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LEVEL CROSSINGS AND LOCAL TIME 
FOR REGULARIZED GAUSSIAN PROCESSES 

Abstract. Let (X,, t~ [0, 11) be a oentred stationary Gaussian 
process defined on (D, A, P) with covariance function satisfying 

Define the regularized process 

X' = cp, * X and YE = Xc/oe, where CT~ = var Xf , 

cp8 is a kernel which approaches the Dirac delta function as c -+ 0 and 
* denotes the convolution. We study the convergence of 

where NV(x) and L,(x) denote, respectively, the number of crossings 
and the local time at level x for the process V in [0, 11 and 

c (c) = (2 var (*)/mar (xf))"'. 
The limit depends on the value of a. 

A natural way to approximate the local time Lx of an irregular process 
X, is to consider regularizations by convolution: X: = cp, * X,, where q, (.) = 
E - I  q (.I&), cp being a continuous function, and to study the asymptotic behav- 
iour of the number of crossings iVXc(u) of the level u by the process Xi on the 
interval [0, 11. Wschebor [I61 showed that for Brownian motion iVX'(0) with 
an adequate normalization tends to Lx (0), the local time at the origin, as E -+ 0, 
in LP for any p 2 1, and a similar result holds for multiparametric Brownian 
motion. Azai's and Florens [I] extended this result to a class of stationary 
Gaussian processes, and Berzin and Wschebor [6] considered the multipara- 
metric case. In view of these results it is natural to consider the speed at which 
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the convergence takes place, and then to study the convergence as E goes to 0 of 
the difference between L, (u) and IVX' (u), adequately normalized, divided by the 
square root of the speed. 

Let us look more closely at this problem. Let r*,' = X!/a,, a: = varlr'f. By 
the results in [3], Theorem 2, and [13], we have 

and there is a sirnilar expression for the local time: 

One could now try to study the I?-convergence, say, by fixing 6, looking at 
the second order moment of the dflerence as s 4 0, dividing then by the speed 
of convergence of the difference between these two random variables and 
looking at the limit as d + 0. However, the expression obtained after making 
E -+ 0 goes to infmity as 6 + 0, so that this approach does not work. 

We consider a related problem, substituting the indicator function of the 
interval (u-S, u+6) by a function which does not depend on 6, thus avoiding 
the problem of the divergence of the moments. We look at Gaussian processes 
such that, near the origin, the covariance is of the form 1 -L(ltl) lt12" for 
0 c a < 1, where L ( t )  -, C > 0 as t + 0' and satisfies certain additional con- 
ditions set in Section 2. By [4] these processes have continuous local times. We 
study the asymptotic behaviour of Z,(f), where 

with c ( E )  = (2var ( ~ a / z v a r  (x;))'12 and f a continuous function satisfying cer- 
tain regularity conditions and in I! (4 (x)  dx), where # ( x )  is the standard Gaus- 
sian density. We obtain three different types of limit depending on the value 
of a. For 0 < a < 1/4, which corresponds to the class of processes with more 
irregular paths, a ( a )  = 2a and the I?-limit can be written as 

where H is Hermite's differential operator for the standard Gaussian measure: 
Hf (x) = x f' (x )  -f" (x). I f  1/4 < a < 3/4, a (a) = 1/2, we have weak convergence 
and the limit variable has a conditional Gaussian distribution, given the sample 
path of the process. Finally, for 3/4 < a < 1 we have I?-convergence 
with a(m) = 2(1-a) and the limit can be written as a multiple stochastic inte- 
gral in the infinite chaos. To get the appropriate normalization for each case we 
obtain in Theorem 1 the variance of (f). 
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The techniques employed vary according to the value of a. We can split 
Z,(f) in two terms: 

where 
. x 

g(x) = m l x l - 1 ,  C =' , and 6; = var*, 
6 E  

and Z, (f)-is shown to be equivalent to 7'' except when 0 < a < 1/4. In the 
latter case we show that it is enough to consider f = H,, for  EN, where 
( H , ,  n 2 0) are Hermite's polynomials, orthogonal with respect to the stan- 
dard Gaussian measure and with leading coefficient equal to 1. The term 
T, measures intuitively the distance between f (YE) and its limit f (X). 

If 1/4 < a < 3/4, we show that the finite-dimensional distributions of 

converge to those of Brownian motion and then use a construction similar to 
that of the stochastic integral in I.? to obtain the result. Finally, in the last case 
the limit is given by the first term of the Hermite expansion of the function g. 
The It6-Wiener formula for multiple stochastic integrals is used to obtain the 
result. 

Estimation for the local time of diffusions when the regularization is done 
by using continuous piecewise linear functions obtained from a sequence of 
partitions has been used by Florens-Zmirou [ll] to estimate the variance of 
a diffusion. We think that the techniques used in this work can be employed to 
consider similar problems for Gaussian processes. 

Recently, Azdis and Wschebor [2] have shown, for any continuous func- 
tion f, the a.s. convergence of J" f ( x ) ~ ~ ' ( x ) d x  for X in a class of Gaussian 
processes which includes ours. 

The results obtained in this paper have been announced under slightly 
different hypotheses in [14]. Some minor mistakes in Theorem 1 are corrected 
herein. 

2. HYPOTHESIS AND NOTATION 

(HI) For the process X :  (X,, t  IE LO, 11) is a standard stationary Gaussian 
process defined on (9, A, P) with covariance function 

r(t)=E(XoX,)= 1-ItlzaL(t), O < a <  1, lim L ( t )  = C > 0 ,  
t+o+ 
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where L 2 0 is even and has two continuous derivatives except at the origin, 
I which satisfy It1 E (Itl) = 0 ( 1 )  and t2 I!' (Jtl) = 0 (1) as t + 0. Furthermore, when 

a > 1/4 we suppose that the process has a spectral density h(u) = M(u)/uY, 
y = 2a+ 1, and M(u) has a limit when u goes to infimty. 

(H2) For the kernel rp: q is even, rp 2 0, and 

+ 1 
suppq G C-1, 11, cp€C1, J q( t )d t  = 1 .  

- 1 

We shall use the Hermite polynomials, which can be defined by 
. . 

They are an orthogonal system for the standard Gaussian measure 4 and, if 
h E (4 (x) dx), 

Mehler's formula [8] gives a simple form to compute the covariance between 
two L2-functions of Gaussian r.v.'s: If (X, Y) is a Gaussian random vector 
having correlation q, then 

(H3) For the function f :  f EP (# (x) dx)  and is continuous. We assume 
that f' and f" belong to I? (4 (x) dx). 

Define 

r ( X ,  Y) is the covariance between X and I: t$ ( x ,  y ;  r )  is the bivariate Gaussian 
density with correlation r ,  and Const denotes a constant whose value may 
change during a proof. 
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The exponent a (a) is defined as a (a) = 2a for 0 < a < 1/4, a(a) = 1/2 for 
1/4 < a < 3/4 and a(a) = 2(1-a) for 314 < a  < 1. 

