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Abstract. In the paper, a sequential confidence set based on an
estimation process of a multivariate parameter is constructed. Under
the assumption that the estimation process scaled by an increasing
positive process has an asymptotic distribution it is proved that the
sequential confidence set is asymptotically consistent and asymptotic-
ally efficient. The results are applied to the sequential confidence sets
based on maximum likelihood estimators of a multivariate parameter
in the iid case and in the exponential class of processes.

1. Introduction. Let Y,, Y,, ..., ¥, be a sequence of independent, identically
distributed random variables with EY = p and VarY = ¢? < 0. If 62 is known,
then the fixed sample size confidence interval with endpoints X,+d has an
approximate coverage probability 1—a and prescribed width 2d, where

~ au,/'\/ﬁ and @ (u,) = 1 —oa/2. When o is unknown, one can, of course, use
a consistent estimator 6, of ¢ obtaining the 1 —a approximate coverage proba-
bility but the width of the confidence interval, although tending to 0 almost
surely, is not fixed (approximately). One can conclude that there does not exist
any fixed sample size procedure for which the confidence interval, defined
above, achieves approximately the 1—a coverage probability and the pre-
scribed width 2d. In Chow and Robbins [3], a sequential confidence interval has
been defined so that it is asymptotically consistent (the coverage probability
converges to 1—a) and asymptotically efficient (the ratio of the expected ran-
dom sample size to the best fixed sample size converges to 1 as the width of the
confidence interval tends to 0). The results and ideas of [3] have been extended
to other models both parametric and non-parametric. In Grambsch [7] a se-
quential fixed-width confidence interval for an unknown parameter based on the
maximum likelihood estimator was considered. In the paper the stopping time
has been defined under the assumption that the Fisher information as a func-
tion of the unknown parameter can be derived. Under the assumption, the
asymptotical consistency of the sequential confidence interval has been proved.
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In [8] Grambsch extends her results concerned with the asymptotical consis-
tency to the multidimensional case. The authoress proposes a stopping time
based on estimate of the smallest eigenvalue of the Fisher information matrix.
Thus we must still know the functional dependence of the Fisher information
matrix on the unknown parameter. The results have been applied to the logistic
regression problem. In [15] Yu has proved that the sequential fixed-width
confidence interval based on the maximum likelihood estimator (in the iid case)
of a one-dimensional parameter and the stopping time defined through the
empirical Fisher information is asymptotically consistent and asymptotically
efficient. In Glynn and Whitt [6] the most general model, connected with some
applications to stochastic simulation, has been considered. Under the assump-
tion that the estimation process satisfies some version of functional limit law
the authors prove that the sequential fixed-area confidence set defined by them
is asymptotically consistent.

The paper is organized as follows. In Section 2 the results of Glynn and
Whitt [6] is generalized. Namely, the assumption on the functional limit law is
replaced by the one that the estimation process scaled by an increasing positive
process has some asymptotical distribution. A sequential fixed-area confidence
set has been defined. The confidence set is proved to be asymptotically consis-
tent and under some additional assumption asymptotically efficient as well
(with respect to the scaling process).

In Section 3 the results contained in Yu [15] are extended to the multi-
dimensional case. A sequential fixed-area confidence set which is based on the
maximum likelihood estimator (in the iid case) of an unknown multivariate
parameter is defined. The appropriate stopping time is defined through the
empirical Fisher matrix. For such a confidence set, asymptotical consistency
and asymptotical efficiency are proved. It is worth noting that the shape of the
confidence set may be chosen in an arbitrary way, it may be either rectangle or
ellipsoid or another one.

In Section 4 the problem of sequential confidence set estimation for the

“exponential class of multivariate process is considered. It is a wide class of

processes containing diffusion processes, Markov processes with a finite set of
states and counting processes. We apply the results of Section 2 to get asymp-
totical consistency and asymptotical efﬁciency of the sequential confidence set
for the class of processes.

