If $ is a rwndecreasingfunction belonging to the class 8 or a nonincreasing 
one with jr $(s)ds = m, then the stain [ ( t ,  ol) rounds out strongly. 

I f  $ is n nonincrensing function with j: $(s)d.s < a, then the stain 
petrges. 

THEOREM 2. Let 4: = t ( t ,  u) be a stain of the form (1.3) with a function f not 
depending on T E  LO, a), that is 

Assume additionally that G-valued random variables ai (i = 1 ,  2 ,  .. .) are uni- 
formly distributed on G. 

If $ is a nondecreasing function belonging to the class 9, then the stain 
5 (t , a) rounds out strongly. 

A stain may suffer from the lack of rounding out even weakly. An example 
of such a behaviour of the stain appears when the intensity $ increases ex- 
ponentially. Moreover, one can construct an example of the intensity function 
$ leading to a stain rounding out weakly but not rounding out strongly. 

The results just mentioned will be discussed in Section 6. 

3. Auxiliary results. The proof of Theorem 2 is based on the strong round- 
ing out theorem of the stain with discrete time which is defined as follows. 

Let us put for n = 0 , 1 ,  ...; o l ~ G  

n 

where (c,),=,,,,.., is a sequence of positive numbers (describing the intensity of 
expansion of the stain). 
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We set 

Actually, the stain = (F(n, a), n = 0, 1 ,  2, . . . ; a E G) is of the form 

(3.3) 

where 

Let us formulate two conditions for a sequence (a)n=o,l.z,... (analogous to 
(2.2) and (2.3)). 

We say that a sequence (c,)n=o,l,z,... of positive numbers satisfies the con- 
dition (E)  if it is nondecreasing and 

or satisfies the condition (R) if it is nondecreasing and 

Clearly, for c, = ~(n), n = 0,  1, . .. , the condition (2.2) implies (3.5) and (2.3) 
does (3.6) as well. 

In the sequel we shall need the following three lemmas. 

LEMMA 1. Let (~d~),=~, , , . . .  be a nondecreasing sequence of positive numbers 
satisfying the condition (E )  (see (3.5)). Then, for every sequence (an)n=o,l,z,... of 
real numbers, the condition n - ' ~ ; ; :  ak + 0 as n + m implies 

LEMMA 2. Let ( c ~ ) ~ = ~ , ~ , . . .  be a nondecreasing sequence of positiue numbers 
satisfying the condition (R) (see (3.6)). Then, for every sequence (an),= o,l,z,... of 

n - 1  
real numbers, the condition n- Ek=, ak -) 0 as n + oo implies 
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LEMMA 3. Let ( c ~ ) ~ = ~ , ~ , . . ,  be a nonincreasing sequence of positive numbers. 
Then, for euery sequence (0,Jn=0,1,2,... , the condition n-I z;~: ak 0 as n + m 
implies 

and 

Lemmas 1, 2 and 3 can be obtained by applying the Toeplitz theorem on 
sumrnability of sequences by matrix methods (cf. [ 3 ] ,  p. 238). 

THE~REM 3 (Strong rounding out of the stain with discrete time). Let - - 
= (5 (n, a), n = 0, 1, . . . ; u E G) be a stain with discrete time deJined by (3.3) and 

(3.4) with (c,),=~,,,,.~ satisfying the condition (R)  (see (3.5)). Assume that (ai), 
i = 1, 2, . . . , are independent identically distributed random variables unijiormly 
distributed an G. m e n  

(3.71 
sUpaEeF'n' " + I us n + m with probability one. 
inf , ,~ F(n1 4 

P r o  of. We have, according to (3.3), 

where for any fixed a the random variables X ,  (u) given by (3.4) are independent 
identically distributed random variables with common distribution not de- 
pending on a. 

