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Abstract. In the paper, a sequential confidence set based on an 
estimation process of a multivariate parameter is constructed. Under 
the assumption that the estimation process scaled by an increasing 
positive process has an asymptotic distribution it is proved that the 
sequential confidence set is asymptotically consistent and asymptotic- 
ally efficient. The results are applied to the sequential confidence sets 
based on maximum likelihood estimators of a multivariate parameter 
in the iid case and in the exponential class of processes. 

1. Introduction. Let Yl, Y,, . . . , be a sequence of independent, identically 
distributed random variables with E Y  = y and Var Y = (r2 < a. If a2 is known, 
then the fixed sampIe size confidence interval with endpoints Xnf d has an 
approximate coverage probability 1-a and prescribed width 2d, where 
d = m r ~ &  and @ (ua) = 1 -a/2. When a is unknown, one can, of course, use 
a consistent estimator 6, of a obtaining the 1 - oc approximate coverage proba- 
bility but the width of the confidence interval, although tending to 0 almost 
surely, is not fixed (approximately). One can conclude that there does not exist 
any fmed sample size procedure for which the confidence interval, defined 
above, achieves approximately the 1 - a  coverage probability and the pre- 
scribed width 2d. In Chow and Robbins [3], a sequential confidence interval has 
been defined so that it is asymptotically consistent (the coverage probability 
converges to 1 -a) and asymptotically efficient (the ratio of the expected ran- 
dom sample size to the best fixed sample size converges to 1 as the width of the 
confidence interval tends to 0). The results and ideas of [3] have been extended 
to other models both parametric and non-parametric. In Grambsch [A a se- 
quential fixed-width confidence interval for an unknown parameter based on the 
maximum likelihood estimator was considered. In the paper the stopping time 
has been defined under the assumption that the Fisher information as a func- 
tion of the unknown parameter can be derived. Under the assumption, the 
asymptotical consistency of the sequential confidence interval has been proved. 



In [8] Grambsch extends her results concerned with the asymptotical consis- 
tency to the multidimensional case. The authoress proposes a stopping time 
based on estimate of the smallest eigenvalue of the Fisher information matrix. 
Thus we must stili know the functional dependence of the Fisher information 
matrix on the unknown parameter. The results have been applied to the logistic 
regression problem. In [15] Yu has proved that the sequential fixed-width 
confidence interval based on the maximum likelihood estimator (in the iid case) 
of a one-dimensional parameter and the stopping time defined through the 
empirical Fisher information is asymptotically consistent and asymptotically 
efficient. In Glynn and Whitt [6] the most general model, connected with some 
applications to stochastic simulation, has been considered. Under the assump- 
tion that the estimation process satisfies some version of functional limit law 
the authors prove that the sequential fixed-area confidence set defined by them 
is asymptotically consistent. 

The paper is organized as follows. In Section 2 the results of Glynn and 
Whitt [6] is generalized. Namely, the assumption on the functional limit law is 
replaced by the one that the estimation process scaled by an increasing positive 
process has some asymptotical distribution. A sequential fixed-area confidence 
set has been defined. The confidence set is proved to be asymptotically consis- 
tent and under some additional assumption asymptotically efficient as well 
(with respect to the scaling process). 

In Section 3 the results contained in Yu [I51 are extended to the multi- 
dimensional case. A sequential fixed-area confidence set which is based on the 
maximum likelihood estimator (in the iid case) of an unknown multivariate 
parameter is defined. The appropriate stopping time is defined through the 
empirical Fisher matrix. For such a confidence set, asymptotical consistency 
and asymptotical efficiency are proved. It  is worth noting that the shape of the 
confidence set may be chosen in an arbitrary way, it may be either rectangle or 
ellipsoid or another one. 

In Section 4 the problem of sequential confidence set estimation for the 
exponential class of multivariate process is considered. It is a wide class of 
processes containing diffusion processes, Markov processes with a finite set of 
states and counting processes. We apply the results of Section 2 to get asymp- 
totical consistency and asymptotical efficiency of the sequential confidence set 
for the class of processes. 