In Section 5 some remarks concerned with other possible applications of
the results are given. Finally, Section 6 contains proofs of propositions and
theorems formulated in previous sections.

2. Fixed-width sequential confidence sets. General statement. Let
X ={X(#), t > 0} be an R%valued process called the estimation process for
estimating the unknown parameter 6 R%. The time parameter t may be either
discrete or continuous. For instance, {X (t)} may be a sequence of maximum



Fixed-size sequential confidence sets 21

likelihood estimators of the parameter 8, where ¢ denotes the size of a sample.
Assume that the estimation process X satisfies the following conditions:

CONDITION 2.1. There exists a non-singular d x d matrix I', a constant y and
a stochastic process S(t) whose almost all realizations are non-negative continu-
ous functions converging to o0 as t — co. In addition, assume that there exists an
R%valued random variable Y with distribution F, such that

SE(X({)—0)=TY ast— .

Typically, Condition 2.1 is satisfied for y = 4 and a normally distributed
random variable ‘Y. o :

Additionally, we assume that the process X (¢) is uniformly continuous in
probability, which means that

ConpITION 2.2 (see Anscombe [1] and Gut [9]). For every & there exists
a & such that

P(max [X(t+h—X@)>¢<e
O<h<td

for all t greater than or equal to some t,.

To construct a confidence set for 6 on the approximate level 1—a we
assume that there exists a bounded set 4 for which

ConpITION 2.3. P(YeA)=1—a and P(Yedd)=0, where 0A is the
boundary of A.

We assume throughout the paper that m(4) > 0, where m is the Lebesgue
measure in RY. Let

Cr()=X@)—S(@) "IA.

The following proposition shows that C,(¢) is an appropriate confidence set
achieving the level 1—a as t — co.

- ProposITION 2.1. If Condition 2.1 is satisfied, then
P(0eCr(t) > 1—a ast— 0.

' Unfortunately, the matrix I' is also unknown. Therefore, it must be es-
timated. Assume that there exists an estimator I'(t) of I' which is weakly
consistent. This means that I'(f)=1I as t - co. Let

Ct)=X@t)—-S@®'"I'@H)A.
Then we have the following
ProposiTioN 2.2. If I'(t)=1T and Conditions 2.1 and 2.3 hold, then
PfeC)—>1—a ast— 0.
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Let us turn now to the definition of a sequential stopping rule for con-
struction of an approximate sequential fixed-size confidence set. Let

T(e) = inf{t > 0: m(C ()" +a(r) < g},

where a(t) is a strictly positive stochastic process decreasing monotonically
to 0 as ¢ — oo and satisfying a(f) = o(S(¢)~?) almost surely. The process a(z)
guarantees that the stopping rule T'(s) does not terminate too early. We have
T(e) = t(g), where

t(e =inf{t 2 0: a(t) <&},
and thus. T'(¢) = t(g) — oo as £ —» 0. To prove theorems about asymptotic valid-

ity of the stopping rule T'(¢) let us assume that the following strong consistency
condition holds:

CONDITION 2.4. There exists a strongly consistent estimator I'(t) of the
matrix I, ie. ['(t)— I almost surely as t — 0.

Under the conditions given above we can show the following theorem:

THeoreM 2.1. If Conditions 2.1-2.4 hold and t — oo or ¢ — 0, then
) S@ (m(C@®))+a(t))>m( A almost surely,
(i) &7 S(T(e)) > m(I'A)'"" almost surely,
1/d

(iii) &1 (m (C(T(s)))) — 1 almost surely,

(iv) e [X (T(e))—0] =m(TA)~1rY,

(v) P(0eC(T(e)) > 1—a.

The results of Theorem 2.1 resemble those of Theorem 1 in Glynn and
Whitt [6]. The difference is that the assumption (2.1) in [6], concerned with the
functional central limit theorem for the estimation process, is replaced by Con-

ditions 2.1 and 2.2.
The result (i) of Theorem 2.1 can be strengthened. Namely, under some

‘additional assumption on the estimator I'(t) and the sequence a(z), the fol-

lowing theorem asserts that the expected value of S(T(e)) is asymptotically
equivalent to the optimal non-random size of the 1 —o confidence set.