Put g k ( a )  = Xk(a)-EXL. In the sequel, if possible, a  will be omitted. 
First, we show that for each ~ E G  

Indeed, we have 

Thus 
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By the classical SELN, we get 

Thus, applying Lemma 2 with ak = z k ( a ) ,  we obtain (3.8). 
Let us put 

Now,. we prove that 

' f (n )  . 
(3-9) E F ( ~ )  + 1 and - X(n)  + 1 as n + m with probability one. G ( n )  

To do this we consider a.process A (n), n = 1 ,  2, . . . , being the stain F(n, a) 
when we take f = 1 in (3.4). By (3.8) we get immediately 

Thus, 

Take E > 0. By the uniform continuity off on G there exists a finite &-net 
.T = {E, . . .) c G such that for every U E  G there is i i ~  Z such that 
I f  (a)- f (E)]  < E. Fix ~ E G  and take E E Z .  Then 

Hence 

and, consequently, 

min, f (n ,  4 - &A (n) r (n) < rniniEl f (n, E )  <- 
E5 (4 E t  (4 E5 (4 

The right-hand side of the above inequality, by (3.8), is convergent to 1 as 
n -+ ao with probability one. The left-hand side tends to 1 - E (EX,)-  by (3.10). 
Thus, we obtain the first convergence in (3.9). Similarly, we can prove the 
second one. (3.9) gives immediately (3.7). BS 

4. Proof of Tbeorem 1. Assume that $ E &  is nondecreasing. By (2.1) we 
have t 
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Let supp( f )  c G x [0, b]. Obviously, we can assume that b is a positive 
integer. Putting 

we obtain the estimation 

Let us set - . 

(4.2) ' Y(k,ol )=  C ~ ( i , u ) ,  k = 0 , 1 ,  ... 
(i:kSri<k+l} 

By the assumptions for a fixed a~ G, (Y(k, a): k = 0, 1 ,  . . .) is a sequence 
of independent identically distributed random variables. Moreover, the mean 
value 

b 

EY(O, a) = EX(1, ol)E'(i: 0 6 zi < 1) = E {  f @-ai, z ) d ~  
0 

does not depend on u since al has the uniform distribution on G. Let us put 
f l =  EY(0, u).and y(k, a) = Y(k, a)-fl. 

First, we shall prove that for every U E G  

(4.3) t((t' + f? as t + m with probability one. x" " $ (k) 
k = O  

In fact, by (4.1) and (4.2), we obtain 

Thus 

On the other hand, by the SLLN, we have 
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M 

Now, in Lemma 1 we put a, = 0, ak = Y(k-1, 4, k = 1,  2, ..., and we 
obtain by (4.6), where l/n is replaced by l / (n+ 1), 

The assumption $ E B implies immediately EL, ll, (k) = co. Thus we have 
proved that the right-hand side of (4.5) converges to 0 as t -+ oo with proba- 
bility one. 

. Similarly, by (4.6) and Lemma 1, we get 

Moreover, we have, by I,$ E t, 

c::*;- :_, (k) (b + 3)  t,b ( [ t ]  + 3) - 1 
t t I+Z  < - O(')ct1+3 -+o as t + m .  

C,= , $0 z:=: I,$ (k)  

The left-hand side of (4.5) converges to 0 and (4.3) is thus proved. 
Now, we prove that 

To do this we consider 

Remark that 

Indeed, we have 

Setting 

Y , = # { i :  k < z i < k + l } ,  k = 0 , 1 ,  ..., 
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we obtain 

Obviously, (K: k = 0, 1, ...) is a sequence of independent identically 
distributed random variables with EY, = 1. Moreover, we have 

Thus, the argument similar to that one used in the proof of (4.3) gives 
us (4.8): 

Now, take E > 0. By the uniform continuity off on G x LO, b] there exists 
a finite net C = {&, . ..) c G such that for every U E  G there is ~ E E  such that 

b 

J If  (a, 4-f (E,.c)l d~ < E. 
0 

Then for U E  G one can find a EEZ such that 

Consequently, 

S (r, B m a L z  c (t? 4 ( max max c(t,a) + e  A ( t )  

-E. fl  x:',' $ (k) ' B xF=+t $ (4 - /3 c:!: $ (k) B zF=y $ (k) ' 

Now, by (4.3) and (4.8), taking E + O ,  we get (4.7). 
Similarly, 

Finally, by (4.7) and (4.9) we obtain 

a + 1 as r + m with probability one. 
r (t) 

Now assume that $ is nonincreasing with $ (5) ds = co. In this case the 
proof is similar to the previous part. It is enough to apply Lemma 3 instead of 
Lemma 1. 

