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Abstract. Let {X,, te[0, 1]} be a centred stationary Gaussian
process defined on (€2, A, P) with covariance function satisfying

ri)~1-Clt**, O<a<l1, ast—0.
Define the regularized process N
X=¢,xX and Y°=X%%, where ¢ = varX:,

¢, is a kernel which approaches the Dirac delta function as ¢ — 0 and
* denotes the convolution. We study the convergence of
® I: NY‘ (x)

Z,(f)=e""® —Lx(x)] f(x)dx as -0,

c(e)

where N¥(x) and L (x) denote, respectively, the number of crossings
and the local time at level x for the process V in [0, 1] and

c(e) = (2 var (X)/mvar (X)'"”.

—a

The limit depends on the value of o

1. INTRODUCTION

A natural way to approximate the local time Ly of an irregular process
X, is to consider regularizations by convolution: X¢ = ¢, * X,, where ¢,(-) =
¢~ 1 ¢ (-/e), ¢ being a continuous function, and to study the asymptotic behav-
iour of the number of crossings N*X* (u) of the level u by the process X% on the
interval [0, 1]. Wschebor [16] showed that for Brownian motion N*°(0) with
an adequate normalization tends to Ly (0), the local time at the origin, as ¢ — 0,
in I? for any p > 1, and a similar result holds for multiparametric Brownian
motion. Azais and Florens [1] extended this result to a class of stationary
Gaussian processes, and Berzin and Wschebor [6] considered the multipara-
metric case. In view of these results it is natural to consider the speed at which
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the convergence takes place, and then to study the convergence as & goes to 0 of
the difference between Ly (1) and N*" (u), adequately normalized, divided by the
square root of the speed.

Let us look more closely at this problem. Let Y¥* = X%/q,, 62 = var X:. By
the results in [3], Theorem 2, and [13], we have

. o1 X
NTY (u) = gl_{%iggl(uwa,uw)(ysa)

—5
G,

ds

and there is a similar expression for the local time:
- {1
L =lim—{(1,_ X (s))ds.
x (1) ;1_{%25.(‘; w-s.u+ (X (5))ds

One could now try to study the I?-convergence, say, by fixing &, looking at
the second order moment of the difference as ¢ — 0, dividing then by the speed
of convergence of the difference between these two random variables and
looking at the limit as & — 0. However, the expression obtained after making
¢ —0 goes to infinity as 6 — 0, so that this approach does not work.

We consider a related problem, substituting the indicator function of the
interval (u—4, u+4J) by a function which does not depend on J, thus avoiding
the problem of the divergence of the moments. We look at Gaussian processes
such that, near the origin, the covariance is of the form 1—L(jt])]t|** for
0<a<1, where L(t)—» C >0 as t > 0" and satisfies certain additional con-
ditions set in Section 2. By [4] these processes have continuous local times. We
study the asymptotic behaviour of Z,(f), where

N"(x)
c(e)

with ¢ (g) = (2var (X%)/mvar (X f))” % and f a continuous function satisfying cer-
tain regularity conditions and in I* (¢ (x) dx), where ¢ (x) is the standard Gaus-
“sian density. We obtain three different types of limit depending on the value
of a. For 0 < a < 1/4, which corresponds to the class of processes with more
irregular paths, a(a) = 20 and the IZ-limit can be written as

0 Lm=§¢m,am=ﬁﬂﬁi —um}n

K. { Hf()Lx(x)dx,

where H is Hermite’s differential operator for the standard Gaussian measure:
Hf(x)=xf"(x)—f"(x). If 1/4 < a0 < 3/4, a(x) = 1/2, we have weak convergence
and the limit variable has a conditional Gaussian distribution, given the sample
path of the process. Finally, for 3/4 <a <1 we have I?-convergence
with a(e) = 2(1 —a) and the limit can be written as a multiple stochastic inte-
gral in the infinite chaos. To get the appropriate normalization for each case we
obtain in Theorem 1 the variance of {,(f).
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The techniques employed vary according to the value of «. We can split
Z.(f) in two terms:

1t , 11
2 Z,(f)= @ g (%) g(Ys) dS+—E,,(,, (D) —f(X)lds= Ty + Ty,
0
where

g(x) = /7/2|x|—1, K?=(T’, and ¢2 = varX?,

&

and Z,(f)-is shown to be equivalent to T; except when 0 < a < 1/4. In the
latter case we show that it is enough to consider f = H, for ne N, where
{H,, n > 0} are Hermite’s polynomials, orthogonal with respect to the stan-
dard Gaussian measure and with leading coefficient equal to 1. The term
T, measures intuitively the distance between f(Y®) and its limit f(X).

If 1/4 < a < 3/4, we show that the finite-dimensional distributions of

St =—{g(¥)ds

A

converge to those of Brownian motion and then use a construction similar to
that of the stochastic integral in I? to obtain the result. Finally, in the last case
the limit is given by the first term of the Hermite expansion of the function g.
The It6—Wiener formula for multiple stochastic integrals is used to obtain the
result.

Estimation for the local time of diffusions when the regularization is done
by using continuous piecewise linear functions obtained from a sequence of
partitions has been used by Florens-Zmirou [11] to estimate the variance of
a diffusion. We think that the techniques used in this work can be employed to
consider similar problems for Gaussian processes.

 Recently, Azais and Wschebor [2] have shown, for any continuous func-
tion £, the a.s. convergence of [~ _ f(x) N*"(x)dx for X in a class of Gaussian
processes which includes ours.

The results obtained in this paper have been announced under slightly
different hypotheses in [14]. Some minor mistakes in Theorem 1 are corrected
herein.

2. HYPOTHESIS AND NOTATION

(H1) For the process X: {X,,te[0, 1]} is a standard stationary Gaussian
process defined on (Q, A, P) with covariance function

r() = E(XoX)=1—|t2L(), 0O<a <1, lmL({=C>0,

t—+0+
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where L > 0 is even and has two continuous derivatives except at the origin,
which satisfy || L(jt}) = O(1) and > I’ (Jt]) = O(1) as t — 0. Furthermore, when
a > 1/4 we suppose that the process has a spectral density h(u) = M (u)/w?,
y=20+1, and M (u) has a limit when u goes to infinity. :

(H2) For the kernel ¢: ¢ is even, ¢ >0, and
+1
Supp¢g[—13 1]5 (PECI, j (P(t)dt=1
-1

We shall use the Hermite polynomials, which can be defined by
- M T 2

t & r
exp (tx——z—) = n;o H, (x)a.

They are an orthogonal system for the standard Gaussian measure ¢ and, if
he IZ (¢ (x) dx),

h(x)=Y h,H,(x) and |h|3,= Y n!h2.
n=0 n=0

Mehler’s formula [8] gives a simple form to compute the covariance between
two I?-functions of Gaussian r.v.’s: If (X, Y) is a Gaussian random vector
having correlation g, then

o0

3) E[R(X)k(Y)] = ¥ h.kynlo".

n=0

(H3) For the function f: feL*(¢(x)dx) and is continuous. We assume
that f’ and f” belong to IZ(¢ (x)dx).

Define

=290, X)=0.xX(, ¥=0prp,

90 = ﬁlxn—l = ¥ anHu(, of =var(Xy,
n=1

© ] Xe
2= [ b@LPd, Br=

26
c(g):\/:ﬁ, Ka=
no,

, 6% =var(X)),

£

S1Ke!

T v @,

I'(X, Y)is the covariance between X and Y, ¢ (x, y; r) is the bivariate Gaussian
density with correlation r, and Const denotes a constant whose value may
change during a proof.
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The exponent a(x) is defined as a(x) = 2« for 0 < a < 1/4, a(ax) = 1/2 for
1/4 <o < 3/4 and a(@) =2(1—a) for 3/4<a<1.

Note that if " and f” are in I? (¢ (x) dx) and we denote by c, the Hermite
coefficients of f, then

Hf() = xf/()~f" () = 3, nea Hy ().

Remark. The results we obtain are also valid under the hypothesis that,
for some Be[—1, 1), c2n!'n? ~ nf when n goes to infinity. Examples of func-
tions satisfying this condition but not (H3) are the indicators of intervals. The
proof can be seen in [5].