TueoreM 2.2. If Esup, | ()| < co and a(t) = o(S(2)™"), then
e'"ES(T(e)) > m(LA)'"""  as ¢ 0.
Remark 2.1. Here, we define || as Zizjh’i,ﬂ-

3. Sequential fixed-width confidence sets associated with the maximum like-
lihood estimation of a multivariate parameter. Let U,, U,, ..., U,, ... be a se-
quence of independent, identically distributed random variables with density
function f (u, 8) depending on an unknown parameter 6 e R%. Assume that the
following Cramer regularity conditions hold:
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CoNDITION 3.1. For almost all u, all i, k,1=1,2,...,d and all 6 R? the
derivatives

d 92 3
—1 —1 0 — 1
35,108 1 0 spsrlog [, 0, zrylog (. )
exist. Moreover, assume that there exist functions G;, Hy,, N, such that
9, 0) < G, |20l 0) < Hy )
a0,” " W \5e, 00,7 " kot
and
62
\a_ei’a@—kk’gf(u’ 0) < Ni,k(u):
where
EeGi(U)/f(U,0) <0, EgH, (U)/f(U, 0 <
and

EgN;,(U)logN;,(U) < 0.

ConbpITION 3.2, For each i, k, 1 =1, 2, ..., d there exist functions J;; ; such
that for every 0 and for almost all u

63
’Wlogf(un 9) < Ji,k,l (u) and Sl;p-Eo ‘Ii,k,l (U) < 00.

ConpITION 3.3, For every 0 the matrix
20) = | B, log f(U, 0)-2-1og £(U, )

is positive definite.

Under these conditions it is well. known that the maximum likelihood
estimator 0, of the parameter 9 is strongly consistent and asymptotically nor-
mal, ie. §,— 0 almost surely and

Jnl,—0)=> (0,2 as n—oo.

Putting S(t) = n and X (t) = §, we infer that Condition 2.1 holds with y = 4,
r=(Z (0)'1)1/2, and Y being a random variable 4" (0, I) distributed. More-
over, it is easy to see that the sequence @, satisfies Condition 2.2, which means
that the sequence of maximum likelihood estimators of @ is uniformly con-
tinuous in probability. '

Let A be a set for which Condition 2.3 is satisfied and Cr(n) =
0,—n~Y2TA, where I' = (Z '1(0))1/2. Since the matrix X (6) depends on the
unknown parameter 6, the matrix I' is also unknown. Therefore, as an
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estimator of I' we take I'(n) = (£1(,)""*, where

" 12 o?
2(611) = l:—;z,l (MIOEf(Ui: 0)>a—6 :|,

where j, k=1, 2, ..., d. Consequently, we can define the sequence

Cm)=0,—n"Y*rn4
of confidence sets and the following stopping time:
- T(e) = inf {n > 0: m(C(n)"""+a(n) < &},

where, as in Section 2, m denotes the Lebesgue measure in R? and
a(n) = o(n~'/?). Now, applying Theorems 2.1 and 2.2 we obtain the following
results:

TraeoreM 3.1. If Conditions 3.1-3.3 hold and n— o or ¢ -0, then
@) n?(m(C (') +a(m) »>mI )" almost surely,

(i) &' T(e) > m(L4)*** almost surely,
1/

(iii) ¢! (m (c (T(s)))) T 51 almost surely,
(iv) & ' [Or@—01=>mT 4)~"*TY,
(v) P(0eC(T() > 1—o

THeOREM 3.2. If Conditions 3.1-3.3 hold and a(n) = o(n™?!), then
e"ET(g) »m(TA)Y  as e - 0.