We pass to the case where $ is nonincreasing with j: + (s) ds < m. Ob- 
serve that the function t + < ( t ,  a) is nondecreasing for every u E G, so the limit 

14 - PAMS 18.1 
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lim,,, 5 (t, a) = q (or) always exists with q (or) finite with probability one. 
Indeed, 

m 

E4: It, u) 6 Const E+ (z,) d Const C I) ( n )  < a,, 
r i i t  n = O  

since the process x is homogeneous. 
We shall show that supaec;[((t, u)-q(ol)l+O as t -, a, with probabili- 

ty one. 
Obviously, the limit y = lim,+, &t:ri,, $ (xi) exists with probability one. 

A priori it may be infinite. But 

(since 71 is homogeneous with A =  1). 
For E > 0 we can find a K satisfying Pr ( y  2 K) < E. 
By the compactness of G and the continuity off on G x LO, b] we find 

a finite system B c G such that for a€ G there exists a fi = f l ( o l ) ~  3 satisfying 

Thus under the condition (a: y (a) < K} for an arbitrarily hied a E G we 
have 

for t large enough, since 

Thus sup,, 15 (t, a)- q (a)l-, 0 almost uniformly with respect to probability 
measure. By the Egorov theorem the stain petrifies with probability one. w 

5. Proof of Theorem 2. Let 5 = (r ( t ,  a),  t 3 0, UEG) be a stain of the 
form (2.4). We shall show that, for a fixed OIE G, 

'(" + 1 as t + m with probability one. 
Et(t, a) 

Then the rest of the proof is essentially the same as for the stain with 
discrete time (Theorem 3) or for the stain with the compact support of the 
function f (Theorem 1)  and will be omitted. 
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The proof of (5.1) will be reduced to the rounding out theorem for a stain 
with discrete time. 

We have 
t 

t(t, a) = 1 V(z ,  a)d.r, where V ( r ,  a) = $ ( z i )  f (ol-ai). 
0 ti (7 

Putting n = [t] we can write 

- J' C $ (s i )  f(a-rxi)dz+ 1 Vddr. 
[O,n) r < ~ i € [ r ] +  1 [ n J )  

Now we set 

where 

X, are independent identically distributed random variables. In the sequel we 
assume that EXo = 1. 

Obviously, F(n, a) is a stain with discrete time. Moreover, the sequence 
ck = $ (k), k = 0, 1, . . . , satisfies the condition (R). Then we can write 
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Let us put Mn = ~ e ( n ,  m), n = 1, 2,  . . . To prove (5.1) it is enough to 
show that 

and 

S(t' 'I + 1 as t + oo with probability one 
MPI 

By (3.8) in the proof of Theorem 3 we obtain 

(5.7) ' ') + I as n + co with probability one. 
Ma 

We have the following estimation: 

For a fixed c t ~  G, it is easy to check that 

(17 - S E a )  #In - + 0 as n  + oo with probability one 
Mn 

for j = 1, 2, 3, by Lemma 2 and the SLLN. We shall indicate some details only 
for j = 1. 

Clearly, 

Moreover, we have (with 2-, = 0) 

- 
Dividing by M. = XI: +(k)  and applying Lemma 2 with a. = 0, 4 = Xk-, 
and c k  = $ (k), we get, by the SLLN, #I;') + 0 a.e. 
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Finally, by the condition (R), i.e. the formula (3.6) for c, = rl, (k), obviously, 

The proof of (5.6) is similar to that of (5.9, even easier. rn 

6. Examples. In this section we give two examples. In the first one we 
indicate a stain (with discrete time) which does not round out weakly. In the 
second one we construct a stain rounding out strongly but not rounding out 
weakly. 

E X ~ X P L E  1. Keeping the notation of previous sections, let us consider the 
stain of the form 

with Xk(a) )= GB4<k+1 f (a-ai), where f is continuous but not constant. We 

shall show that 5 does round out weakly. 

Indeed, the random variables Xk (a) have the same distribution for all o: E G 
and k 3 0, By the additional assumption, a continuous function f is not con- 
stant. All these imply the existence of a', ~ " E G  and 6 > 0 such that 

(6.1) P (Xk (a') - Xk (a") > 6 )  > 6 

and 
P (X, (a') - X, (a") < - 6)  > 6 

for all t 2 0. 
Assume for simplicity that EXk(a) = 1 and put 

Let us note that 

For 6  as above we fix a B > 1 satisfying the inequality 

P (F(n, a) > BM (n)) < 6/3 for alI n 2 0. 

This is possible because 

and D2 r(n, a) < M ( ~ I ) ~ .  