3. RESULTS

THEOREM 1. Under the hypotheses H1, H2 and H3 we have the following:
(. (f) defined in (1) satisfies

E(Cg (f)) =0 (64(1 @ te +84a)'

Moreover:
() If 3/4 <a <1, the limit of the variance divided by ¢*'~® is

1 & d m 2
0 s 5 wal)(?)
C*y* mz=:o i= (m§2) vo J/\m—]

X }(1 — )P ) [F )12 I [—F @) ™+ 2 d.
0

(i) If 1/4 < o < 3/4, the variance divided by & converges to

2l o o

(5) 2 i m!ck i (21)!a§,(}15> ([ ¥@w—ul**du]® dw.
‘ 1=1 0 -

m=0

(i) If 0 < a < 1/4, the variance divided by &** converges to

(6)  2KZ i mzm!c,z,,}(l—v)r"‘(u)dv=E[Ka Of Hf (x) Ly (x) dx]>.
0 — 0

m=0

THEOREM 2. Under the hypotheses H1, H2 and H3 we have
() If0 < a < 1/4, a(x) = 20, Z,(f) defined in (1) converges in I? () when
>0 to

K, i c,,n}H,,(Xs)ds= K, }) Hf (x) Ly (x)dx.
n=1 o —®

() If 1/4 <a < 3/4, a(x) = 1/2, Z,(f) converges weakly when ¢ — 0 to an
r.. Y in I? (Q) and the conditional distribution (Y/X,, 0 < s < 1) is Gaussian with
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zero mean and random variance equal to

GZ}fz (XJ)ds,

where

g2 =2 i (2I)!a§,]?a§1(u)du and  6%(v) =[x 2 oj? ¥ (2) |u—z|2“dz]2[.
=1 0 “w

- (i) If3/4 <a < 1, a(e) = 2(1 —a), Z,(f) converges in I? (Q) when € — 0 to

—[sz]_laz[i G- 2IK()~1+ A

=2

X Z An-1ge- 1) An-100dZx (A1) ... dZX(Ak):I,
well

where K (4) = [exp (iA)—1]/i4, II, is the set of permutations of {1,2,...,k},
dZy is the random spectral measure associated with X and the integral is an
It6-Wiener integral [10] (remember that (a,) are the Hermite coefficients for

g(x) = /7/2|x|—1).

Comments. (a) One way to try to prove Theorem 1 is the following:
since f(x) = Z:; oCmHm(x), by using a generalization of the Banach-Kac
formula shown in [15], {,(f) can be written as

M L= g (f (%) (/D)2 ¥ —f (X)) ds

S®)(/2)' 1%~ )ds+f(f(Y")—f X,))ds

It
Q ey

= S1 +S2

O'—-—a'-‘

YO (@/2 P B — ) ds+ 5 cm | (o (%) — Hon(X ) ds
1]

m=0

but since g(x) = (n/2)*|x|—1 =3, ayHy(x), S; can be written as

Z Z c az,_fH (Y8 H,yy (YD) ds

m=01=1

o [k/2]

= ‘Z Cr— 2tazszk 2 (Y Hpy (Y2) ds.

k=2
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To prove the I?-convergence, one can calculate E(S%) and E(S%). Under
assumptions allowing the interchange of expectations, sums and integrals, one
can write the second order moment of S; as

o o [k/2] [k2/2]

E(S%)= Z Z Z Z Cxy — 21 Q214 Cgy— 21, Q24

k1=2k2=2 l1=1 I2=1
11

X j‘ .fE {Hh*zli(st’:)th (Y.ss’) sz-le(Yss)Hzlz(Xse)} desl‘
00

Now the diagram formula for the expected value of the product of Hermite
polynomials evaluated at Gaussian r.v.’s with known covariance matrix gives
an expression in terms of powers of the covariances between the variables.
From this expression it can be seen that E(S?)e™**** converges to (4) when
¢ — 0 if a > 3/4, and that E(S3)¢~* converges to (5) as ¢ - 0 if « < 3/4. On the
other hand, S, can be expressed directly in terms of the covariances and we
infer that E(S2) = O(e'*2%)+0(e*)+0(e?) and for o < 1/4 that E(S3)e™**
converges to (6) as £ - 0.

In this paper we will use a different approach, making direct calculations
with Gaussian densities instead of using Hermite expansions and the diagram
formula, since the application of the diagram formula requires more restrictive
conditions on the Hermite coefficients for the function f, and the interchange
between limits, sums and integrals is difficult. '

(b) In (ii) of Theorem 2 one could say that, given the o-algebra generated
by {X;, 0 < s < 1}, the limit random variable Y is the stochastic integral of
f(X,) with respect to the Brownian motion W limit of Sj, i.e. aj'o f(X)}dW(s).

4. PROOFS

LemMMA 1. We have

| 0 — M 17— FA2

’ - _ 2
(ii) 52_'.(}5(3‘1, X33 1) = @ (x1, X2 7) {[(xz :fi(:;)lz er)]

6r(x,—rx,) (61 —7%5) x%—2rx, X, +x§+ 1472
(1-r%? (1—r?? (1—r??

The lemma follows from the properties of the multivariate Gaussian
density. =

Before provmg Theorem 1 we shall give an alternative expression for the
limit variance in the case a > 3/4.
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LEMMA 2. Define s(v) = (1—r2 (1)), If « > 3/4, then the expression (4) is
equal to

}(l—v) | f(xl)f(r(v)x1+S(U)xz)|iw|:(x1 T(U) )2—_1ij
0 R?

2C? y* 5% (v) s(v) s2(v)
W) x2[,, . r(v) (r'(v))z] r(v)
s [’(”” 20 |\ s )

btz [f(v)+’(”s)2(';f;’)) ]2]¢(x1)¢(x2) dxy dx, do.

Proof. We consider separately the terms corresponding to the three
possible values of j in the second sum of (4). Using Mehler’s formula (3) and
the relation

> mlcr(o) = E(f) f(Xus ),

for j = m we obtain

X4 Zom c,,,_f(l u)r"‘(v)(r(v))

= Cz;x“'[(l —) (""(U))z § f)f(r®)xy+5(@) X2) @ (x1) @ (x2) dx; dx, do. ‘
0 R2

Using (i) of Lemma 1 and the equality

i m' C mrm ! (U) (f(-Xu) f(Xu+ v))lr r(v)»

for j=m—1 we get

% i m!Cfnm}(l—U)r'”'l(v)r'z(v)r"(v)dv
C X m=1 (1]

2 1 V) . ,
= Ez?g (1-v) '{2 fe) f(r @) %1 +5 ) xz)[’ (SU()UT)(v)x2 <x1_r(sv()v>)c )

2 0)F0)r ()
T

Finally, since

] ¢ (x1) @ (x2) dxy dx; dv.

¥, mlckmln—1)r""(0) = 23 E (7% fKurlpor
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and using (ii) of Lemma 1, we get for j=m—2

1

2 Z m!cim(m— l)j(l—v)r'” 2(v)(r(v))

1 . _ 2
= Wi(l—v)(r‘(v)) 1!2 1) fr @) %1 +5 (@) x,) {xz (xls2 (rv()v)xz)

6r(v)x,(x,—r(®)xy) xi+x3 14+2r%(v)
TSe 0 ¢ s

Adding .up the three expressions we obtain the result. =

} ¢ (x1) ¢ (x2)dx, dx,dv.

LemMA 3. Let
QB(U) = TB(U)(G'E)_Z =TI'(Yg, Yva)s én(v) = F(Y(fa .ng)a _é'e(v) = F(YOB’ K;e)a
then, for any n > 0, uniformly for ve[n, 1], as e =0,
6010, GOF L, G 1>—»’(”’
JCx

The proof is based on the relation 62 ~ Cy*¢2*~* which can be obtained
from the equality

6262 = [ [ ¢@)¢)|u—v**L(elu—v|)dudv
since this integral converges to Cy* as ¢—0. =
Proof of Theorem 1. Let us start with (7):

1 1
L(f) = (5)f(Ys”)g(Ys“)dHI(f(Ys”)—f(Xs))dS =81+,

and use the decomposition (2) of Z,(f) = {,(f)/e*®, where the exponent a («) is
defined in Section 2,

Z.(0) = ] S0)9 () s+ (L) ~f (X1 ds = Ty + T

The proof will proceed as follows: in Part 1 we obtain an expression
for E(S?) for all values of a. In Part 1A we consider the case a« > 3/4 and
show, using Lemmas 5 and 7, that E(T{) converges to (4) as & goes to zero.
In Part 1B we consider « < 3/4 and prove in Lemma 8 that ¢! E(S) con-
verges to (5). In Part 2 we prove that E(S3) = 0 (e**)+o0(g); hence this
term only matters when o < 1/4 and we show in this case that E (T?) converges
to (6).
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Part 1. The second order moment of S;:

®) E(sH=2 g(l — ) E[f(Y5)g(¥8) f (¥) g ()] du

1
= 2{(1—U)I{Af(X)f(y)g(i)g(J")dJe(x, X, ¥, y; v)dxdxdydy dv,

where ¢,(x, X, y, y; s—5') is the joint Gaussian density for the variables
Y?, Y2, Y&, Y:. Integrals and expectation can be interchanged since f is in
IZ (R, ¢ (x)dx). We now fix v and make a change of variables to transform this
into a standard Gaussian density (remember that g,, ¢, and g, are defined in

Lemma 3):
2

X=x1, Y=0.%+1—0)"*x,,
X=01X,4+02x3 and y=cyX1+CyX3+C3X3+CaXy4,
where
5:0)= 61— )", 60 =(1-8E)" @) =-a0)
) €2 () = 0. (0)01(v), ¢3(v) = 331 () (G. () — 0. (v) 31 (v)),

ca(t) = (1—c—c}— ",
We can write the inner integral in (8) as
(10) _L f(xy) f(Qz x1+(1—g2)'? x2)
R

X j g(01%3+05x3)g(cy %1 +€3 X3+ €3 X3+Ca X4)
RZ

X P (x1) @ (x2) P (x3) @ (x4) dxy dx, dxs dx,.
LemMMA 4. Define
mo=c3d5', my=208,01%;, my=257"(cyx1+eyx0),
q(z) =exp(—2*/2) and p(z)=1z[q(y)dy.
0
Then, for x4, x, and v fixed,

(1) [ g(01x24+085x3)g(Ccq X1 +C3 X5+ Ca X3 +Cq Xa) P(X3) P (x4) dx3 dx,
R2

= Kz +K3 +K4,
where

Ky = 83mo(] & exp(—£2/2)de—my q(my)(] E2exp(—E/2)dE—m; q(my),
0 0
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K; =§6§ Y @, (my) @y (ma) ! m,
! n=2

K,=[9, (P (my)+q(my)—1][4, (P (m2)+q (m2)) —1],

and a,(m;), n = 0, are the Hermite coefficients of the functions G;(x) = |m;+x],
i=1,2

Proof. Since 83 = c3+c3, the integral in (11) is
§ [(/2)"2 8, Imy + x5 —1]
RZ .

X [(“/2)1/2 03 |may+mox3+(1 —md)' 2 x| — 1] ¢ (x3) @ (x4) dx3dx,

and this can be written as J,+J,+J3+1, where

. T
| Ji =263 j Imy + x5 |my+mg x3+(1—m3)1/2 X4| @ (x3) P (xa)dxsdx,
i R2

N

_ _"255513(01 (X) G, (Y)),

Jy= —52(p(m1)+q(m1)),‘ J3= —9d, (P(mz)'i'Q(mz))

with (X, Y) standard Gaussian r.v.’s with correlation m,. Thus, by Mehler’s
formula (3), we obtain

Ty =28 Y. an(my)a,(my)nim.
n=0

Let us look closely at the terms in this sum. For n =0 we have
T
K, = 5 03 ag(my) ag (my) = 63 (P (my)+q (ml)) (p(m2)+4q(my)),

for n=1 we get

T

K,= 5% mg a; (my) a;(m,)

8]

= 8%mq ("f £ exp(— E/2)dE—my g(my)( | &2 exp(—E4/2)dE—m; (ms),

4 — PAMS 18.1
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and for n > 2 we obtain

(1) K3 =203 Y, ay(m) aplms) i = w03 a (my) 0 (mz) m3+ O (m3).

n=2

Thus J; = K; +K,+K,, and defining

K=K +J,+J3+1 = [Jz(p(m1)+q(m1))- 1] [52(p(m2)+q(m2))— 1],
we complete the proof. m

Using_.(IO) and Lemma 4 we can now write (8) as
(13) ' E (St )—2§(1 v) I Jx1) feexs+(1—03) 2 x,)

X [K;+ K3+ Ka] ¢ (x1) ¢ (x2) dxy dx, dv.

For ne(0, 1) split (13) into I; () + I, (17), where I, (n) corresponds to the integral
over v <# and [,(y) to the integral over the rest.

Part 1A. o> 3/4.

In Lemma 5 we show that I, (57)/e** ~® converges to (1) as ¢ >0 and n —» 0
in this order. In Lemma 7 we prove that |I; (n)|/e**~® = 0 (y**~3) as = 0.
Making # — 0 we infer that E (T{) converges to (1). We will prove in Part 2 that
E(T?) -0 if a > 1/4. This shows (i) of Theorem 1.

LeMMA 5. If « > 3/4, then 1, (n)/e** = converges to (1) as e - 0 and 4 — 0 in
this order.

Proof. As before, s2(v) = 1—r*(v) and we use the same notation as in
Lemma 4 and the results of Lemma 3. For > 0, uniformly for ve[n, 1] and
for any value of o, as ¢ » 0, we obtain

m, HO)x o my —r(v)( r(v)x2>
&7 e &7 /Cx s@)
6,—1 —(F) me  — [r()+r(v)(r(v))]_

20-a - 20252 @) &0 ) Cy 2 (1)

K, (r'(v))‘(x%—l)[ ro)x;\'_ 1
84(1—(1)_' 4C2x4S2(U) X1~ s(v) _SZ(U) >

K, _ (0)'x [f.(mr(v)(f(v))z] <x1_r(v)x2)

Thus we have

-0 2 x*s(v) s2(v) s(v)

K 1
84(13@%202%4[ ()+r(v)2(;(;))) ] .
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Hence, using the Dominated Convergence Theorem, we see that I, ()/s* %

converges, as £ — 0, to
[ ! )+’(”’2(’;(;’)) ] ]qs(xl)qs(xz)dxldxzdv,

and taking into account Lemma 2, this goes to (1) as # - 0. =

C2

We give now a technical result needed for the proof of Lemma 7.

LemMMA 6. With the notation set in (9), if « > 3/4 for M large enough and
& small such that Me < n, then

(14) e7%7® ,51 (162 (v)] 82 (v) 67 2 (v) + 61 (v) 65 2 () + 67 (¥) + &7 (v) 63 2 (v)) dv
Me
= 0(n4a—3)_

Proof. Let M be large and ¢ be small so that Me¢ < . For any ve(Me, n)

we have v
2

L(v

2z
— L(|8u|):| du.

1—o0) =" | w(u)ﬂl——

E—Z

Using (H1) we have L(jeu]) <2C, L(v—eu)> C/2 for ¢ small, and also
eu/v < 2/M. Hence

1—g.,(v) = v i W (u)du |:<1 —%)20!%—(%)21 ZC] > Q,0v%%,

where Q, is a constant dependent on a.
We also need a lower bound for 1—g?(v)—¢2(v). Since L(v—eu) and
(v—eu) L (v—eu) are bounded, using

2 eu\2e—1
6.9 < Conste! ~*0*~ [ i d/(u)(l—?> du]
~2

2 20—1
< Conste! ~*p?*~ 1<1+M> < Constg! %p2e~1,

for M large we obtain 1—g2(v)—¢? (v) = Constv?* Consequently, the results
follow for the two middle terms of the left-hand side of (14). For the first one,



52 C. Berzin et al.

using the Schwarz inequality we have

n
57447 [ 15,(0)| 3 () 37> () do < Comste™21 “’[I G ) dv] " pt ",

Me

By Jensen’s inequality the integral above is bounded by Const#**~¥. For the
last term in (14) it is enough to prove that 1—g2(v) < Constv?® but this is
a consequence of behaviour of the spectral density at infinity. m

The next lemma shows that for o > 3/4, the terms near the diagonal are
negligible. For the proof we use again Lemma 4.

LEMMA 7. Ifa>3/4 then |lLi(mMe** *=0n**"3) as n 0.

Proof We use the same notation as before. Remember that
n

Lin) =2f(1=v) | f(x1) f(@ex1+(1—07)/%x,)
0 R2

X [K>+ K3+ K4l @ (x1) b (xz)dx, dx, dv,

where g, is defined in Lemma 3, and K,, K3 and K, in Lemma 4.

We split [0, n] into two intervals: [0, Me] and [Ms, #], where M and
¢ will be chosen later. It is easy to show that the integral over [0, Ms] is O ().
The other integral is

(15) Zf(l—v)If(xl)f(eaxﬁ(l —02)'? x,)

X [K2+K3 +K4] ¢(x1)¢(x2)dx1 de dv = Ll +L2 +L3.