Note that if f' and f" are in I? (4  (x )  dx) and we denote by cfi the Hermite 
coefficients of J then 

4, 

H f  (x) = xfr(x)-f"(x) = nc,H,(x). 
f i =  1 

R e  mark, The results we obtain are also valid under the hypothesis that, 
for some BE [- 1, I), c.2 n! nZ - n@ when n goes to infinity. Examples of func- 
tions satisfying this condition but not (H3) are the indicators of intervals. The 
proof can be seen in [ S ] .  

3. RESULTS 

THEOREM 1. Under the hypotheses HI, H 2  and H3 we have the following: 
(,(f) dt$ned in (1) sati$es 

Moreotrer : 
(i) If 3/4 < a < 1, the limit of the variance divided by e4('-") is 

1 " m  

m = o  j = ( r n - ~ ) v o  m-j 

0 

(ii) If 1/4 < u < 3/4, the variance divided by E converges to 

(iii) If 0 < a < 1/4, the variance divided by c4" converges to 

THEOREM 2. Under the hypotheses HI, H2 and H3 we have 
(i) If 0 < a < 114, a (a) = 2a, Z ,  ( f )  defined in (1) converges in (52) when 

E + O  to 
03 1 m 

(ii) If 114 < a < 3/4, a (a) = 1/2, 2, (f) converges weakly when E + 0 to an 
r.v. Y in L2 (52) and the conditional distribution (Y/X,, 0 < s < 1) is Gaussian with 
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zero mean and random variance equal to 

where 

r2 = 2 (21)! a:, J o:, (v) dv and a:, (u) = [y-' I $(z) lv -zlZa dz]". 
1=1 0 - m  

(iii) if3/4 < a < 1, a (a) = 2jl -a), 2, (f) converges in I? (Q) when E + 0 to 

where K ( A )  = [exp (ill)- l]/il, IT, is the set of permutations of {I,  2 ,  . . . , k ) ,  
dZ ,  is the random spectral measure associated with X and the integral is an 
I tbWiener  integral [lo] (remember that (a3 are the Hermite coe$icients for 

s ( x )  = r n l x l - o .  
Comments. (a) One way to try to prove Theorem 1 is the following: 

m since f (x) = cm Hm (x),  by using a generalization of the Banach-Kac 
formula shown in [IS], c,(f) can be written as 

but since g (x) = (71/2)'~~ 1x1 - 1 = xl: I azl H21 (x), S1 can be written as 
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To prove the I?-convergence, one can calculate E(S:) and E (32). Under 
assumptions allowing the interchange of expectations, sums and integrals, one 
can write the second order moment of S1 as 

Now the diagram formula for the expected value of the product of Hermite 
polynomials evaluated at Gaussian r.v.'s with known covariance matrix gives 
an expression in terms of powers of the covariances between the variables. 
From this expression it can be seen that E (St) E - ~  "4a converges to (4) when 
E + 0 if a > 3/4, and that E (S;) E - I  converges to (5) as E + 0 if oc < 314. On the 
other hand, Sz can be expressed directly in terms of the covariances and we 
infer that E (Sg) = O '9 + 0 + O (s2) and for u < 114 that E (S;) E - ~ "  

converges to (6) as E 4 0. 
In this paper we will use a different approach, making direct calculations 

with Gaussian densities instead of using Hermite expansions and the diagram 
formula, since the application of the diagram formula requires more restrictive 
conditions on the Hermite coefficients for the function S, and the interchange 
between limits, sums and integrals is dacult. 

(b) In (ii) of Theorem 2 one could say that, given the a-algebra generated 
by (X,, 0 < s < 11, the limit random variable Y is the stochastic integral of 
f (X,) with respect to the Brownian motion W limit of Sf, i.e. a!: f (XJdW(s). 

4. PROOFS 

The lemma follows from the properties of the multivariate Gaussian 
density. rn 

Before proving Theorem 1 we shall give an alternative expression for the 
limit variance in the case a >  314. 



LEMMA 2. Define s(v) = (1 -r2 (v))'". If rt > 3/4, rhen the expression (4) is 
equal to 

Pro o f. We consider separately the terms corresponding to the three 
possible values of j in the second sum of (4). Using Mehler's formula (3) and 
the relation 

for j = m we obtain 

Using (i) of Lemma 1 and the equality 

a, a z m ! e : , ~ r " - ~ ( ~ )  = $E(f (Xu)f (Xu+.))l.=.l,,, 
m = 1  

for j = m - 1  we get 

iyv) Y(v) P (v) + 
s2 ( 4  

Finally, since 
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and using (ii) of Lemma 1, we get for j = m-2 

~ d d i $  .up 'the three expressions we obtain the result. rn 

LEMMA 3. Let 

then, for any q > 0, uniforormly for v E [JI ,  11, as E + 0, 

r (v)  
v ) (  ( )  4 ,  g ( ~ ) $ ( ~ - l )  4-. 

f i x  Cx2 

The proof is based on the relation 6: - Cx2 E * " - ~  which can be obtained 
from the equality 

since this integral converges to Cx2 as E + 0. rn 

Proof  of Theorem 1. Let us start with (7): 

and use the decomposition (2) of Z ,  ( f )  = [, ( f  )/E"("', where the exponent a (a) is 
defined in Section 2, 

The proof will proceed as follows: in Part 1 we obtain an expression 
for E ( S i )  for all values of a. In Part 1A we consider the case a > 3/4 and 
show, using Lemmas 5 and 7, that E (T:) converges to (4) as E goes to zero. 
In Part 1B we consider a < 3/4 and prove in Lemma 8 that E-' E(S:) con- 
verges to (5). In Part 2 we prove that E (Sg) = 0 (c4") + o (&); hence this 
term only matters when a < 1/4 and we show in this case that E (TZJ converges 
to (6). 
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Par t  1 .  The  second order moment of S,: 

where $ , (x ,  1, y ,  3; s-sf) is the joint Gaussian density for the variables 
r, e, v, $. Integrals and expectation can be interchanged since f is in 
I? (R, # (x) dx). We now fix v and make a change of variables to transform this 
into a sfandard Gaussian density (remember that q,, @, and & are defined in 
Lemma 3): 

X = X i ,  y = ~ ~ ~ 1 + ( 1 - @ , 2 ) ~ ~ ~ x ~ ,  

1 = 6 1 x 2 + S ~ x 3  and j = c l x l + c 2 x z + ~ , x , + ~ 4 ~ 4 ,  

where 

We can write the inner integral in (8 )  as 

z 

q(z) = exp(-z2/2) and p(z)  = z j q ( y ) d y .  
0 

Then, for x,,  x2 and v $xed, 

where 
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and a , ( ~ ) ,  n 2 0, are the Hermite coeficients of the functions Gi(x) = Imi+ xi, 
i =  1,  2. 