4. Fixed-area sequential confidence sets based on the exponential family of
stochastic processes. Let (2, &) be a measurable space with a class of probabili-
ty measures (P, 0 @), ® c RY, and with a stochastic process Y. By & we
denote the right-continuous filtration generated by the process Y observed on
the interval [0, t]. Let P% be the restriction of P, to %, The process Y is
‘supposed to belong to the exponential class of processes, which means we
assume that there exists a measure P on (2, #) such that, for all ¢t > 0 and
0e®, Py < P and

14
(1) L(0) = 570 - cxp (674, (9)5)).

t
where T denotes the operation of transposition. The density L, (0) is the likeli-
hood function for the process Y observed on the interval [0, t]. The process
A is a d-dimensional vector process which is supposed to be right-continuous
with limits from the left. It is also assumed that the process S, is a non-de-
creasing predictable process for which S, = 0, S, = c0 as t — o0, and almost all
realizations of the process S, are continuous functions. The exponential class of
processes defined by formula (1) contains many important classes of processes
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including exponential families of diffusions, exponential families of counting
processes and Markov processes with finite state-space (see Kiichler and
Sorensen [10], Stefanov [14], Serensen [13]). Now, assume that the following
conditions hold:

CoNDITION 4.1. The function k(*) in (1) is a steep strictly convex function (see
Kiichler and Serensen [10] for the definition of a steep function),
Py(A,/S,€0C) = 0, where C denotes the closed convex support of the random
variable B,/u (B, = Ay and t(u) =inf{t: S, > u}). Moreover, suppose that
fe@: -

CONDITION 4.2. Theié exists an increasing non-random function ¢, (t) such
that under P, we have S,/¢,(t) = n*(0) in probability as t — oo, where n*(6) is
a strictly positive finite random variable.

CoNDITION 4.3. The function Vyx is a homeomorphism from R® onto R

Using a random change of time argument, Kiichler and Serensen [10]
have proved (see also Stefanov [14]) that under Conditions 4.1-4.3 the max-
imum likelihood estimator §, of the parameter 6 exists. The estimator is
uniquely determined and

gt = Va_l K (A,/Sy).
Moreover, under P,, 8, — 0 almost surely and
J5.0,—6)=>#0,I*)=TY,

where Y is a random variable with the .#7(0, I) distribution and
) . 62 d
r=x1 Z@=|———x(@
©) |:6Gj60k ( ):Ij,k=1
To estimate the unknown matrix I' we apply

re=E"1@)"

which is obviously a strongly consistent estimator of I'. Thus we can turn to
the construction of a sequential confidence set. Let 4 be a set for which Condi-
tion 2.3 is satisfied and let

Ct)=0,—S@)~"*rmp4
be a family of confidence sets. Defining the stopping time
T(e) = inf {t > 0: m(C (1)) +a(t) <&},

where a(t) is a strictly positive stochastic process decreasing monotonically
almost surely to 0 as t — oo and satisfying a(t) = o(S ()~ '/%), we get the following

THEOREM 4.1, Under Conditions 4.1-4.3 the stopping time T(g) and the
confidence sets C (t) and C (T (¢)) have all the properties formulated in Theorem 2.1.
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Moreover, under some additional assumptions the first order efficiency of
the stopping time T(¢) can be proved. Namely, we have

THEOREM 4.2. If a(t) = o(S(2)) and there exists C >0 such that
0] 2O < Clivax(O))*

for some 0 <p<2, then & ES(T(e)) > m(I'A)** as ¢ 0.

Remark 4.1. Actually, the condition given by formula (2) includes many
important examples and it is not too restrictive. One could see that if e R,
then all functions « (6) which are majorized by polynomials of 6 or an exponen-
tial-function of @ satisfy (2). The same is true for multivariate generalizations of
one-dimensional models.