For R (n) = max,, ?(n, a) and r (n) = min,, c(n, a), obviously, we have 

Thus, putting 
n-1 Xk (a') - Xk (a'') U(n) = (n-k)ek 

t b, 4 Y 

k = O  

W(H)  = ek(X(n-l7 a ' ) -X(n-1 ,  a")), 

for 6' = 6/(2e2) we have 

In the sequel we can assume that P(V(n) 2 0) 2 4 (if not, we take the event 
(V(n) < 0) and continue the argument in a similar way). 

By (6.1), (6.2) and the independence of Xis, we get 

for n large enough. 
Thus 

(since p (AB) 2 p (A) - p  (Be)), so R (n)/r (n) does not converge to one in proba- 
bility as n -, oo. 

Before formulating Example 2, we begin with some general remark. 
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Rem ark  1. For any system of events A,, B1, A,, B2,  . . . such that A,, is 
independent of a (Al, El, . . . , A,, B,, B,+ and P (B,) 2 q > 0 the condition xi P (AJ = + a, implies the inequality 

In fact, on the contrary, suppose that P (U:=, Aqn3,) < Q c q for every s. 
Then 

S 

P (As+ I\ U > (1 -el P (As+ 11, 
9-  1 

SO 
3 

CP(A,+lnBs+I\  U A@,) > CIul-4?)P(As+J = a, 
s 4-1 s 

a contradiction. 
As in the previous sections we put 

EXAMPLE 2. We shall show that there exists a sequence co, cl ,  . . . of posi- 
tive numbers such that for any nonconstant continuous function f a stain 

rounds out weakly but it does not round out strongly. 

Proof. We split the proof into several steps. 
Step 1 (Construction of the sequence (c~)). Let n(s) be a sequence of all 

positive even integers increasing 'slowly' to infinity in the following sense: 

where 

m 

C Sn(Sl = co for each S > 0, 

Both the above conditions will be satisfied if we take for example a se- 
quence 

with kCj) 2 j2,  j = 1,2, ... 



The sequence (ck) will be defined by induction with respect to s. Let us put 

and 

By. (6.4) we have 

Thus Step 1 is finished. 
Step 2. Now, we prove that for each ~ E G  

( + 1 in probability as N -r m. 
EC (N 7 4 

Fix E > 0 m d  take so satisfying 

By (6.8), there exists a ko > m(so) such that 

(6.10) c (r) c ( k ) > - p  for r<m(sd, k 2 k o .  

By (6.4) we can choose s, satisfying 

(6.1 1) m (sl) > 2ko and m (s + 1) < 2m (s) for s > s, . 

Then, for rn (s) < N < pn (s + I), s > 31, we have 
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The stochastic convergence of ( ( N ,  a ) /E{ (N,  a) to one as N -, co can be 
obtained from (6.10) and (6.11) by a standard analysis of polynomial degree. 

Step 3. The proof of the weak rounding out of the stain i: (N, 4 is now 
rather standard. The detailed calculations can be found in [2]. 

Step 4. Let us fix a positive nonconstant continuous function f on G. 
Without loss of generality we can assume that Ef (a-ori) = 1 .  Let us write 
aZ = D2 f (a-ori) > 0. There exist a S > 0, a', a" E G and B 2 1 satisfying the 
inequalities 

(6.12) P (Xk ( a f )  - X k  (or") > 6, Xk (a1') < 3) > 15, 

a P ( X k ( ~ ' ) - ~ k ( ~ " ) < - S , ~ k ( ~ ' ) < B ) > 6 .  

We shall show that the stain t ( N ,  or) does not round out strongly, i.e. 

We can assume that 

(6.14) 

for 

where 6, a', a" are taken as in (6.12). We set 
m ( s + l ) - 1  

A s =  U { x ( k , a f ) - X ( k , d r ) > S , X ( k , a " ) < B ) .  
k = m(s) 

We have 

The definition (6.15) implies P (B,) 2 $ for 
m(s) - 1 

B s = {  ( m ( s + l ) - k ) c ( k ) ( x ( k , a f ) - X ( k , a U ) ) > O  and 
k = O  

with SE 2. Moreover, zz P (A3 = oo by (6.12) and (6.14). 
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By Remark 1, for each N 2 1, 

This implies (6.13) in rather a standard way. ta 
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