In Section 5 some remarks concerned with other possible applications of 
the results are given. Finally, Section 6 contains proofs of propositions and 
theorems formulated in previous sections. 

2. Fixed-width sequential confidence sets. General statement. Let 
X = { X ( t ) ,  t 2 0) be an Rd-valued process called the estimation process for 
estimating the unknown parameter B E  Rd. The time parameter t may be either 
discrete or continuous. For instance, { X ( t ) )  may be a sequence of maximum 
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likelihood estimators of the parameter 0, where t denotes the size of a sample. 
Assume that the estimation process X satisfies the following conditions: 

CONDITION 2.1. There exists a non-singular d x d matrix T, a constant y and 
a stochastic process S ( t)  whose almost a12 realizations are non-negative continu- 
ous functions converging to c~ as t -+ m. In addition, assume that there exists an 
Rd-valued random variable Y with distribution F, such that 

s ( t ) ' ( X ( t ) - O ) * r ~  as t- ,  m. 

Typically, Condition 2.1 is satisfied for y = 3 and a normaIly distributed 
random variable E 

Additionally, we assume that the process X ( t )  is uniformly continuous in 
probability, which means that 

CONDITION 2.2 (see Anscombe [l] and Gut [9]). For every E there exists 
a 6 such that 

PI max IX(t+h)-X(t)(  > E) < E 
O < h < t 8  

for all t greater than or equal to some to. 

To construct a confidence set for 0 on the approximate level l-ol we 
assume that there exists a bounded set A for which 

CONDI~ON 2.3. P ( Y  E A) = 1 -a  and P(Y E aA) = 0, where dA is the 
boundary of A. 

We assume throughout the paper that m(A) > 0, where m is the Lebesgue 
measure in Rd. Let 

C,(t) = X( t ) -S ( t ) - ' rA .  

The following proposition shows that C,(t) is an appropriate confidence set 
achieving the level 1 -a as t + m. 

PROPOSI~ON 2.1. I f  Condition 2.1 is satisfied, then 

Unfortunately, the matrix r is also unknown. Therefore, it must be es- 
timated. Assume that there exists an estimator r ( t )  of r which is weakly 
consistent. This means that r ( t )  =.r as t + oo. Let 

Then we have the following 

PROPOSITION 2.2. If r ( t ) -  r and Conditions 2.1 ,and 2.3 hold, then 

P ( B E C ( ~ ) )  + l - a  as t - 0 ~ ~ .  



Let us turn now to the definition of a sequential stopping rule for con- 
struction of an approximate sequential fixed-size confidence set. Let 

where a(t) is a strictly positive stochastic process decreasing monotonically 
to 0 as t + c~ and satisfying a ( t )  = o (S(t ) -Y)  almost surely. The process a (t) 
guarantees that the stopping rule T(E) does not terminate too early. We have 
TIE) 2 t (E), where 

t ( ~ )  = inf{t 2 0: a(t) < E), 

and- th&. T(E) 2 t ( E )  4 co as E 4 0. To prove theorems about asymptotic valid- 
ity of the stopping rule T(E)  let us assume that the following strong consistency 
condition holds : 

CONDITION 2.4. There exists a strongly consistent estimator T(t) of the 
matrix r, i.e. r(t) r almost surely as t + m. 

Under the conditions given above we can show the following theorem: 

THEOREM 2.1. If Conditions 2.1-2.4 hold and t + oo or E + 0, then 

(i) S (t)? (m (C (t)lid) + a (t)) + m (rA)'ld almost surely, 

(ii) E~~~ S (T(E))  -, m(rA)liyd almost surely, 

(iii) E - (nr (C (~(s))))" + 1 almost surely, 

(iv) E-'[X(T(&))-O] *m(rA)-lidrK 

(v) P (8 E C (T(E))) + 1 - a. 

The results of Theorem 2.1 resemble those of Theorem 1 in Glynn and 
Whitt [6]. The difference is that the assumption (2.1) in [6] ,  concerned with the 
functional central limit theorem for the estimation process, is replaced by Con- 
ditions 2.1 and 2.2. 