The first term in (15) is

Lal = [2 ] (1=0) [ £x1) f{e %0+ L= 22 x3) Kz b (x5) b (x2) dxy dx, di]
Me R2

< 2} (1 _”)‘L |f(x1) fleex: +(1—g)'? x2)|

X |05 c3my myf @ (x1) P (x3) dx; dx, dv

—Constl\L(l—v) [ Gea) f (s %1 +(1 — 022 x)| xl—(l—fﬁg’%l/—z
X |05 01 65 1 x5 €3] @ (x1) @ (x2) dx, dx, dv.
Consider the expression
6 T 6o f (e + (1= x2) el o = (| # ) § () s ds,
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which by changing the variables z = g, x; +(1 —@2)'/? x, takes the form

X1—0:2 |

Z—0: X1 l
(1—3)'|

(1—Q3)1/2| ¢(x15 Z;Qz)dxl dz

184] § 1f Ger) £ )
R2
<161 E(f*(N) E(NP),
where N is a standard Gaussian r.v. Hence, using (9) and Lemma 6, we obtain

n
(16) |L;| < Const | (1—0v)[|¢. 6% 03 *|+1e, 0165 *[1dv < Consty* ™32 7%2,
. M:e

Fof the. second term in (15) use (12) to get

|Ly| = |2 } (1—v) _[zf(x1)f(£'ex1 +(1—Qaz)1/2 xz) K3 ¢ (xy) ¢ (x3)dx, dx, dU'

< Const j'l (A=) [ |f(x1) f(@exs +(1—Q§)1/2x2)l[1+m?%] [1+m7%]

X 63 mi ¢ (x1) @ (x2) dx, dx, dv.

Writing out the product in the integrand we get four integrals. We shall con-
sider only the first one as the others can be treated similarly. Using Lemma 6
we obtain

(17) |L;| < Const } (1-v) Iz lf(x1) fleex4 +(1—gd)'? xz)l

Me

X o3 m3 & (x1) P (x2)dx, dx, dv

n n
< Const || f3 | (1—v)c3dv < Const| fI3[ | 022 (67 +0? 63 dv]
Me

Me

4a—3 4—4a

< Constn ;

Finally, the last term in (15) is

|Ls| = |} (1—0) | £(x) f@e %2 +(1—02)"/? x,) Ko ¢ (x1) § (x2) dx1 dxz do)
Me R2

< Const j (1-v) ‘{2 | (x1) f(@ex1 +(1—02)'2 x,)| [82(p (1) + g (m,))— 1]

X [52 (P(mz) + ‘I(mz))— 1] ¢ (x1) P (x3)dx; dx, dv

< Const | (1—1v) ‘L | £ (x0) fl@ex1 +(1—@2) "2 x,), _o.;_'—cz "

Me
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< 4 evv2 2 1
x[k_fmlp(u)r‘(v—su)du] I:(xl_(lfé)uz) +1—Qezi|

x(x2+1) 2¢(x1)¢(x2)dx1 dx,dv.
Using the same argument as before we get
§ 1 Ger) f(@e 1 +(1— 022 5x,)| (%1 (1 — @22 — 0. %) +1)
R? . -

X (x5 +1) ¢ (x1) § (x5) dx1 dx, = E(f*(N)) E(N*+1).

Therefore

4—-4a

(18) ILs| < Const—

4c2 4.‘.(1 Qz)z[_[ I/I(ll)r(v ﬁu)dU:l dv

< Consty*~3 gt~ 42,

The expressions (16), (17) and (18) show the result. =

This finishes the consideration of Part 1A and, together with Part 2 below,
completes the proof of (i) in Theorem 1.

Part 1B. a < 3/4.
We prove now that £~ ! E(§2) converges to (5).

LeMMA 8. If o < 3/4, then ¢! E(S%) converges to (5) as &€ - 0.
Proof. Remember that E(S?) is given by (8) and consider

25— E {7 ()9 (%) £ (X9 (K9} du.
V]

For ¢ small enough, divide the domain of integration into [0, Me] and [Me, #].
Using the same type of arguments as in the proofs of Lemmas 5 and 6 we get
for the second integral

T (1= E (£ (¥ g (%) £ (¥ g (3} du| < ConsteM~?
Me

for M large enough. Note that in this case the bound is obtained by using the
lower limit of the integral. For the first integral, making u = ew, we have

2 g (1—ew) E{f (Y5) g (¥5) [ (¥5) g (¥5,)} aw.
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Let X,(w) be the covariance matrix of the Gaussian vector (Y3, Ye, YE, Y2
then

11 0 0

110 0| _
ZB(W)_) 00 1 H(W) =Z(W),

006w 1

where 0(w) = x~2{”_(w)lw—ul**du and &— 0. Hence the measure
He = E(Y(;’: Yeﬁv: -(fa Yz;.iv)

tends weakly, to -'u =¥ (X 0> Xo, Z1 (W), Z,(w)) which is Gaussian with cova-
riance X (w). On the other hand, we have

E{f(Y)g(¥®) f(¥e)g(Fe) 2 < |f14lgld < .

These two facts together with (3) imply that E {f(¥$) g (¥d) f (YZ) g (¥z,)} con-
verges to

E[f*(X)1E[g(Z:W)g(Z:W)] = If1? i a%y (2k)! [0 (w)]*.

Then using the Dominated Convergence Theorem we obtain

M 0 M
2§ A—ew) E{f (Y)g (¥5) f(Y) g (¥5)} dw — 2| f1I* Y a3i (2K)! | [0(w)]** dw.
[+] k=1 0

Letting ¢ —» 0, and then M — oo, we obtain the result since the integral over
[n, 1] goes to 0. =

Part 2. The second order moment of S,.

We shall prove now that E(S%) = 0(*)+o() and for o< 1/4
that E(S3)e** converges to (6) as &¢—0. Remember that from (7) we
have

Sa= 3 ] (Ho (¥~ Hn(X0)ds

m=0

and using again Mehler’s formula (3) we get

[+

(19) E(S)=2), m!c,%,jl'(l—v){li% } w(u)r(lv—su|)du:|m

0 e —2

—2|:al jl. ¢(u)r(|u—su|)du]m+rm(v)}dv.
e —1

We divide the domain of integration for v into three intervals:
[0, M¢], [Me, ], and [n, 1], where ¢ M, and 5 will be chosen later and
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satisfy Me <7n. Making v=ew, we obtain the first expression in the
form

(20) 2 21 m! 0'2”»5(1 —ew) {[;13(1 —Ce*® _}2 W (u) lw—u|>* L (e (w—u)) du)]m

e j <P(")lw—ulz’L(e(w—u))]'"+[1—Cs2“|w|21L(aw>]"'}dw
& -1

= 0(g).

LEMMA 9. We have

m=1 g —o

ey ¥ m!,c,a;(l—v){[% T'w(u)r(lv—sundu]m

[1 | o @r(v—eul) du:I +r" (v)} dv = 0 (e%)+ 0 (&*¥).

Proof. For ve[n, 1], since ¢ <n and ue[—1,1], su <y <v and

2 2

r(lv—eul) = r(v)—euf(v)+ F#(0;) with v—eu < 6, <v.

Also

1

{ upW)du = } wy (wdu =0

and the left-hand side of (21) is

o}

22 ¥ m'c,,,_[(l—-v){li <r(v)+ j'lﬁ(u)u r(Oa)du>:|m

|: <r(v)+ A i' o (w)u? r(OB)du):|M+r"'(v)}dv.

We develop this expression using the Binomial Theorem. The first term is:

8

3) ) 'ch (- )(’(”’) (1—a2do.

Since our domain of integration is [#, 1], there exists § < 1 such that, for
¢ small enough, |r(v)/o?| < ¢ < 1 for any ve[n, 1] and Y _ m!m*cZ g™ < o
because feI?(¢(x)dx). Moreover,

1—o¢™)?2 2 2 1 2
(24) (—;;'?—)*szf[w(unm”du]z and sf) < Constm?
-2
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and (23) is equal to O (¢**). The rest of the terms in the binomial expansion of
(22) are

S m! zj(l—v) Z( );k Sm[j W ) F(0,) du]* (r (o))" " dv

1 £2k

-2 ilm!c,z,,j —v) Z ( )2k m[_[ o ) u?( B)du]k(r(v))m_kdv

- 3 m w00 & () Feor

2 1
x{[ _jz W ()2 7 (0) du]* —207 [ _jl @ (Wu?#(0,)du]"} dv.