ExaMPLE 1 (see Serensen [12] and Erlandsen and Serensen [35] for details
and practical applications of the model considered). Let Y, be a solution to the
following stochastic differential equation:

() Y, = (O (Y)+v, (Y))dt +0,(Y) dW,,

where 0e® < R, W, is a Wiener process, and u, v,, 6, are known non-an-
ticipating functionals which satisfy conditions of the Lipschitz type guarantee-
ing the existence and uniqueness of a solution to the stochastic equatlon (3) for
all fe®. Let us define the following stochastic processes:

“) A, = I53(Y)ZMS(Y)dYs—55s(Y)2us(Y)vs(Y)dS
and ’ ’

©) S, = j&s(Y)z us(Y)? ds,

where °

5. (y) = 0:()’) Lif o,(y) #0,
G otherwise.

- Assume now that Py(0,(Y) =0) =0, P, (S < oo) =1forallt > 0and all fe®.
Then the measures Pj are mutually equivalent. If we choose P* = P} for some g,
then the Radon-Nikodym derivatives. are of the form (1) with 4, and S,
given by (4) and (5 and with «x(0) =46% In addition, assume that
P(lim,,, S; = o0) = 1 and that Condition 4.2 holds. Note that, obviously, Con-
ditions 4.1 and 4.3 are satisfied. The maximum likelihood estimator 6, takes the
form 6, = A,S; 1.

Let A =[—u,, u,], where @ (u,) = 1—a/2. Since in the example £(6) = 1
the confidence sets Cj(t) = C(t) take the following form:

C(t) =[0~S©) P uy, 6+S@®) " ul.
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By Theorems 4.1 and 4.2, the stopping time T'(¢) and the confidence set C (T()
may be a useful tool for estimation and hypotheses testing as well.

ExaMPLE 2. Let N, be a counting process with intensity 4, = oU,, where
U, is a positive predictable stochastic process with finite expectation for all z.
Then the likelihood function for the process N is given by (1) with 0 = logg,
k(@) =e—1, 4, =N, and S, = [ U,ds. Assuming that [’ Uds = co we see
that all Conditions 4.1-4.3 are satisfied. The maximum likelihood estimator for
0is 0, = logA, S ! and the estimator I' (£) = exp (—0,). Then, if [ —u,, u,] is as
in Example 1, the confidence set C(t) takes the form

i - N U, N, U,
o C()= |:log (—')—~—, lo (—>+—]
S:) /N, & S:) /N,
Further, by Theorems 4.1 and 4.2 we have the desired asymptotic validity and

efficiency of the first order for the stopping time T'(¢) and the confidence set
C(T(9)

5. Concluding remarks. It is worth noting that the results of Section 2
could be applied to the cases when the partial likelihood method of esti-
mation is used. In the recent paper by Martinsek [11] a sequential confidence
ellipsoid for the multivariate parameter of logistic regression has been con-
structed. The confidence set has been proved to be asymptotically consistent
and asymptotically efficient. Similar results but in a simpler way could
be proved by using the results of Section 2. It is also possible to obtain
asymptotically consistent and efficient confidence sets based on M-estimators.

It is also worth of interest to construct such confidence sets for estimation
of the intensity function in a multiplicative model of a counting process. The
results will be presented in the forthcoming paper.

6. Proofs.
Proof of Proposition 2.1. The matrix I' is non-singular, and thus

P(0eCr(t) = P(I' 1S (X ()—0)e A).
By Condition 2.1, we have
risey(X@©-0)=r"ry=y  ast—-o,
and since P(Y edA) =0, we obtain
P(r'S@(X()—0)ed)»>P(Yed)=1—a as t— oo,
which completes the proof of the proposition.

Proof of Proposition 2.2. By Condition 2.1 and Theorem 4.4 of Bil-
lingsley [2], the random vector

[Fr®, s (xX@®-0]=[I, Y] ast-oo.



28 R. Rézanski

Applying the continuous mapping theorem (Theorem 5.1 of Billingsley [2]) we
obtain

r@e 1SE(X®—0=r"ry=y ast-oo.
Further the proof goes along the lines of the proof of Proposition 2.1.

Proof of Theorem 2.1. The proof of the theorem goes along the lines of
that of Theorem 1 in Glynn and Whitt [6], and therefore it is omitted.