Proof. Since 6; = cg + c;, the integral in (1 1) is 

and this can be written as J ,  + J 2  +J,+ 1,  where 

with (X, Y )  standard Gaussian r.v.'s with correlation mo. Thus, by Mehler's 
formula (3), we obtain 

Let us look closely at the terms in this sum. For n = 0 we have 

for n = 1 we get 

4 - PAMS 18.1 
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and for n 2 2 we obtain 

Thus J 1  = K1 + K 2  + K,, and defining 

we complete the proof. H 

Using (TO) and Lemma 4 we can now write (8) as 

For q E (0, 1) split (13) into I ,  (q) + l2 (q), where I, (q) corresponds to the integral 
over v < q and 2, (q)  to the integral over the rest. 

P a r t  1A. u>3/4. 
In Lemma 5 we show that 1, ( P ~ ) / E ~ ( ' - ~ )  converges to (1) as E 4 0 and q + 0 

in this order. In Lemma 7 we prove that Ill (q)1/~~" = 0 ( v & - ~ )  as pl + 0. 
Making q + 0 we infer that E (T:) converges to (1). We will prove in Part 2 that 
E(T:) + 0 if a > 1/4. This shows (i) of Theorem 1. 

LEMMA 5. I f i x  > 3/4, then l2 (q)/c4(l -a) converges to (I) as E + 0 and pl + 0 in 
this order. 

Proof.  As before, s2 (v )  = 1 - r2 (v) and we use the same notation as in 
Lemma 4 and the results of Lemma 3. For q > 0, uniformly for V E  [q, 11 and 
for any value of a, as E + 0, we obtain 

a, - i - (i (u))~ + 
&2(1 -a )  2Cx2 s2 (v)' c2(I -a) 

Thus we have 

4C2 x4 s2 (v) 

+ 
z4'l -") C2 x4 S (I)) 

K3 
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Hence, using the Dominated Convergence Theorem, we see that 1, ( q ) / ~ ~ ' l - ~ '  
I converges, as E -+ 0, to 

! and taking into account Lemma, 2, this goes to ( 1 )  as 4 0. H 

We give now a technical result needed for the proof of Lemma 7. 

LEMMA 6. With the notation set in (91, if cl > 3/4 for M large enough and 
E srnall such that M E  < q, then 

Proof.  Let M be large and E be small so that M E  < q. For any v E ( M E ,  ~ f )  
we have 

I Using (HI) we have L ( ~ E U ~ )  < 2C, L(v -EU)  2 C/2  for E small, and also 
EU/V < 2/M.  Hence 

where Q, is a constant dependent on a. 
We also need a lower bound for 1 - Q,2 (v) - P? (v). Since L (V- E U )  and 

(v - E U )  L (v - E U )  are bounded, using 

I for M large we obtain 1 - ~ , 2  (v ) -  8% (v)  >, Constv2". Consequently, the results 
follow for the two middle terms of the left-hand side of (14). For the first one, 
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using the Schwarz inequality we have 

v II 
E-4(1-a) I ~ ( U ) I  ij: (u) 6;' (v) du 4 const e-"l [ j $ (v) dv] 'Iz q'4a- 31 i2 .  

Me Me 

By Jensen's inequality the integral above is bounded by C o n ~ t q ( ~ " - ~ ) .  For the 
last term in (14) it is enough to prove that 1-@,2(v) < Constvz" but this is 
a consequence of behaviour of the spectral density at infinity. 

The next lemma shows that for o: > 3/4, the terms near the diagonal are 
negligible. For the proof we use again Lemma 4. 

- LW(N* 7. ~f > 3/4, then I4(tl)l~"-~ = O(V"-~) as q + O .  

Proof. We use the same notation as before, Remember that 

where p, is defined in Lemma 3, and K,, K 3  and K, in Lemma 4. 
We split [ O ,  q ]  into two intervals: [0, ME] and [ME, q ] ,  where M and 

E will be chosen later. It is easy to show that the integral over [O, ME] is 0 (E). 

The other integral is 

The first term in (15) is 

Consider the expression 

2 112 Idd SIf ( x d f  ( ~ ~ x l + ( l - e ~ )  xz)llxzl #(xi)4(xz)dx1dxz, 
8 2  I 
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which by changing the variables z = e,xl +(1 -q,2)'I2x2 takes the form 

where N is a standard Gaussian r.v. Hence, using (9) and Lemma 6, we obtain 

II 

(16) ILII < Const 5 (1 -0) [I.& S t  Sz21 + l~~6:d;~1] dv < C o n ~ t q & - ~  E ~ - ~ ~ .  
; ME 

For the- second term in (15) use (12) to get 

x 8; rng q!~ (x,) # (x2) dxl d x 2  du. 

Writing out the product in the integrand we get four integrals. We shall con- 
sider only the first one as the others can be treated similarly. Using Lemma 6 
we obtain 

n 

Finally, the last term in (15) is 
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Using the same argument as before we get 

J If (xl) f (e. + ( 1  - e:)1t2 xJl((xl(1 -e:Iv2-e. x$'+ 1) 
R2 

X ( X ~ + ~ ) & ( X , ) # ( X ~ ) ~ X ,  dx2 = E ( f 2 { N ) ) E ( N 2 + 1 ) 2 .  

Therefore 

The expressions (16), (17) and (18) show the result. 

This finishes the consideration of Part 1A and, together with Part 2 below, 
completes the proof of (i) in Theorem 1 .  

P a r t  1B. ol < 3/4. 
We prove now that E - I  E(S4)  converges to (5). 

LEMMA 8. If cx < 3/4, then E(s:) converges to (5)  as E + O .  

Proof.  Remember that E ( S f )  is given by (8) and consider 

For E small enough, divide the domain of integration into [0, ME] and [ M E ,  q]. 
Using the same type of arguments as in the proofs of Lemmas 5  and 6 we get 
for the second integral 

for M large enough. Note that in this case the bound is obtained by using the 
lower limit of the integral, For the first integral, making u = EW, we have 
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Let Z,(w) be the covariance matrix of the Gaussian vector (Y:, e,, Y,", pw); 
then 

[ l l  0 0 )  

where 0 (w) = X -  jm $ (u) I w - uIZa du and c -r 0. Hence the measure 

P,  = P(Yoe, r w ,  YOE, F w )  

tends weakly, to p = 9 (X,, X , ,  Z ,  (w), Z 2  (w)) which is Gaussian with cova- 
riance Z(w). On the other hand, we have 

These two facts together with (3) imply that E { f (Y,$) g (kt) f (rw) g (cw)) con- 
verges to 

Then using the Dominated Convergence Theorem we obtain 

Letting E + 0 ,  and then M + a, we obtain the result since the integral over 
[q, 11 goes to 0. 