The result (ii) of Theorem 2.1 can be strengthened. Namely, under some 
additional assumption on the estimator T(t) and the sequence a(t), the fol- 
lowing theorem asserts that the expected value of S(T(E)) is asymptotically 
equivalent to the optimal non-random size of the 1 -ol  confidence set. 

THEOREM 2.2. If E sup, 11 T (t)liY 11 < co and a (t) = u ( S  (t)- I), then 

Remark  2.1. Here, we define llrl as ~ i ~ j l y i , j l .  

3. Sequential fixed-width confidence sets associated with the maximum like- 
lihood estimation of a multivariate parameter. Let U,, U, ,  . . ., U,,  . . . be a se- 
quence of independent, identically distributed random variables with density 
function f (u, 0) depending on an unknown parameter O E  Rd. Assume that the 
following Cramer regularity conditions hold: 
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, CONDITION 3.1. For drnost all u, all i ,  k ,  I = 1 ,  2,  . . . , d and all 0 E Rd the 
I derivatives 

I exist. Morewer, assume that there exist functions Gi, Hkrl, Nk,l such that 
! 

and . . 

where 

E @ G i ( u ) / f ( u , u ) < o o ,  E @ H k , l ( U ) / f ( U , e ) < o O  
, and 

Et3 Ni,k ( U )  1ogNi.k (U) < a. 

CONDITION 3.2. For each i, k ,  1 = 1, 2, . . . , d there exist functions Ji,k,l such 
that for euery 8 a d  for almost all u 

CONDITION 3.3. For every 8 the matrix 

is positive deJinite. 

Under these conditions it is well known that the maximum likelihood 
estimator i?n of the parameter 13 is strongly consistent and asymptotically nor- 
mal, i.e. & -, 8 almost surely and 

Putting S(t )  = n and X ( t )  = on we infer that Condition 2.1 holds with y = 4, 
r = (Z (8)-')"', and Y being a random variable JV (0, I )  distributed. More- 
over, it is easy to see that the sequence 0, satisfies Condition 2.2, which means 
that the sequence of maximum likelihood estimators of 8 is uniformly con- 
tinuous in probability. 

Let A be a set for which Condition 2.3 is satisfied and Cr(n) = 

dn - n- ' I 2  TA, where T. = (Z- ' (8))"'. Since the matrix Z (8) depends on the 
unknown parameter 8, the matrix r is also unknown. Therefore, as an 



estimator of r we take T (n) = (2-' (6n))11" where 

where j, k = 1 ,  2, . . ., d. Consequently, we can define the sequence 

of confidence sets and the following stopping time: 

T(E)  = inf (n > 0: rn (C (n))'Id + a (n) < 
where, as in Section 2, m denotes the Lebesgue measure in Rd and 
a (n) = o (n-'/'). Now, applying Theorems 2.1 and 2.2 we obtain the following 
results : 

THEORBM 3.1. If Conditions 3.1-3.3 hold and n 4 co or E 4 0, then 
(i) nY (m (C (n)lld) +a  (n))  4 rn(TA)lid almost surely, 

(ii) &' jY  T(E) + m (rA)'IYd almost surely, 

(iii) 8 - I  (m (C (~(e))))" t 1 almost surely, 
(iv) [#T(e)-$]  - ~ ( T A ) - ' / ~ ~ Y ,  
(v) P ( ~ ~ E C ( T ( E ) ) )  4 1 -a. 