Proof of Theorem 2.2. Using Theorem 2.1 (ii) it is enough to prove that
¢'”S(T(¢)) is uniformly integrable with respect to e. Let V(t) =m(C (t))”d+
a(f). Note that, by the spatial invariance and the scaling properties of the
Lebesgue measure m, we have

1/d

m(X(O)—S®) 7L ©)A)" =S " m(T ©)4)" = S@) 7 (det(T @)m(4) "

By the definition of T'(¢) we obtain ¥ (T(e)—1) > &. Since E sup, ||I' (t)'/"[| < oo
and a(t) = o(S(t)™!), we can write

sup | e'/7 S(T(e))dP < sup | S(T(e)) V(T () —1)*" dP
< Msup  (det (I (T()— 1) m(4))) " dP
< Msup [ (sup (|7 (¢)") m(4)) " dP -0  as P(B)—0.

Consequently, ¢'/” S(T'(¢)) is uniformly integrable with respect to &, which by
Theorem 2.1 (ii) completes the proof of Theorem 2.2.

Proof of Theorem 3.1. Obviously, under Conditions 3.1-3.3, Condi-
tions 2.1-2.3 are in force. To check the validity of Condition 2.4 let us note that,
by the strong consistency of the maximum likelihood estimator §, and the
strong law of large numbers,

" . 12 0?
I,= 2(5:: = [—;i; (mlogf(Ui, 9))8=a":|

converges almost surely to the matrix 2 () as n —co. The continuity of square
root and inverse operation for matrices imply that I, converges almost surely
to I'=(Z~Y2 as n—o0. Finally, the theorem is a straightforward conse-
quence of Theorem 2.1.

Proof of Theorem 3.2. To prove the theorem it is enough to show that
Egsup, |I'(n)?|| < co. In the case considered we have T (n)*> = £~ *(0,), where

; 1o 62 .
26 = [_E._Zl (ae. 50, °8/ e 9))o=é ]
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Denoting by Ay, (Z) the smallest eigenvalue of a matrix X, let us note that

(aaae log f (Us, 9)) i

Sup/'fmm(fa (6,) < sup I1Z2@) < Z Z sup— Z

j=1k=1 n i
Z Z S“P Z Lk (U3
j=1k=1 n Bj=

The random variables N, (U;) are independent, identically distributed (with
respect to (i)). Thus Condition 3.1 and Theorem 4.14 (Chow et al. [4]) imply
that

EesuP; Z N (U) < 0.

i=1

Consequently, we can write

Eﬂ sup ’Tmin (2‘ (én)) Z Z EG SuP Z N] k(U) < o,

j=1k=1

which 1mphes that the sequence Ay (Z A )) is uniformly integrable. Since the
estimator 0, is strongly consistent, it follows that (2 (é,,)) ~ Amin (2? (0)) al-
most surely as n— oo, which together with uniform integrability gives

EO Zmin (f (gn)) - j-miﬂ (2 (0))

Consequently,

Busup @] < OB o1 0) = Evtip r— s

- < 1
(suP @) > u> du = (j) P (U:f hmin (Z6,) < ;> du

=} (mfffmm(f @) < )du+ f P(mfim(Z(é,,)) 1>du< ©,

o'—.s

which completes the proof.
Proof of Theorem 4.1. Let us define the stopping time

= inf{t: S, > u}.

Since S is non-decreasing and continuous, the mapping u — 7, is strictly in-
creasing and has an inverse function. Obviously, we have S (z,) = u. Moreover,
one can prove (see Stefanov [14] and Kiichler and Serensen [10]) that the

process
B, = A(S(z,)
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is a process with homogeneous independent increments for which E,B, =
Vok(@)u and the covariance matrix

. 0’
EB(BH—Z,K(G))(B,.—%K(O))T =2(Ou= [69 aekx( )]Jk 1"'

In fact, we can write that 7(S,) = ¢, and thus A, = Bg,. Hence, all properties of
the process 4, can be deduced by investigating the process B with changed
random time. Consequently, using the random change time argument we ob-
tain Conditions 2.1-2.4 from Conditions 4.1-4.3. Finally, Theorem 4.1 follows
immediately from Theorem 2.1.