P a r t  2. The second order moment of S2. 
We shall prove now that E (S;) = 0 (c4") + o ( E )  and for u < 114 

that E ( S ; ) E - ~  converges to (6) as E -0. Remember that from (7) we 
have 

and using again Mehler's formula (3) we get 

-2 - 1 q(u)r( lv-~ul)du +rm(v) dv. lm 1 
We divide the domain of integration for v  into three intervals: 

[O, ME] ,  [ME,  q], and [q, 11, where E, M ,  and q will be chosen later and 
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satisfy Ms < q .  Making v = sw, we obtain the first expression in the 
form 

Proof. For V E [ ~ ,  11, since E X ?  and U E [ - 1 ,  11, E U < ~ < V  and 

&2 u2 
r(lu-eul) = r(v)-.mi(v)+----f(8,) with u-eu < 8, < v. 

2 

and the left-hand side of (21) is 

We develop this expression using the Binomial Theorem. The first term is: 

Since our domain of integration is [q, 11, there exists 6 < 1 such that, for 
E small enough, Ir (v)/o;l < 6 < 1 for any v E [q,  11 and C;=, m! m2 c99" < oo 
because f E I.? (4 ( x )  dx). Moreover, 

(1 - m2 
+C2-[ j  )(u)lu12'du]' and 

( 1  - o : ) ~  
(24) &4a c4= 

< Constm2 
4 - 2  
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and (23) is equal to O ( E ~ ) .  The rest of the terms in the binomial expansion of 
(22) are 

Dehing Ili'llq,l = SUprt9,91 lf(u)l, we see that the absolute value of this expres- 
sion is bounded by 

For k 2 2 and using 

we get 

since we have seen that Ir(v)/0:1 < 4 < l1 and for E small enough the term 
inside the square brackets is less than Q*, where 0 < Q* < 1 and x:=, c i  mm! < co. A similar argument shows that the term for k = 1 is 
also O(E'). ra 

We still have to consider the part of (19) corresponding to the integral over 
[ME 1 vl. 
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LEMMA 10. We have 

Pro  of. Using again the binomial expansion and (24) we infer that the first 
term is 

Let us prove that for fixed and E small enough, r (v) < a: for v E [ME, q ] .  
By (HI) this is the same as 

m 

L (v) v2" > c2' j $ (z) jzIza L(Ez) dz.  
- m  

Since L is continuous, for VE[ME, q ]  and some constant C1, L(v)v2" 2 
C1 M ~ " E ~ "  and (27) is satisfied as long as 

4 
M'" > - sup L (v) K, . 

cc1 [0,1] 
By (H3), given the relation f" EL? (4 (x) dx), the expression (26) is equal to 
0(c4").  The terms corresponding to 1 6 k < m in the binomial expansion are 
bounded in absolute value by 

m l q m  
~ C o n s t Z  ~ i r n ! - ~ J  C - 

m = l  G e  M E ~ = I  
(7 ( ) (r ( v ) ) ~ - ~  ( v ~ " - ~ ) '  dv. 

The term for k = 1 is bounded by 

2 m 

dv.  
m = l  
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The expression corresponding to k 2 .2  can be bounded by 

Taking M large enough, for V E  [ME, q ]  we have . 

and since by (H3) the series c$ rn! m is convergent, it is easy to see that (28) and 
(29) are o (E) .  Using (20), (21) and (25) we finally obtain E (S?) = 0 (c4') + o (E). ia 

Finally, if a < 1/4, we can now see using (24) that 

This series is convergent by (H3) and this concludes the proof of Theorem 1. s 

Proof  of Theorem 2. Recall the decomposition of Ze (f) given by (2): 

We divide the proof into three cases according to the value of a. 

Case  1. 0 < a < 114. 
In this case a (a) = 201 and the important term in the development of Z ,  (f) 

is T2. By Theorem 1 we see that if f satisfies (H3), f (x) = xnm=o c,H,(x), and 
then 

m 1 

and 
m 1 

E ( T , 2 ) + 2 K i C c ; f . n ! n 2 J ( 1 - v ) r n ( v ) d v  as E+O. 
n =  1 0 

This result shows that it is enough to prove the convergence for a finite 
linear combination of Hermite polynomials. Furthermore, the limits for poly- 
nomials with different degrees are orthogonal, and this implies that it is sufi- 



cient to consider the limit for only one polynomial, i.e. f = H,. Thus, we want 
to show that 

in I? (0) as E + 0. We know that 
1 

~ ( ~ ~ ) + 2 ~ , 2 n ~ n ! j ( l - v ) r " ( v ) d v  as E -0, 
0 

and the covariance term is 

Following the same argument as in the proof of Theorem 1, it is easy to show 
that the last term converges, as E + 0, to 

1 

2 ~ :  (2n2) n! (1 - v)  rn (v) do .  
0 

Hence, if f is a function satisfying (H3), we have 

Case  2. 1/4<a<3/4.  
The proof will proceed in several steps. In (a) we prove that 

converges, in the sense of weak convergence of the finite-dimensional distribu- 
tions, to a Brownian motion W In (b) we show that X ( t )  and W ( t )  are as- 
ymptotically independent. Finally, in (c) we prove the convergence of Ti. 

(a) Convergence to a Brownian motion. 
We will study the convergence of S:. We consider first its second moment. 

Using Mehler's formula (3) we obtain 

E (Sf)' = =[ I C a,, azk E (Hz ,  (e) HZk (c)) ds ds' 
E ~ ~ ~ = l  k = 1  
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with 

We split the domain of integration into two parts: 10, g] and [ q ,  t]. In the first 
integral, making w = ev, we have 

For the second integral, since zz, a;, (21)! < co, we infer that it is O ( E ~ - ~ " ) ,  

Furthermore, the convergence of the last series, and the fact that C; , ,~ (EV)  < 
Const (v - 1)2(2u-21 for v large enough and la;,,, (sv)l < 1 otherwise allow us to 
prove that 

where a;, is defined in (ii) of Theorem 2. 
Next, we will study the convergence of the moments of xy=;=, dj(SfJ-$,-,), 

where the d j  are real constants and 0 = to < t l  < . .. <t,, W E N .  We will use 
the method of Breuer-Major [S]. Define 

With the same argument used to prove (30) we see that 
m m 

E (S:-g% (t))' < 2t 1 j a$, (2Z)! CT$, (u) dv + O (E(" + 

-24-1 1, 

and then 

lim lim E (Sf - g& (t))= = 0. 
M+m E'O 

Hence to study the weak convergence of S:, it is enough to consider that of 
g&(t). Let us look at 
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Let ( I I ,  . . . , lp) be fixed; we are interested in 
t j l  ' j r r  

( I 2  d j l . .  . . d j p  j { E (H211  (e) . . . &lp(ep)) dsl . .. dsP. 
11 ,..., j~ = 1.m t j l - l  t j p - l  

To calculate the expectation we use the diagram formula (see [g], pp. 431 
and 432): 

u 

where G is an undirected graph with 21, + . . . + 21, edges and p levels (see [8], 
p. 431, for definitions), r = r (11, 1 2 ,  . . . , 1,) denotes the set of diagrams having 
these p'roperties, and 

where G (V) denotes the set of edges of G ;  the edges w are oriented, beginning in 
d (w) and finishing in d (w). 