THEOREM 3.2. If Conditions 3.1-3.3 hold and a(n) = o(n-'), then 

4. Fixed-area sequential confidence sets based on the exponential family of 
stochastic processes. Let (O, 9) be a measurable space with a class of probabili- 
ty measures (Po,  B E  O), O c Rd, and with a stochastic process Y By & we 
denote the right-continuous filtration generated by the process Y observed on 
the interval [0, t ] .  Let Pi  be the restriction of Po to g. The process Y is 
supposed to belong to the exponential class of processes, which means we 
assume that there exists a measure P on (O, P) such that, for all t > 0 and 
0 ~ 0 ,  pf, -4 Pt and 

dP; 
(1). L,(B) = - = exp (BTAt - ~ ( 0 )  s,), 

dP,  

where T denotes the operation of transposition. The density LC (8) is the likeli- 
hood function for the process Y observed on the interval [0, t]. The process 
A is a d-dimensional vector process which is supposed to be right-continuous 
with limits from the left. It is also assumed that the process St is a non-de- 
creasing predictable process for which So = 0, St 4 oo as t 4 co, and almost all 
realizations of the process Sf are continuous functions. The exponential class of 
processes defined by formula (1) contains many important classes of processes 
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including exponential familes of diffusions, exponential families of counting 
processes and Markov processes with finite state-space (see Kiichler and 
Ssrensen [10], Stefanov [14], Slerrensen [13]). Now, assume that the following 
conditions hold: 

CONDITION 4.1. The function KC) in (I) is a steep strictly convex function (see 
Kiichler and Sarrensen [lo] for the definition of a steep function), 
P 8 ( A t / S t ~  8C) = 0, where C denotes the closed convex support of the random 
uariable B,/u (B, = A,(,, and z(u) = in f ( t :  S,  2 u)). Moreover, suppose that 
8 ~ 0 ;  . 

CONDETION 4.2. There exists an increasing non-random function I $ ~  ( t )  such 
that under Po we have St/& ( t)  + t12 (0) in probability as t + co, where q 2  (8) is 
a strictly positive jinite random variable. 

CONDITION 4.3. The function VD u is a homeomorphism $-om Rd onto Rd. 

Using a random change of time argument, Kiichler and S~zrrensen [lo] 
have proved (see also Stefanov [14]) that under Conditions 4.14.3 the max- 
imum likelihood estimator 8, of the parameter 0 exists. The estimator is 
uniquely determined and 

Moreover, under Ps, ot 4 8 almost surely and 

where Y is a random variable with the H ( 0 ,  I) distribution and 

To estimate the unknown matrix r we apply 

r (t)  = (z - (&))li2 

which is obviously a strongly consistent estimator of r. Thus we can turn to 
the construction of a sequential confidence set. Let A be a set for which Condi- 
tion 2.3 is satisfied and let 

C(t )  = f i t -  S(t ) - ' I2r( t )  A 

be a family of confidence sets. Defining the stopping time 

T(E) = id{t 2 0: m ( ~ ( t ) ) " ~ + a ( t )  4 €1, 
where a(t)  is a strictly positive stochastic process decreasing monotonically 
almost surely to 0 as t + co and satisfying a ( t)  = o(S (t)-I/'), we get the following 

THEOREM 4.1. Under Conditions 4.1-4.3 the stopping time T ( E )  and the 
conJidence sets C ( t )  and C (T(E) )  have all the properties formulated in Theorem 2.1. 



Moreover, under some additional assumptions the first order efficiency of 
the stopping time T(E) can be proved. Namely, we have 

THEOREM 4.2. If a ( t )  = o(S(t))  and there exists C > 0 such that 

for some 0 G p < 2, then E' ES ( ~ ( 8 ) )  + m (rA)'Id as E + 0. 

Remark  4.1. Actually, the condition given by formula (2) includes many 
important examples and it is not too restrictive. One could see that if B E  R, 
then functions ~ ( 6 )  which are majorized by polynomials of B or an exponen- 
tial-function of 0 satisfy (2). The same is true for multivariate generalizations of 
one-dimensional models. 