Defining [[7]l,,1 = SUp, ¢, <, [¥(v)l, we see that the absolute value of this expres-
sion is bounded by
2%

[} 1 m
Const ' m!cif(1-v) ), " 82 Ir @)™ |F1% L dv
m=1 - k=1 \k/az"

For k= 2 and using

we get
2k

Z m'c,,,j(l v) Z( ) — [ @™ 17171

1 - 82!
A1 % (,H) Sl @A do

m—I—-1 21
(5) s 3 camimia-o's, ("7 )T (2) ke

m—1
<(2) 1100 £ amimfa—o| |"De(2) 171 [ 0= 0

since we have seen that |r(v)/o?| < ¢ <1, and for & small enough the term
inside the square brackets is less than g* where 0<g*<1 and
Z: ctmm! (p*)" ! < co. A similar argument shows that the term for k = 1 is
also 0(82) B

We still have to consider the part of (19) corresponding to the integral over
[Me, n]. '

||
Ms
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LemMma 10. We have

(25) i m!ck } (l—v){l: j' Y @)r(v— sul)du]

B -2
[1 f e@r(v— aul)du]m+r"‘(v)}dv= 0 (e*)+o(e).
(P 1

Proof. Using again the binomial expansion and (24) we infer that the first
term is

26 i m! 2 (1 —a™)> } (1—v)(’:§))md

E

< Const ) mlcim?e* | (ro(.:)) d

m=1 Me

Let us prove that for # fixed and & small enough, r (v) < 62 for ve[Me, 5].
By (H1) this is the same as

27 L()v** > g% ]? W (2))2|** L (ez) dz.

Since L is continuous, for ve[Ms, #] and some constant C,, L(v)v** >
C, M?*¢?® and (27) is satisfied as long as

By (H3), given the relation f”eI?(¢(x)dx), the expression (26) is equal to
O (¢**). The terms corresponding to 1 < k < m in the binomial expansion are
bounded in absolute value by

Zamzz] (5] (F)eor

x{[j ¥ (u) u? |r(0€)|du] —2g" [_[ o Wu? lr e)ldu] }dv

<comt 3 dmizz | § (5] (7)eor ey

& Mek=1

The term for k =1 is bounded by

;l m-—1
| (28) Const( ) Z Zmim j(r(")> v—szadv.
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The expression corresponding to k

=2 can be bounded by
1 m— ' r(p)\" 't g2 1o
(29) Const( )..;16 m!m Ljf' =1( )(Ue) 222 vz_—z‘ad”

e 2 w n (v 82 m—1 1
SConst(—> Y cimim| (2)+ T S5z dv.
O¢/ m= Me v

Taking M large enough, for ve[Me, n] we have

r(v) g2

ZZZa

s <1
o olv ’

and since by (H3) the series Y, c2m!m is convergent, it is easy to see that (28) and
(29) are o (¢). Using (20), (21) and (25) we finally obtain E (S3) = 0 (e*)+o0(e). =

Finally, if o < 1/4, we can now see using (24) that

limE[a_4“S]—11mE(T2)—11m i m!cZ (1 —oTy _[(1— m(v)

=0 m=1 E

© 1

=2K2 Y m*m!c{(1—v)r"(v)dv.
m=1 1]

This series is convergent by (H3) and this concludes the proof of Theorem 1. &

Proof of Theorem 2. Recall the decomposition of Z,(f) given by (2):

1 1
2u(0) = 5 £ (K09 (R s+ L ()~ (X)) ds = T4 T,
o

We divide the proof into three cases according to the value of a.

Case 1. 0<a< 1/4

" In this case a(x) = 2« and the important term in the development of Z, ( f)
is T,. By Theorem 1 we see that if f satisfies (H3), f(x) = Z" o Cn Hn(x), and
then

0 1
Y. Znln*f(1—v)r"(v)dv < o,
n=1 0

and

© i
E(TH-2K2 Y nln?f(1—v)r"(v)dv as e—0.
0

n=1

This result shows that it is enough to prove the convergence for a finite
linear combination of Hermite polynomials. Furthermore, the limits for poly-
nomials with different degrees are orthogonal, and this implies that it is suffi-
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cient to consider the limit for only one polynomial, i.e. f = H,,. Thus, we want
to show that

Us = & {[H, (%) Hy (X)]ds — Ko § Hy(X.)ds
in I>(Q) as ¢ > 0. We linow that ’
E(U%)—>2K§n2n!;‘(1—v)r"(v)du as -0,
- and the coAvariancer term is 0 |

. 1
2K, E(U, [ nH,(XJ)ds)
0

= (27!)2K¢}(1—U)S—zaE[(H,.(Y(f)—H,,(XO))H,,(X,, ] dv.

Following the same argument as in the proof of Theorem 1, it is easy to show
that the last term converges, as § — 0, to

1
2KZ(2n*)n! f(1—v)r"(v)dv.
0
Hence, if f is a function satisfying (H3), we have

oK, Y con{Hy(X)ds =K, | Hf(3)Lx(x)dx
()] . — oo

n=1
in I?(Q) as ¢—0.

Case 2. 1/4 < a < 3/4.
The proof will proceed in several steps. In (a) we prove that

14 .
Si = —[g(¥)ds
Jot

converges, in the sense of weak convergence of the finite-dimensional distribu-
tions, to a Brownian motion W. In (b) we show that X (¢f) and W (¢) are as-
ymptotically independent. Finally, in (c} we prove the convergence of T;.

(a) Convergence to a Brownian motion.
We will study the convergence of S;. We consider first its second moment.
Using Mehler’s formula (3) we obtain

1ttuo w

E(Sf)z =;_” Z Z azzazkE(sz(}.’sE)sz(K%))deS'

0I=1k=1

[ee]

0
=2{-w ¥ ahCD! ok (waw
0

=1
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with
-2 2

f l]i(z)r(w—sz)dz]ﬂ.

22
gy ~a

&

U%l.a (W) = |:_

We split the domain of integration into two parts: [0, ] and [#, ¢]. In the first
integral, making w = &v, we have

nfe -]

2 [ (t—ev) Y a3 (2))! 63, () dv.
(V] I=1

For the second integral, since ) . , a4;(2])! < oo, we infer that it is O (¢3~%%).
Furthermore, the convergence of the last series, and the fact that ¢%,,(ev) <
Const (v—1)>2*~2 for v large enough and |63, ,(ev)] < 1 otherwise allow us to
prove that

(30) ES)? -2t Y a5 2D 6% (v)dv,
01=1
where 6% is defined in (ii) of Theorem 2.
Next, we will study the convergence of the moments of Z;": L 4;(S5,— 5%, ),

where the d; are real constants and 0 = t, <t; < ... <t,, meN. We will use
the method of Breuner—Major [8]. Define

=1

M 1¢ .
gu(x)= ) ayHyu(x) and g4 ()= —={ g () ds.
7

With the same argument used to prove (30) we see that

E(S:—gy () <2t Y [ a3 N ad(w)do+0 M+ D271
I=M+10
and then
(31) lim lim E (S;—g (2))* = .

M-w >0

Hence to study the weak convergence of %, it is enough to consider that of
g% (). Let us look at :

E(Y. di(gh(t)— i lt;- )

i=1

= (1/8)”2 Z asy, .. aZ,P Z djl djp
M j

| ST lp=1 Jlsenns, jp=1.,m
iy tip
x { ... | E{Hy (Y7)...Hy, (Y2)}dsy ... ds,.

tj -1 ij~1
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Let (l4, ..., ;) be fixed; we are interested in

'jl tjp . .
(1/8)9/2 Z dll djp j I E{Hz;l(]r;i) HZlP(Y;gp)} dSl dSp.
Flseens, Jp=1,m ti -1 tjp_l

To calculate the expectation we use the diagram formula (see [8], pp. 431
and 432): ’
E(l__[ Hth(YS‘:)) = Z IG:
i=1 Gel'
where G is an undirected graph with 2, + ... +2I, edges and p levels (see [8],
p. 431, for definitions), I' = I'(I;, 5, ..., ;) denotes the set of diagrams having
these properties, and

Ig= 1_[ [—8e (Sa,om —Sazwp)]s
. weG(V)
where G (V) denotes the set of edges of G; the edges w are oriented, beginning in
‘dy(w) and finishing in d,(w).