" Proof of Theorem 4.2. Let A.;,(Z) be the smallest eigenvalue of the
matrix X. Then we can write

Suplmm(E(é:)) sup [|2 (CATIS Csup Vo JCAT LS

Taking the expectation value on both sides and the formula for f, we obtain
ESup hmin (2 (6)) < Csup | Vo (O}
t

= CEsup |V, Vo l(4/S)|? = CE sup || Ay/Si|-

In the same way as in the proof of Theorem 4.1 we can define the stopping time
7, such that the process B, = A(S(z,)) is a process with homogeneous indepen-
dent increments. Moreover, the process

B,—Vyx(0)u
is a square integrable martingale, which implies that

Esup ||B,/u||* < 0.
t

~From the last statement we infer that also

Esup [|4,/8:|” < c0.
1
Finally, we have E sup, Amn (2 (6)) < c0. Thus Ay, (2 (4)) is uniformly integra-

ble with respect to t. The rest of the proof runs in the same way as the proof of
Theorem 3.2.

REFERENCES

[1] F. 1. Anscombe, Sequential estimation, J. Roy. Statist. Soc. Ser. B 15 (1953), pp. 1-21L
[2] P. Billingsley, Convergence of Probability Measures, Willey, New York 1968.

" [3] Y.S. Chow and H. Robbins, On the asymptotic theory of fixed-width sequential confidence

intervals for the mean, Ann. Math. Statist. 36 (1965), pp. 457-462.




Fixed-size sequential confidence sets 31

[4] — and D. Siegmund, Optimal Stopping. Great Expectations, Willey, New York 1977.

[5] M. Erlandsen and M. Serensen, Statistical analysis of the variation of the oxygen concen-
tration in a river by means of diffusion processes, in: Applied Statistics Symposium, Aarhus,
January 1984, L. S. Mortensen (Ed.), RECAU, Aarhus 1984,

[6] P. W. Glynn and W. Whitt, The asymptotic validity of sequential stopping rules for sto-
chastic simulations, Ann. Appl. Probab. 2, No. 1 (1992), pp. 180-198.

[7] P. Grambsch, Sequential sampling based on the observed Fisher information to guarantee the
accuracy of the maximum likelihood estimator, Ann. Statist. 11 (1983), pp. 68-77.

[8] — Seguential maximum likelihood estimation with applications to logistic regression in
case-control studies, J. Statist. Plann. Inference 22 (1989), pp. 355-369.

[91 A:. Gut, Stopped Random Walks, Springer, New York 1988.

[10] U. Kiichler and M. Sgrensen, Exponential families of stochastic processes and Levy pro-
cesses, J. Statist. Plann. Inference 39 (1994), pp. 211-237.

[11] A. Martinsek, Fixed-sized confidence regions for parameters of a logistic regression model,
Ann. Statist. 20, No. 4 (1992), pp. 1953-1969.

[12] M. Serensen, On maximum likelihood estimation in randomly stopped diffusion-type processes,
Internat. Statist. Rev. 51 (1983), pp. 93-110.

[13] — On sequential maximum likelihood estimation for exponential families of stochastic processes,
ibidem 54 (1996), pp. 191-210.

[14] V. Stefanov, Explicit limit results for minimal sufficient statistics and maximum likelihood
estimators in some Markov processes: exponential families approach, Ann. Statist. 23,
No 4 (1995), pp. 1073-1101.

[15] K. F. Yu, On fixed-width confidence intervals associated with maximum likelihood estimation,
J. Theoret. Probab. 2, No. 2 (1989), pp. 193-200.

Wroctaw University of Technology
Wybrzeze Wyspiafiskiego 27
PL-50-370 Wroclaw, Poland
e-mail: rozanski@im.pwr.wroc.pl

Received on 9.5.1997