EXAMPLE 1 (see Snrrensen El21 and Erlandsen and S~rrensen 151 for details 
and practical applications of the model considered). Let I; be a solution to the 
following stochastic differential equation: 

where OE@ c R, is a Wiener process, and b, v, a, are known non-an- 
ticipating functionals which satisfy conditions of the Lipschitz type guarantee- 
ing the existence and uniqueness of a solution to the stochastic equation (3) for 
all B E  O. Let us define the following stochastic processes: 

t t 

(4) At = leS(n2 P ~ ( Y ) ~ ~ - ~ ~ ~ : , ( V ~  M ( Y ) v ~ ( Y ) ~ s  
0 0 

and 
t 

(5) st = j & ( Y ) 2 ~ s ( v 2 d s ,  
0 

where 

if at ( Y )  # 0, 
otherwise. 

Assume now that Pg (0, (Y) = 0 )  = 0, Pa (St < CO) = 1 for all t 2 0 and all 8 E 0. 
Then the measures Pi are mutually equivalent. If we choose Pt = Pi for some 6 
then the Radon-Nikodym derivatives are of the form (1) with A, and S, 
given by (4) and (5) and with u(8) = 30'. In addition, assume that 
P(lim,,, S, = m) = 1 and that Condition 4.2 holds. Note that, obviously, Con- 
ditions 4.1 and 4.3 are satisfied. The maximum likelihood estimator & takes the 
form t?t = A, SF 

Let A = [ - u,, u,], where @ (u,) = 1 - a/2. Since in the example u (8)  = 1 
the confidence sets Cr( t )  = C(t) take the following form: 

c (t )  = tot - S (t) - U,, ot 4- S ( t )  - lJ2 u,] . 
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By Theorems 4.1 and 4.2, the stopping time T(E) and the confidence set C (T(c)) 
may be a useful tool for estimation and hypotheses testing as well. 

EXAMPLE 2. Let N ,  be a counting process with intensity A, = QU,, where 
U, is a positive predictable stochastic process with finite expectation for all t .  
Then the likelihood function for the process N is given by (1) with 0 = loge, 
r(6) = 8- 1, A, = N, and S, =So U,ds, Assuming that j: U,ds = m we see 
that all Conditions 4.14.3 are satisfied. The maximum likelihood estimator for 
0 is dt = log A, ST1 and the estimator r ( t )  = exp (- gt). Then, if [-u,, u,] is as 
in Example 1, the confidence set C(t)  takes the form 

.. . 

C(t )  = [ .  log (;;) - -- kg log($)+-$. 

Further, by Theorems 4.1 and 4.2 we have the desired asymptotic validity and 
efficiency of the first order for the stopping time T(E)  and the confidence set 
C IT(&)). 

5. Concluding remarks. It is worth noting that the results of Section 2 
could be applied to the cases when the partial likelihood method of esti- 
mation is used. In the recent paper by Martinsek [ll] a sequential confidence 
ellipsoid for the multivariate parameter of logistic regression has been con- 
structed. The confidence set has been proved to be asymptotically consistent 
and asymptotically efficient. Sirnilar results but in a simpler way could 
be proved by using the results of Section 2. It is also possible to obtain 
asymptotically consistent and efficient confidence sets based on M-estimators. 

It is also worth of interest to construct such confidence sets for estimation 
of the intensity function in a multiplicative model of a counting process. The 
results will be presented in the forthcoming paper. 

6. Proofs. 
P roo f  of P ropos i t i on  2.1. The matrix r is non-singular, and thus 

By Condition 2.1, we have 

and since P (Y  E aA) = 0, we obtain 

which completes the proof of the proposition. 

P roo f  of P ropos i t i on  2.2. By Condition 2.1 and Theorem 4.4 of Bil- 
lingsley [2], the random vector 



Applying the continuous mapping theorem (Theorem 5.1 of Billingsfey [2]) we 
obtain 

r ( t ) - l S ( t ) ~ ( ~ ( t ) - O ) = . r - l T Y = Y  as t +m.  

Further the proof goes along the lines of the proof of Proposition 2.1. 

P r o  of of T h e  orem 2.1. The proof of the theorem goes along the lines of 
that of Theorem 1 in Glynn and Whitt [6], and therefore it is omitted. 