The diagrams are called regular [8] (p. 432) if their levels can be matched
in a way such that no edge passes between levels in different pairs, otherwise
they are called irregular. Consider a regular diagram G* and let i be the
permutation such that

defines the diagram with p = 29. The contribution of this diagram is

iak-1 i@

(e 3 d,-,...d,-pf[l [ | [ [E@i1®dudo],

Jyeenp=1.m =1 thyer-1-1Yian -1
where e(k) is the number of edges linking i(2k—1) with i(2k). But
t; tis
(1/e) § § [E(%¥)]*dudv—0
tj—1tj -1

as ¢ >0 except when j =, and in this case

LTS

(1/e) | | [E(¥: Y91 dudo - 2(t;—1;-4) | 631 (v)dv,
ty-1t5-1 4]
so that
(l/ﬁ)qazh aZIP Z d.ii djp
Jlpeons, Jp=1,m

igk-1  Yien

X ﬁ[ ) | [E(Y:Y9)]*® deu dv]

k=1 t00_ 1)~ 1 Uiy -1

q m o0
- 1 a2w2¢( Y. 42 (tj“‘tj—ﬂ)qf 0o (v)dy.
k=1 =1 0

J
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We show in Lemma 11 that the contribution of the irregular diagrams
tends to zero. Using now the same argument of Breuer and Major [8] (p. 434)
we infer, as ¢ — 0, that

E(Y, d(he)—gi - )

m M o]
—>(2q)!!(z dj-"{tj—tj_l))q(fl Z 2! a3, j a%,(v)dv)”.
=1 L}

j=1
Remarks. (i) The random variables (g5 (t;)—g5(¢;-1)) and (gM{ »)—

o (tj - 1)) are asymptotically independent for [t;, tiadnlty, tp-1] =
(ii) In a similar way we can show the asymptotic independence of

| . 1! .
—(Hyu(Y9)ds and —=(Hy(Y))ds for k#1.
.\/EO \/EO
We study now the contribution of the irregular graphs. As in Breuer and
Major [8] we can suppose that [, <, < ... <[,
LemMa 11. For fixed j,, jz, ..., j, the following expression goes to 0 as

£—0:
tjk

(32) (1/3)”21_1 I n |Q"e(3d1(w)—sdz(w)|d5k-

1t, -1 weG(V)

 Proof. Let K (i) be the number of edges such that d,(w) = i; then the
expression (32) is less than or equal to

t_,i

afey Hl, J KG ®

Z Z @ (si— Saz(w))lxc(i’ ds;.

weG(V) di(w)=i
Using the same techniques as in the proposition in [8], p. 435, we see that (32}
is less than or equal to

» g oy p 1 )
11 [— sup f 16,(s —v)l"“"’d5] <2 1 [l6.@0 ds.
i=1 \/Eve[ﬂ 1] t, -1 i=10
Define g (i) = K¢ (i)/21;,. We split the domain of integration into [0, ] and
[#, 1]. We have three cases to consider.
(1) Ke(i) =2
The first part is O(g) and the second is O (¢ ~2*%e®) Since g(i) < 1,
2(2—20) > 1 and K4(i) = 2, we have

j'lg (5)[¥s® ds < Conste = Conste! ~9® g9 < Constef®,
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(i) Ke(@)) =0
Now we have

1
.“Q"a (S)IKG(“ ds=1=¢g% = £90,
(1]

(i) 0 < g(i) < 1/2.
For the second integral, in the same way we obtain O (¢2~2®). For the first
one, making s = ew, we have

nje M
¢ f |G (ew)l* P dw = & J 12 (ew) "= dwte j |6 (ew)[e® dw.

The first term on the right-hand side is O (¢), and for the second, using Hoélder’s
1nequa11ty, we have

nje

j‘ |Q (sw)lxa(l) dw < [J‘ |Qs(3W)|2" dw] (:)[j- 1d ](1 y(l))

Since the first integral remains bounded when ¢ — 0, because 2/, > 2, we can

verify that
n/e

f 8. (ew)|Xe® dw < Const {7 (1/g)1 ~o®

with { small enough (the bound is obtained by making M — o0). Adding up we
obtain

j'lg (s)%Pds < Const [6? 72D + 4D 8@ for & < &(0).
Since g(i) < 1/2 and 2—2a > 1/2, we have in fact

I 16, ()K= ds < Const{#® g#®.
Thus the expression (32) is less than or equal to

P
Conste’, where Z,= ) g(i)—p/2.
i=1
Breuer and Major [8], p. 436, showed that either ZL ,9(@ > p/2 (and in
this case (32) tends to O with &) or there exists 1 <i, <p such that
0 < Kg(ip) < 2L, i.e. 0 < g(ip) < 1. Then the expression (32) is less than or
equal to

Constg®» [(960) 4 g1~ tior]

and since Z,=)"_ g(i)—p/2 >0, the result follows. m




Regularized Gaussian processes 65

(b) Asymptotzc independence of X (t) and W(t)
We want to prove that

w® = (Y= Y5, ..., Y&, gic(t0), -.» G (tw) — G5 (tm-1))
converges weakly as e >0 to

AM(t) = (Xto =X0: (AAR] Xt,.,’ a;\lw(tl)a EERE ] GSW(W(tm)_W(tm—l)))’

where o} = 221 a3 2! f, ¥ 6%, (v)dv; furthermore (X,,,...,X,,) and
W, ..., W) are indepcndent Gaussian vectors. We shall follow closely the
arguments in Ho and Sun [12] with necessary modifications due to the fact
that we are considering a non-ergodic situation.

Let by, ..., b, d;, ..., dn be real constants; we are interested in the limit
distribution of

Y b Yi+ Y di[gh(t)— i (- 1)].

j=0 i=1
To simplify the notation we shall write

Z,t)= ) b;Y, and W)= ) 4;[g%(t)—ga(t;-1)]-
i=0 i=1
Then 2, is centred and Gaussian and
aez (t) = Var(Za (t)) = Z bi ije(ti_tj)-
i,j=0,m
The correlation between Z,(t) and ¥? is denoted by v,(s—i) and
Vo(s—8) = Y, bjd.(s—1)/a, (0)-
j=0
We normalize Z,(t) defining Z(t) = Z,(t)/a,(t). We have already studied the
limit of
D, = E(ZE(t) W, ()

1 tji tfz
= [ae (t)]k Z Az, Azq, -.. Ay, Z d d .. h r/2 _‘- I
Liyensy L=1,M Jisesns Jjr=0,m tig-1tj,-1
!j'_
| E[HY(Z. O)Ha, (Y5)Ho, (Y) ... Hy, Yse)] dsyds, ... ds,.
tjr—1 .
We use again the diagram‘ formula. In this case we have
E[Hk (Z' (t)) Hzll( 1)H212( o Hy ( Ysa)]

= Z H H é(d1 (W)—dz(W))-

Gel’ weG di(w) <d2(w)

5 — PAMS 181
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The set I'=T(1,1,...,1,2l,,...,2l,) contains the diagrams such that

the first k levels correspond to the Y; variables. ¢ is defined as:
(i) —0.(s;—s;) if i and j are in the second level group;

(i) —v.(t—s;) if the edge w joins the first level with the second;

(iii) 1 in any other case.

We say that an edge belongs to the first group if it links two among the first
k levels, and to the second group otherwise.

We shall classify the diagramsin I'(1, 1, ..., 1, 21, 215, ..., 2]} as in [12],
p.- 1166, denoting by R the set of the regular graphs and by RC the rest. We
start with considering R.

- In a regular graph, the levels are paired in such a way that it is not
possible for a level in the first group to link with one of the second, yielding
a factorization into two graphs, both regular. Since k+2I; +2l,+ ... +2I, = 2g,
k and r are both even. By part (a) of this proof the contribution of such graphs
tends to

m M o
(Y bibrti—t)) 7 kNrN(Y & (t—t;-0)" (2 Y D) a3 | 63 )dv)".
iL,j=0,m j=0 =1 0

Using the notation of [12], p. 1167, and denoting by D,/R° the contribution of
the irregular graphs in D, we obtain

DJ/R = Y A%xA5xA4xe"2,

GeR¢

Any diagram GeR° can be partitioned into three disjoint subdiagrams: ¥,
Vs,2 and Vg 3, which are defined as follows. ¥ ; is the maximal subdiagram of
G which is regular within itself and all its edges satisfy -

I1<diw<d,wW) <k or k+l1<di(w<dy(w)<k+r.
Define
VEW) ={jeV&: 1<j<k},
VE Q) ={jeV:: k+1<j<k+r},

where V#, are the levels of Vg ;.