The diagrams are called regular [8] (p. 432) if their levels can be matched 
in a way such that no edge passes between levels in different pairs, otherwise 
they are called irregular. Consider a regular diagram G* and let i be the 
permutation such that 

defines the diagram with p = 2q. The contribution of this diagram is 

. . 

( 1  C d i p  I [E  (2 :")]e(k) du dv] , 
j l ,  . . . , jp= 1.m k =  ' j i ( 2 k -  1) * . f i C 2 k ) -  1 

where elk)  is the number of edges linking i(2k- 1) with i(2k). But 

as E + 0 except when j = j', and in this case 
t i  II m 

(I/&) 1 1 [ ~ ( ~ ~ ) ] ~ ~ d ~ d v + 2 ( t ~ - t ~ - ~ ) ~ ~ ~ ~ ( v ) d v ,  
s j - 1  t j - 1  0 

so that 

/ - - 2 C d j l  - djp  
j l ,  . . . , jp= 1,m 

fi [ t j ~ ' ~ -  I )  t j i (2k)  

j [ E  (c :")]e(kkl dm dv] 
k =  1 t j i ( 2 k -  1)  - 1 t j i ( 2 k )  - I 
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We show in Lemma 11 that the contribution of the irregular diagrams 
tends to zero. Using now the same argument of Breuer and Major [8] (p. 434) 
we infer, as E 4 0, that 

Re m a r k  s. (i) The random variables (gh ( t j )  - g b  (ti- 1))  and (gh (ty) - 

g& (t j ,  - -are asymptoti&lly independent for [ t j ,  t j -  l]n[tj., t j . -  = 0. 
(ii) In a similar way we can show the asymptotic independence of 

1 1 
- j H 2 k ( e ) d ~  and for k # l .  
d o  

We study now the contribution of the irregular graphs. As in Breuer and 
Major [8] we can suppose that 1, < IZ < . . . G I p .  

LEMMA 11. For fixed j , ,  j,, . . . , j ,  the following expression goes to 0 as 
E 4 0: 

Proof.  Let K,(i) be the number of edges such that dl (w)  = i ;  then the 
expression (32) is less than or equal to 

Using the same techniques as in the proposition in [8], p. 435, we see that (32) 
is less than or equal to 

Define g ( i )  = KG (i)/2Ei. We split the domain of integration into [0, q] and 
[q, I]. We have three cases to consider. 

(i) KG (i) 2 2. 
The first part is 0 (E) and the second is O(E(~-~")~"(')). Since g(i)  < 1; 

2 (2-24 > 1 and KG ti) 2 2, we have 
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(ii) KG ti) = 0. 
Now we have 

1 

1 I& (S)IK~(i) dS = 1 = EO = $(i). 
0 

(iii) 0 < g (3 < 1/2. 
For the second integral, in the same way we obtain 0 (dZL2")). For the first 

one, making s = EW, we have 

The first term on the right-hand side is O (E), and for the second, using HliIder3s 
inequality, we have 

Since the first integral remains bounded when E -t 0, because 2 4 3  2, we can 
verify that 

nle 

with [ small enough (the bound is obtained by making A4 + m). Adding up we 
obtain 

1 

J I &  (s)lKG(') ds < Const [E(' - + E + cg(i) E B ( ~ ) ]  for E < E (c). 
0 

Since g (i) < 1/2 and 2 - 2a > 1/2, we have in fact 

Thus the expression (32) is less than or equal to 

P 
Const e2p,  where Z, = C g ( i )  - p/2. 

i =  1 

Breuer and Major [B], p. 436, showed that either zr= =, g (i) > p/2 (and in 
this case (32) tends to 0 with E )  or there exists 1 < to < p such that 
0 < KG(io) < 2Ei0, i.e. 0 < g (io) < 1. Then the expression (32) is less than or 
equal to 

and since Ep = x:=, g (i)-p/2 2 0, the result follows. H 
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(b) Asymptotic independence of X (t) and W (t). 
We want to prove that 

converges weakly as E 4 0 to 

where d$ = 2~:, (2I)! C r& (u) du; furthermore ( X ,  . . . X )  and 
(w,, . . . , &) are independent Gaussian vectors. We shall follow closely the 
arguments Ho and Sun [I21 with necessary modifications due to the fact 
that we are considering a non-ergodic situation. 

Let b l ,  . ,. , b,, dl, . . . , dm be real constants; we are interested in the limit 
distribution of 

m m 

C bj q+ C djCgL(tj)-8L(tj-i)].  
j=  0 j =  1 

To simplify the notation we shall write 

Then Z,  is centred and Gaussian and 

The correlation between ZE (t) and 2 is denoted by 3,(s- i) and 

We normalize Z,  ( t )  defining Z: ( t )  = Z,  (t)/a, (t). We have already studied the 
limit of 

tj, 

... E[HZ(Z:(t))H2,,(~)~zl~~~~...~,,~~~)]dsl~~2...ds,. 
t jV -  I 

We use again the diagram formula. In this case we have 

5 - PAMS 18.1 
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The set r = T(1, 1, ..., 1, 2 4 ,  ..., 21,) contains the diagrams such that 
the first k levels correspond to the I.', variables. 4 is defined as: 

(i) -&(s i - s j )  if i and j are in the second level group; 
(ii) -St ( t - s j )  if the edge w joins the first level with the second; 
(iii) 1 in any other case. 
We say that an edge belongs to theJirst group if it links two among the first 

k levels, and to the second group otherwise. 
We shall classify the diagrams in r (1, 1, . . . , 1 ,  21,, 21,, . . . , 21,) as in [12], 

p. 1166, denoting by R the set of the regular graphs, and by Rc the rest. We 
start with considering R. 

- In ,a regular graph, the levels are paired in such a way that it is not 
possible for a level in the first group to link with one of the second, yielding 
a factorization into two graphs, both regular. Since k +211 + 2t2 + . . . + 21, = 2q, 
k and r are both even. By part (a) of this proof the contribution of such graphs 
tends to 

Using the notation of [12], p. 1167, and denoting by DJR' the contribution of 
the irregular graphs in D, we obtain 

Any diagram G ER' can be partitioned into three disjoint subdiagrams: VG,,, 
VGP2 and VG,,, which are defined as follows. VG,, is the maximal subdiagram of 
G which is regular within itseIf and all its edges satisfy 

Define 

VZl(1)  = { j ~  VZl: 1 < j < k ] ,  

where VZ, are the levels of vGSl.  
A: is the factor of the product corresponding to the edges of VGSi, 

i = 1, 2, 3. The normalization for A",s therefore E - I ~ ~ J ( ~ ) ~ ~ ~  and, as shown in 

part (a), E -lvz~1(2)li2 A; tends to 

x (2  C a$j(21)! 1 (4 d ~ ) ~  
1 = 1  0 

as E -+ 0, where q = ]VZl (2)(/2. The limit is then O(1). 
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Consider now A-nd define I/,,, to be the maximal subdiagram of 
G - V&, whose edges satisfy k + 1 < dl (w} < dd, (w) < 1 + r. The normalization 
for A; is E - I ~ ~ ~ ~ ( ~ ) ~ ~ ~ ,  where V;, (2) are the levels of VG,2- A graph in VGD2 is 
necessarily irregular, if not it would have been taken into account in A> As in 
part (a), E - I ~ * G . ~ ( ~ ) ~ / ~  Aatends to zero as E 4 0. 