P r  o of of Theorem 2.2. Using Theorem 2.1 (ii) it is enough to prove that 
E ~ / ~  S ( ~ ( 8 ) )  is uniformly integrable with respect to E. Let V ( t )  = m(C (t))'" + 
a(@.  Note that, by the spatial invariance and the scaling properties of the 
~ebesgue measure m, we have 

By the definition of T(e) we obtain V (TIE)- 1) > E. Since E sup, Ilr(t)li711 < co 
and a ( t )  = o (S (t)- l), we can write 

c M sup J (det (r (T(E) - 1) m ( A ) ) ) " ~ ~  dP 
= B 

Consequently, clIY S(T(E) )  is uniformly integrable with respect to E, which by 
Theorem 2.1 (ii) completes the proof of Theorem 2.2. 

P roo f  of T h e  orem 3.1. Obviously, under Conditions 3.1-3.3, Condi- 
tions 2.1-2.3 are in force. To check the validity of Condition 2.4 let us note that, 
by the strong consistency of the maximum likelihood estimator on and the 
strong Iaw of large numbers, 

converges almost surely to the matrix Z (6) as n -, co. The continuity of square 
root and inverse operation for matrices imply that converges almost surely 
to r = (Z-1)112  as n +a. Finally, the theorem is a straightforward conse- 
quence of Theorem 2.1. 

P r o  of of Theorem 3.2. To prove the theorem it is enough to show that 
EBsupn I(I'(n)ZII < m. In the case considered we have r(n)2 = f-'(&), where 
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Denoting by L m i n ( L )  the smallest eigenvalue of a matrix Z, let us note that 

The random variables q.:.,(Ui) are independent, identically distributed (with 
respect to (i)). Thus Condition 3.1 and Theorem 4.14 (Chow et al. [4]) imply 
that 

1 " 
&SUP- 4 , k ( U i )  < n i , l  

Consequently, we can write 

which implies that the sequence ,fmin(z (&)) is uniformly integrable. Since the 
estimator on is strongly consistent, it follows that Jmin (2 (&I) 4 lmin (2 (0)) al- 
most surely as n + c ~ ,  which together with uniform integrability gives 

Consequently, 

1 
Ee sup Il r (n)' II < CEO SUP ,fm,, (r (#) = E8 SUP 

n n Jmin (2 (on)) 

which completes the proof, 

P roo f  of Theorem 4.1. Let us define the stopping time 

2, = infit: St 2 u). 

Since S is non-decreasing and continuous, the mapping u + 2, is strictly in- 
creasing and has an inverse function. Obviously, we have S (7,) = u. Moreover, 
one can prove (see Stefanov [I41 and Kiichler and Snrrensen [lo])  that the 
process 

Bu = A ( S  (GI) 



is a process with homogeneous independent increments for which E B B ,  = 
& IC (0) u and the covariance matrix 

In fact, we can write that z (St) = t, and thus A, = B,(,). Hence, all properties of 
the process A, can be deduced by investigating the process B with changed 
random time. Consequently, using the random change time argument we ob- 
tain Conditions 2.1-2.4 from Conditions 4.1-4.3. Finally, Theorem 4.1 foIlows 
immediately from Theorem 2.1. 

P rno of of Theorem 4.2, Let Amin (Z) be the smallest eigenvalue of the 
matrix E. Then we can write 

Taking the expectation value on both sides and the formula for Ot we obtain 

E sup n,i" (z (41) < C sup I1 G K ( 4 t  l l P  
f 

= CEsup 11 5Vi1 rc(At/St)IIP = CEsup IIA,/S,II". 
t I 

In the same way as in the proof of Theorem 4.1 we can define the stopping time 
z, such that the process B, = A (S (z,)) is a process with homogeneous indepen- 
dent increments. Moreover, the process 

B , - h ~ ( 6 ) u  

is a square integrabIe martingale, which implies that 

Esup llB,/u(12 < oo. 
I 

From the fast statement we infer that also 

Finally, we have E sup, imi, (Z (@) < m. Thus Ad, (Z (0,)) is uniformly integra- 
ble with respect to t. The rest of the proof runs in the same way as the proof of 
Theorem 3.2. 
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