A} is the factor of the product corresponding to the edges of V,,
i =1, 2, 3. The normalization for 45 is therefore ¢~V6.1®12 and, as shown in
part (a), ¢ Ve.1@2 42 tends to

(5 bibyre—n)" =g (F 26,

i,j=0,m j=

x (2 Z a3 (21! Tq%,(u)dv)q
I=1 (1]

as ¢ —0, where g = |V&;(2)l/2. The limit is then O(1).
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Consider now A% and define V;, to be the maximal subdiagram of
G—Vg.1, whose edges satisfy k+1 < d; (W) < d(w) < I +r. The normalization

' for A3 is e~ V622 where Ve, (2) are the levels of Vg ,. A graph in Vg, is
; necessarily irregular, if not it would have been taken into account in Aj. As in

part (a), e V5.2V 45 tends to zero as &— 0.
For A% define

Ves = G—(V61VVs.2)
VEs() = {jeV¥s: 1<j<k}, V& Q) ={jeV¥s: k+1<j<k+r},
where V§, are the levels of V5 5. We need a uniform bound in ¢ for |g,(2)l:
1.2 .
0 (t) =GT[ [ 1@ E)I>irh(Hdi],

where h is the spectral density of X,

62 =72 [ i (u)|ul**L(eu)du ~ "2 ¢,

2 0
6. (t) ~ Esl_“ | Asin(A2)|p (eA)* h(A)dA.
0

If a>1/2, f;o Ah(2)dA < oo because limsup;.,,A2**1 h(4) = Const by (H1),
and then
|6, ()] < Conste® ™.
If & < 1/2, splitting the domain of integration into [0, N] and [N, 4+ co] we get
|6: (O)] < Const[e! "*+¢*] < Conste®.
Adding up, we obtain
(33) |6,(6)] < Conste?,  where f = inf{a, (1—a)}.

We assume now that I, [,, ..., [, are fixed by the graph. Let L = |V 3 (2)|;
then

g~ IVe.aN/2 42
L Ligs)

— g VeI Y e i 11 [T Velt—sue)

Je(ysenjz@)y=0,mi= tjg(i)—l ecE(Vg,3) d1(E)EV5,3(1)

X H 1_[ [ — 0. (Sayow) — Sazow)] @5y

weE(Va,3) di(W)eVg,3(2)
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where E(Vg,3) are the edges of Vg ;. Using (33) we get
L
g~ 1% 52 | 45| < Constefl"Gs(Ml g=Wes2W2  §° [T
Je(yseendo@)y=0mi=1

g

X j H H |—d. (sdx(w) - sdz(w))l dS;(i);

tigy ~ 1 weE(Va,3) d1(w)e¥g,3(2)
V&3 can be decomposed into three parts:
Ag={ieV§s(2): g() =0}, Be={icV&s(2): g@) =1}

Ce = {ieVE1(2): g(® > 1},

where ¢ (i) is the number of edges in the i-th level not connected by edges to any
of the first levels. As in [12], p. 1169, we can rearrange the levels in Vg5 (2) in
such a way that the levels of B are preceded by the levels of Az and followed
by the levels of C¢. Within Cg, the levels are also rearranged so that those with
smaller g(i) come first. Assume first V§;(2) = Cg; then

and -

Lgw

L
(34) H I H H I Q"a (Sdi(w) - sdz(w))l dsﬁ(i}

i=1ty,, _, weE(Vg,3) di(w)eVg, 3(2)

g

L
=11 | I1 IT 18 Gzn = Sarom)l d5ey-

i=1ty,,, _, weE{(¥Vs,3) di(w)=4()

As in part (a), Lemma 11, the expression (34) is less than or equal to Const&’,
where X} = Z{;  k(@)/g (i) and k(i) replaces K¢(i); then

g~ %6312 | g2| < Constehl"e.sM gice g ICal/2
and Z¢; =}, . k(i)/g(i) > 3|Cgl. Hence

il ®
&~ \¥G.3(2)/2 |45| < Constgfl¥e. s

If Vg 3 # @, then |VZ, (1) # 0 and &~ %6.2@W2 | 45| tends to zero as & — 0. Fur-
thermore, if V5 ;3 = O, then V5, # & (otherwise it would have been taken into
account before) and

g~z g5 0 as £ 0.
We suppose now that V;(2) # Cg, ie. either 4 # @ or Bg # &. We have
Vs (2) = |4gl+|Bgl +1Cél.

If ie Ag, its contribution to A% is bounded by Consts?#4, and in total we

shall have Conste??24e, where X, = ZieAG I;. On the other hand, if ie Bg, we
have (2/;—1) edges coming from levels in the first group, and as g(i) = 1,
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there are two possibilities: either k() = 1 or k(i) = 0. In the second case we
shall have terms of the form: g, (d, (w)—s;), which are bounded by 1. The other
edges are connected to”levels in the first group and their contribution is
gf2L=1_ For the first case we have

1 1
_[ |0z (i —Sa,em)l ds; < sup f |G (s;—)| ds;
0 ve[0,1] 0

1/2

< Const ([ Ta% W)dw]'? +0(>~2) = 0({ /?)
V]

because-a < 3/4 ;md { is small enough. The contribution from Bg is bounded
by
ConstePse ({ , [g)Beni*@=1l where Tp = ¥ (2—1).

iEE G

We can prove as before that the contribution from Cg; is bounded by
Conste®e*es, where £ = Y B(2li—g (), Zco = Y kG)/g().

ieCq ieCq

Hence
g~ I¥G.0ll2 g5 = O (g~ Mal+1Bal+1Cali2 g2P2ac gh2ng ( Je{)BentkO=1 ¥ gFec),
where Z,, = ZieAG i, Zps= Z,-E,,G @L—1), 2 =2, E(ZIi—g(i)), 2o =
Lieca k (0)/g ().
We have the following bounds: _
35) 28 Y Li—|Aql/2 > 28146l —146l/2 > 2|46| [F—1/41 > O (since [; > 1),

ieAdg

Y BQL—g@) =0, Y k()/g@—3%ICel =0 (cf [8]),

ieCg ieCa
(36) B Y @L—1)+3[IBenfi: k() = 1}|—|Bgl/2]
ieBg :

> B|Bgl+5[IBsn{i: k(@) = 1}|—|Bgl/2].

Define
X =|Bgn{i: k() =0} and Y =[Bsn{i: k() =1}|;

for ie X there exists je Y such that d, (w) = j, d,(w) = i (by the ordering of the
levels in Vg5 (2)). It follows that |Y| > |X|, and then

B\Bs|+31Ban{i: k(i) = 1}|—IBal/2 > 2(B—)1X| > 0.

Thus, if § > 1/4 and |4¢| # O, the relation (35) implies the result. If f>1/4 and
|Ag| = 0, necessarily |Bg| # 0, which implies that |X| # 0 or |Y| # 0. If [X]| # 0,
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the inequality (36) gives the result; otherwise | X| = 0 and |Y| # 0 the right-hand
side of (36) is equal to §|Y|, and since f§ # 0, the result follows.

As in the unidimensional case (31), we can prove that the weak conver-
gence of the vector (Y5,..., Y, S;,..., 8 —S;,.,) is implied by that of
(Y --es Y, gic(t0)s - -+ Gha (tm) — G (tm—1))-

(c) Convergence of T, = ¢~ 112 Ll) f(YHg(¥¥ds.

We consider a discrete version of T;, defining

ifn
Z"(f) =g 12 Z f(yh 1)/n I g(f’”)ds

(i—1)/n
Let d be a metric for the weak convergence and define

Z'(f)=o¢ Z f(X(z 1)/..) [W/l/n (; 1)/n]

We know from the previous secticn that Zj(f) — Z"(f), weakly as ¢ > 0. On
the other hand,

1Z"(f)—Z"*?(f)|l,»0 as n—> oo
for every p > 0. Indeed, a straightforward calculation shows that
E(Z"(f)—Z"**(f))’ = A1+ A2+ 4s,

where
n+pn+tp
A= o’ Z Z E[f(X(i—l)/(n+p)) f(X(j—l)/(n+p))]
i=1j=1

XE[(m/(ﬁp)— VV(i—l)/(n+p))(W:i/(n+p)— W- 1};’(n+p)):| =g(n+p)— o> “f”%,

A, =gm) - |fI3,
nt+p n

=20y Z E[f (X6 1yin+ o) [ (X jn)]

i=1 j=
X E[(Wym+p— (i—1)/(n+p))( Gin— W(j—i)/n)] - —2¢? ||f”%

as n — oco. This implies that there exists an r.v. Y € I? () such that Z*(f) —» Y in
I?(Q) as n— oo; furthermore, we can characterize this variable using the as-
ymptotic 1ndependence between X and W and Jensens mequahty for condi-
tional expectations