For A: define 

V&(l) = { j ~ V o * , ~ :  1 < j < k), = ( j € V Z 3 :  k + 1  < j < k + r ) ,  

where V& are the levels of I/,,,. We need a uniform bound in t for I(,(t)l: 

1 
(t) = [ 1 eiAt 14 (tL)I2 ilE h (A) d i ]  , 

0 s  - m  

where h is the spectral density of X, 

If a 2 112, j," Ah (A} d l  < co because lim  SUP^+ A2' + h(A) = Const by (HI), 
and then 

IpE(t)l < C o n s t ~ l - ~ .  

If a < 1/2, splitting the domain of integration into LO, I\rl and [ N ,  + oo] we get 

I&(t)l < Const [ E ' - ~ + E ~ ]  < con st^^. 

Adding up, we obtain 

(33) l&(t)l<~onste" where B=inffa,(l-a)).  

We assume now that I , ,  I , ,  . . ., 1, are fixed by the graph. Let L = 1VZ3 (2)l; 
then 
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where E(V,,,) are the edges of VG,3. Using (33) we get 

V$, can be decomposed into three parts: 

A , = { i € V J 3 ( 2 ) :  g ( i ) = O ) ,  B ~ = ( i ~ v c * , ~ ( 2 ) :  g ( i ) = l ]  
and - ' 

C, = { i ~  V Z 3 ( 2 ) :  g( i )  > 11, 

where g (i) is the number of edges in the i-th level not connected by edges to any 
of the first levels. As in [12], p. 1 169, we can rearrange the levels in V& (2) in 
such a way that the levels of 3, are preceded by the levels of A, and followed 
by the levels of C,. Within CG, the levels are also rearranged so that those with 
smaller g(i) come first. Assume first VZ3(2) = CG; then 

As in part (a), Lemma 11, the expression (34) is less than or equal to Const&", 
L where ,EL = zi = k ( i) /g (i) and k (i)  replaces KG (i); then 

and X,, = zieCG k (Wg ( i )  2 $ ICd. Hence 

If VG, # @, then 1 V z  (1)l # 0 and e-lc.3(2)1/2 IA: 1 tends to zero as E + 0. Fur- 
thermore, if & ,  = O, then VG,z # @ (otherwise it would have been taken into 
account before) and 

We suppose now that VZ, (2) # CG, i.e. either A, # O or BG # IQI. We have 

If i€AG, its contribution to AE, is bounded by ~ o n s t a ~ ~ " ,  and in total we 
shall have Const&2BzAG, where ZA,  = xi,G li, O n  the other hand, if i s  BG, we 
have (Xi- 1) edges coming from levels in the first group, and as g ( i )  = 1, 
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there, are two possibilities: either k(i) = 1 or k(i) = 0. In the second case we 
shall have terms of the form: &(dl (w)-si), which are bounded by 1. The other 
edges are connected to91evels in the first group and their contribution is 
~ p ( ~ ~ ~ - ~ ) .  For the first case we have 

c.7 

( Const ( [ E  IT: (w) d ~ ]  lJ2 + 0 (82-2a))  = 0 (C &) 
0 

because-a < 314 and 5 is small enough. The contribution from BG is bounded 
by 

~ ~ ~ ~ ~ d h a  (~&)l~sne:k(i)= 111 , where zBG = (21i - 1). 
i€Bc 

We can prove as before that the contribution from C, is bounded by 

Const E' L?'G, where E = 8(21i- g (i)), Xc, = k (iyg (i). 
~ E C C  i e C c  

Hence 

We have the following bounds: 

(35) 2 8  I i -  IAG1/2 2 ~ P I A ~ ~ - I A , ~ / ~  2 21AGI [f- 1/41 2 0 (since Ii 2 I), 
~ E A G  

f(2li - Q ( i ) )  2 . 0 ,  C k ( i ) /g  ( i )  -4 JCGI 2 0 (cf. [a]), 
i€CG WG 

(36) 8°C (22,-l)+$[IBGn{i: k(i)=l)l-IBG1/2] 
&BG 

2 $ ~ B ~ I  ++ [IBGn(i: k(i) = 111-IBG1/2]. 

Define 
X = IBGn(i: k(i) = O)I and Y = IBGn{i: k( i )  = 111; 

for i~ X there exists j~ Y such that dl (w) = j ,  d2 (w) = i (by the ordering of the 
levels in VZ3(2)). It follows that IYI 2 1x1, and then 

Thus, if 8 > 114 and lAGl # 0, the relation (35) implies the result. If [ > 114 and 
lAGl = 0, necessarily lBGl # 0, which implies that 1x1 # 0 or IYI # 0. If 1x1 # 0, 
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the inequahty (36) gives the result; otherwise 1x1 = 0 and 1 YJ # 0 the right-hand 
side of (36) is equal to plYI, and since f l #  0, the result follows. 

As in the unidimensional case (31), we can prove that the weak conver- 
gence of the vector (x:, .. ., rm, S;,, . .. , Sfm-S:m_,) is implied by that of 
(y;",, - - -  Y K, gL(t11, - ., , 0~(trn)-g~(tm-1~).  

(c) Convergence of TI = E-lP JA f ( K 7  g (e) ds. 
We consider a discrete version of TI, defining 

~ e t  d be a metric for the weak convergence and define 
n 

Zn (f) = c~ C f lX(i - ~)/n) C W l n  - Ti - l)/nI. 
i= 1 

We know from the previous secticn that 2," (f) -, 2" ( f ) ,  weakIy as E + 0. On 
the other hand, 

IlZn(f)-Zn'p(f)l12+0 as n + oo 

for every p > 0. Indeed, a straightforward calculation shows that 

where 

as n -+ oo. This implies that there exists an r.v. Y E  I? (Q) such that Zn (f) -+ Y in 
I? (Q as a + m; furthermore, we can characterize this variable using the as- 
ymptotic independence between X and W and Jensen's inequality for condi- 
tional expectations 

1 

To show the convergence of TI we have to prove that d(Tl, Y) -, 0 as E -+ 0, 
and for this, using the triangle inequality, it is enough to prove 
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We have, by (5), as E 40: 

E(T~-Z;(~)) '  = E ( T I ) ~ + E ( T ( I ) ) ~ - ~ E ( ~ Z ; ( ~ ) ) ,  

EITl12 j g2 Ilf 1 1 %  
LEMMA 12. We have 

Proof.  It follows that 

If i = j, we 'obtain 

weakly as E + 0. By Holder's inequality, 
2 p q  114 E [If 2 p  (qf - l ) /n )  (Sfin - S:i- l)ln)ZPI] G II f II $Ip(E I%/n -S?i - ) 

with p = & q = $/($ - I), and this is uniformly bounded by the results in 
part (a), for E small enough. If i # j, a similar argument shows that this term 
tends to zero when E + 0. rn 

To complete the proof of (37), it is necessary to show that 

(38) lim limE,(TIZZ(f)) = a2 I [ f  11;. 
n+m e-0  

Define 

m i/n 

z::(f)=~-l/~ C f m ( T - I , , >  j gM(e)ds. 
i = l  (i - l ) / n  

We have 

Let us show that the right-hand side of (39) goes to 0 as E j 0, n + a, 
(My m) + rn in this order. As we will show in Lemma 14 that 

(40) 
n-m e+O 

where d$ = zr= 20:~ (Zk)! 1; a;, (w) dw, this will imply (38). 



. C. Berzin et al. 

LEMMA 13. The right-hand side of (39) goes to 0 as E 4 0, n + a, 
(M, m) + oo in this order. 

Proof,  To show that the right-hand side of (39) goes to zero it is enough 
to see that the both terms on the right-hand side go to zero. We know that as 
&-PO 

2 2 1 1 f l  ~(~::(f))'+llfmll:~2. 

~(~;(f))2-+a'IlfII:, ~ ( ~ f ~ ~ ( f ) ) ~ + l l f r n I l ~ ~ ~ ,  

E (Ze, (f) Z% (f 1) -, E Cf(X0) fm IXo,l4. 

This last result comes from the asymptotic independence between 

1 '  1 
- j fIzr (2) ds and - H Z ,  (e) ds 
d o  fro 

(see remarks in section (a)), by using the technique employed for proving the 
convergence of E(Zz (f))'. To finish the proof that the right-hand side d (39) 
goes to zero it is enough to show that 

but 

By the Schwarz inequality, 

where b = J l  fm ( I 4  11 911 < + m. Furthermore, 

The last identity comes from the fact that 

and the identity (41) is equal to 
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The orthogonality properties imply that 2k1 = 1, + 2k2 - 1,. Hence 2kl < 
2 M + m  and (41) does not depend on ml, and so 

2 2 M + m  2 M + m - 2  m 

C C,I Ci2 a,-t, ar-12 
0 r = 2  11 = O  I 2 = 0 . 1 1  f l 2  even 

By an application of the diagram formula, we get 

LEMMA 14. The equality (40) holds true. 

Proof. We have 

E (zE: (f, z:*" If 1) 
= E - I  j ~ { f ~ ( ~ - l ~ ~ . ) ~ ~ ( ~ ~  f m ( ~ ) ~ ~ ( $ ) } d s d s l .  

i.j= l ,n  (i- l ) / n  ti- ].)In 

We consider separately the terms correspo~ding to i = j and i # j. Fw the 
diagonal terms we develop f, and g~ in Hermite's basis. We have, by sta- 
tionarity and a change of variable in the integral above, that each term of the 
multiple sum is equal to 

Using the diagram formula again we have to look at terms of the form 

Four different cases must be considered: 
1. d5 2 2 and dz +d, +d4 # 0. Now IP,(-)I is bounded by EB, and it follows 

that (42) is less than or equal to 
Q) 

Constn-I ~ f l ( ~ ~ + ~ ~ + ~ ~ )  j I&(&x)lds dx + 0 as E 0. 
0 

2. d5 22anddz+d,+d4=0.1nthiscase11 = 12=d1 =1and2k1 =2kz 
= d ,  = 2k. It is easy to show that (42) goes to 2 ~;'~r'(u)dv] [j," a:,(u)dv] 
as E +O. 

3. d5 = 0. As in the case 1, the term (42) is less than or equal to 
C O ~ S ~ . $ ( ~ ~ + ~ ~ + ~ ~ ) - ~  + 0 because 8 > 1/4. 

4. d5 = 1. By the same argument we obtain the bound 
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and since 

the term (42) is less than or equal to 

since u < 3/4. Summing up we obtain 
n i / n  i/n 

' - 'C.  S 5 E { f ~ ( ~ - ~ ) / n ) g ~ ( V ) f m ( ~ ) g ~ ( $ ) ] d ~ d ~ f  - 
i= 1 (i- 1)jn (i- l ) / n  

and this goes to 11 f m l l ;  0; as n + m. 
For the non-diagonal terms the same cases have to be examined and the 

only difference is in the treatment of &, considering if it is near the diagonal or 
not. rn 

Remark. It is interesting to note that if we define 

(recall that HZ (x) = x2 - I), then 

We know that E (T:) = o (I), SO that if 1/4 < a, then p2 converges in probability 
to zero as E + 0. Furthermore, it can be shown by using an easier argument 
that we have weak convergence for Z", f) to a random variable YE I? such that 

Given the a-algebra generated by {X,, 0 < s < 11, this limit is in fact a stochas- 
tic integral with respect to the Brownian motion which is the limit of SF = 

F- 'Iz & Hz (2) ds. This last result comes from the tightness of the sequence Sf, 
which can be proved as follows. Using a result in Billingsley [fl it is enough to 
show that 

E IS;"14 < Const Itll+Y with y > 0 
but 

t t t t  

E I S : " ~ ~  = ~ - ~ j ~ j ~ ~ ( ~ ~ ( ~ ) ~ ~ ( ~ ~ ) ~ ~ ( ~ ) ~ ~ ( ~ ~ ) } d s ~ d s ~ d s ~ d s , .  
0 0 0 0  
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Because of the symmetry in the variables si, we have only to consider two types 
of graphs. First, there are those which have levels 1 and 2 connected and levels 
3 and 4 also connected. The graphs of second type have levels 1, 2, 3, 4, 1 
connected in this order. For the first case we have 

For the second case we consider 

t t t l  

By the Schwarz inequality, and in the same way as before, 

which implies that the first integral is bounded by 

Using again the same argument we obtain the bound 

Case  3. 3/4 < a < 1. 
Now we have 

Define 

where a, is the second Hermite coefficient of g. We shall show that 



Thus, to study the convergence of TI it is enough to consider that of W , ( f ) .  
First, it is easy to see that 

The limit on the left-hand side was calculated in the proof of Theorem 1 and for 
the right-hand side the only difference is that g is replaced by H,. They are 
equal to (4). To study the convergence of the covariance term a similar ar- 
gument can be used: write 

As in the proof of Theorem 1 we split the domain of integration into 
[0, ME], [ME, q ]  and [q ,  11. It is easy to show that the contribution from the 
first integral is o ( E ~ " - ~ ) ;  for the second, using an argument similar to that of 
Lemma 7 we infer that it is O ( V ~ " - ~ ) ,  and for the third, using the Dominated 
Convergence Theorem and making E, q 4 0 we see that this goes to (4), so that 

To simplify the notation we shall study the asymptotic behaviour of 
Wi ( f )  = W, ( f  )/az. We have the following expression for the regularized pro- 
cess and its derivatives where dZx(A) is the spectral random measure corre- 
sponding to X, and d Z ,  (A) = @(&I)  d Z x  ( I ) ,  

1 +* 
= - j ei" 4 (sA) d Z x  (A) = +{ eit' dZE ( I ) ,  

O€ -0, g& - m  

. 1 + m  
= 1 ei" irl@ (EL) d Z x  (A) = 5 +{ iI dZ. (,I). 

Oe -a oe - m  

We can write Wi (f) as 

To prove this identity we have to justify the interchange between the sum and 
the integral, but this is a consequence of the following facts. On the one hand, 

is a Cauchy sequence in I?@), and on the other, defining in I? 
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it is easy to see that 
1 

E [ ~ ~ M ( Y I H ~ ( ~ ) ~ S ] ~  4 ~ ( f d ( ~ i ) ) ~ ( ~ $ ( p ) )  = 21 llf~ll$ 
0 

and this goes to zero as M + co. Going back to the asymptotic study of WL we 
consider now one of the terms in its expansion, which will be denoted by X(E). 
Using It6's formula for the Wiener-It6 integral [10], we get 

- 1 1 1  - -- 1 - J C ~ c ~ n ( ~ l )  (dl 8) - . . mc(z(k)j (Ak, S) dZE (A11 . - . dZE ( a h )  d ~ ,  
E2(1 -a) k! 

0 Rk%€Ilk 

where 
1 i A 

ol(A,s)=-exp(isA), w,(d ,~)=~exp( is l l ) ,  
a, 6, 

{ I'J is 1 if j 4 k - 2 and 2 otherwise, and 17, is the set of permutations of 
(1, 2, . . . , k ) .  We can use ItB's formula since the functions oi(;l, s) are ortho- 
gonal with respect to the measure I@ (EA)~" (A)dA, where h is the spectral den- 
sity of the process. As in [9], p. 330, integrating the expression above with 
respect to s and defining K (A) = (iA)-' (exp (iA) - 1) we obtain 

X ~ n - ~ ( k - ~ ~ d n - ~ ( k ~ d z E ( ~ l )  ... dzE(Ak) a.S. 
77€nk 

But since E'(' -"I 6; + Cx2 and d- + 1 as E j 0, to obtain the asymptotic 
behaviour of X(E) it is enough to consider the rest of the expression above. 
Define 

Using Lemma 15 below we can prove that 

converges, as E + 0, to 



78 C. Berzin et al. 

Shce the last integral above is finite, we can define the following Itd-Wiener 
integral : 

Consider now 

D(k, E )  converges pointwise to D(k, 0) as E 4 0 and the calculations above 
imply that IID(k, & ) 1 1 2  + IID(k, 0)112 as E + 0 in I.? with respect to Lebesgue 
measure in Rk, and the Lebesgue theorem implies that IID (k, E)  - D (k, 0) 11 -, 0 
as E 0 in the I?-norm with respect to Lebesgue measure. We have in fact 
Mk (8) -, -fk (0) in L~ (a), i.e. (E) + (0) in L~ (a), where T, (0) = x - 2  Mk (0). 
We will now prove that, as E + 0, 

First, note that 

2 "  k - 2  (k- 2)! 
Var(W) = 4 ~ - ~ ( ~ - ~ ~ ~  C c:-~ (k-2)! C 

k = 2  j=(k-4)vDj! [(k-2-j)!I2(j-k+4)! 

tends, as E -+ 0, to 

1 

x 1 (1 - u) [r (u)]j [i (u)] 2(k- - j )  [-i..(~)]j-~+ du. 
0 

A similar argument gives the result when the sum k begins with M + 1. This 
implies that 

41 

lim Iimsup C E(X)' = 0, 
M + m  E - 0  k = ~ + l  

since 
a 

lim sup 1 ( E  (Xl2 - E (T, (0))')I = 0 and lim f E (T, (0))' = 0- 
e-0 k = M + 1  M + m  k = ~ +  1 
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On the other hand, 

Consequently, using the orthogonality relations and previous calculations 
we obtain 

lime( f (ac~)-aco)))' = o, 
"-4 k = Z  

and the 'resdt follows. 

LEMMA 15. Let (IL,) be a sequence of Jinite measures in Rk such that their 
density with respect to Lsbesgue measure can be written as 

Then pE + p  weakly as r + 0, where p is aJinite measure on Rk. This implies that 

lim j dp, ( x )  = J d p  ( x )  . 
E -'O ~k Rk 

P r o of. Define Y, (y , , . . . , y ,) to be the Fourier transform of pE. Since K (A) 
is the Fourier transform of P6lyaYs function, i.e. [K (,?)I2 = 4 (A), where q (u) = 
max (1 - lul , O),  we get 

We have to consider three cases depending on the permutations that appear in 
this expression. 

Case  1. For two different integers the permutations are the same. We 
may assume, without loss of generality, that x- ' (k)  = v- ' (k )  = 1 and 
n- l (k - 1) = V -  l ( k -  1) = 2. The integral is then 

1 

= 1 q ( ~ ) e ~ ( ~ l + u ) e ~ I ~ ~ + u ) e , ( ~ ~ + u )  ... eE(yk+u)du.  
- 1 

There are 2k (k - 1) [(k - 2) !] such cases. 
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Case 2. The permutations coincide for one index and differ for the 
other two indices. We may assume without loss of generality that 
n- ' (k )  = v W 1 ( k )  = 1 and K - ' ( k - 1 )  = 2, v - ' ( k - 1 )  = 3. As before we get 

and there are 4k! (k - 2)! (k- 2) possible cases. 

Case  3. All indices are difFerent, the integral is 

and there are k! (k -2)! (k - 2) (k - 3) possible cases. We will only consider in 
detail one integral belonging to Case 1: 

We will prove that L, converges uniformly for (y ,  , . . . , y,) E K, where u is com- 
pact in Rk, as e + 0, to 

We have 

The integral above is bounded by 

and since ~ € 2 ,  the two terms tend to zero as E + 0. Hence lime,, ?Pe(yl, . . . , yk) is 
continuous and, in particular, at (y,, . .. , yk) = (0, .. ., 0). Therefore there exists 
a finite measure j i  such that fi& + fi  and, by Levy's theorem, p& -+ p weakly. EI 
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