Z(Y/X,,0<s<1)=N(0; azjfz (X,)ds).
: _

To show the convergence of T; we have to prove that d(T;, Y) > 0 as ¢ - 0,
and for this, using the triangle inequality, it is enough to prove

(37) lim lim | T3 — ZZ (f)l|2 = 0.
n—>wo g0 :
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We have, by (5), as ¢—0:
E(T,—Z'(f)) = E(Ty?+E(Z:(f)) —2E(T; Z2(f)),
| E(T)* > a*|fI3.
LEMMA 12. We have
E@Z:(f) ~a*IfI} ase—0.
Proof. It follows that
E(Z: (f))2 Z E[f(Y(f 1)/n)f(Y(j 1)/n) (Slhl_S(l 1)/n) (SJ/n_S(j 1)/n)]

“LJj=1,n
If i = j, we obtain
E [f2 (Y(f— 1)/n) (Sf/n“' fi—1)/n)2] —»nt ||f||.220'2 as e~ 0
because
(Y(: 1)/n> Sl/n S(z 1)/n) - (X(z 1)/n> G(W/n (; 1)/n))

weakly as ¢ — 0. By Holder’s inequality,
E [|f2p (Y(f, 1)/n) (S?/,, - Sfi— 1)/n)2p|:| ” f2 " i (E lSl/n (z 1)/"|2pq)1/q

with p = ﬁ, q= \/5/(\/5— 1), and this is uniformly bounded by the results in
part (a), for ¢ small enough. If i # j, a similar argument shows that this term
tends to zero when ¢ 0. =

To complete the proof of (37), it is necessary to show that

(38) lim linéE.(Tl Z:(f) =% f3.
Define
m 1
Jm(x) = Z ¢ Hy(x), ZYe(f) = 8_1/2§fm(Yse) gM(Ysa)dS,
1=1 o

m ifn .
ZYi ()= Y fa(Bmry) | au(¥)ds.
i=1 (i—1)/n

We have
(9)  ElZi(NT=ZE (N Za* () N
< (B@2 (-2 () E(TR) " +(E(T - 22 () E(Z¥e (1))

Let us show that the right-hand side of (39) goes to 0 as € >0, n— oo,
(M, m) > oo in this order. As we will show in Lemma 14 that

(40) lim lim E(Z}5 (f) Z2* (f) = I full3 0%,

n—o =0

where 67 = Zk 12a2k (2k)! : 62, (w)dw, this will imply (38).
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LeMMA 13. The right-hand side of (39) goes to 0 as ¢—~0, n— oo,
(M, m) - oo in this order.

Proof. To show that the right-hand side of (39) goes to zero it is enough
to see that the both terms on the right-hand side go to zero. We know that as
e—0

E(T)*>a*|f13, E@Z%:(N) = | ful30%,
E@Z:(f) = If13, E@%(f) — | ful}oi,
E(Zo()ZX2 ()~ ELf (Xo) fu(X )] 072

This last reéﬁlt comes from the asymptotic independence between
1! , 1 ,
—{Hu(¥)ds  and  —=[Hy (¥)ds
\/EO €o

(see remarks in section (a)), by using the technique employed for proving the
convergence of E(Z7(f ))2. To finish the proof that the right-hand side of (39)
goes to zero it is enough to show that

E(T, Z3*(f)) = [ ful3oit  as e—0,
but

21 . .
E(T, Zx(N) = ;I(l —0) E(f(¥5) g (Y) fu (¥5) gna (Y)) .
]

By the Schwarz inequality,

|E (f (Y8) 9(Y8) fun (Y5) gaa (X)) — E (f1n(¥8) 9 (¥8) fin (YD) g (BD)| < B f—Frmo 125
where b = || f,ll4 | gl < + 0. Furthermore,

@1)  E(ful¥6)g(¥5) fu(¥) g (X))

=Y g E(fon (%) Hors (33) fo (¥9) e (89).

ki=1
The last identity comes from the fact that

+w

Y lazi| E D fon, (Y8) Hax, (Y8) fou (¥5) g0 (¥)1]

k1=1 B
+
< Z [@2ky| / ) | fons 14 | frmll 8 1 gnelle < + 00
R ki1=1
and the identity (41) is equal to

+0 m m M

z Z Z Z C;.Clzazk,azsz(Hh(er)szl(%)sz(ﬁ)szz(Kg»-

k1i=111=012=0kx=1
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The orthogonality properties imply that 2k, = I,+2k,—1;. Hence 2k, <
2M +m and (41) does not depend on m,, and so

ZM+m2M+m—2 m

E(Tl Z#'E (f)) = —j(l U) Z Z Z Cp Cry Qr—y, Qr— 1,

11=0 13=0,ly+I2even
x E{H, (Y§) H,-,,(Y§) H,,(Y;)H, - :Z(YE)}
By an application of the diagram formula, we get
lim E(T, Z3* (/) = | full3 3. =

LemMa 14. The equality (40) holds true.
Proof. We have

E(Z¥z () Z*(f)

i/n Jjin

=g! Z f _f E{fm(Y(f—1)/n)gM(Ysz)fm(Y;)gM(Ys§)} dsds'.
Lj=1nG~1)n G=1)/n
We consider separately the terms corresponding to i =j and i #j. For the
diagonal terms we develop f,, and g, in Hermite’s basis. We have, by sta-
tionarity and a change of variable in the integral above, that each term of the

‘multiple sum is equal to

1/n 1/n . .
et _[ jE{Hh(Y(?)th(KB)HIZ(K:B)szz(Kf)} dudv.
0 o

Using the diagram formula again we have to look at terms of the form
1/n 1/n

42) g1 g g 0% (v) 6% () 0% (u — ) 6 (v) (— G (u— v)) " du dv.

Four different cases must be considered: _
1. ds > 2 and d, +ds +d, # 0. Now |g, ()] is bounded by ¢?, and it follows
that (42) is less than or equal to

Constn™! gP2+43+40) [ |5 (ex)*sdx -0 as e 0.
o

2.ds>2and d;+ds+d, =0.In thiscase I, = [, =d, =l and 2k, = 2k,
=ds = 2k. It is easy to show that (42) goes to 2[[”" r'(w)dv] [f, o3k (v)dv]
as ¢—0.

3. ds=0. As in the case 1, the term (42) is less than or equal to

Constghz*+d3+d0=1 _, 0 because f > 1/4.
4. d5; = 1. By the same argument we obtain the bound

1/n
n—laﬁ(2k1+2k2—1)~1 f IQs(Z)| dz,
0
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and since
1/ne

.[ |0:(e2)| dz ~ (1/718)2“_1,
0

the term (42) is less than or equal to
| Const(1/n)** eP2hi+2k2-1)—(2a-1) _, )

since « < 3/4. Summing up we obtain

i/n i/n

6_1 z i j jl E {fm(Y(g— 1)/n) gM(Yss) f,,,(Ys'?) gM(YsE’)} dS dS'

T i=1(—1)/n(i—1)/n

m 1/n
% (Y lin | Fv)dv) as e—0,
1=0 0

and this goes to || f,.||2 6/ as n— oo.

For the non-diagonal terms the same cases have to be examined and the
only difference is in the treatment of §,, considering if it is near the diagonal or
not. m

Remark. It is interesting to note that if we define

1
5(N) =72 () Ho (¥ ds
0

(recall that H,(x) = x2—1), then
1 1
e V2L f (YYD ds—| f(Xy)ds] = Z5(f)+ T».
0 0

We know that E(T?) = o(1), so that if 1/4 < o, then T} converges in probability
to zero as ¢ — 0. Furthermore, it can be shown by using an easier argument
that we have weak convergence for Z% (f) to a random variable Ye IZ such that

ZL(Y/X,,0<5<1)=N(0, (} f2(X,)ds)a3).

Given the o-algebra generated by {X, 0 < s < 1}, this limit is in fact a stochas-
tic integral with respect to the Brownian motion which is the limit of S;* =
g"12 j':) H, (Y?)ds. This last result comes from the tightness of the sequence S,
which can be proved as follows. Using a result in Billingsley [7] it is enough to
show that

E|S#* < Const|t|'*? ~ with y >0
but ' ’ '

tttt .
E|S;e|4 = S_ZIIIJ.E{Hz(Ysi)Hz(Kﬁ)Hz () H, (Ysi)} dsy ds, ds; ds,.
- 0000
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Because of the symmetry in the variables s;, we have only to consider two types
of graphs. First, there are those which have levels 1 and 2 connected and levels
3 and 4 also connected. The graphs of second type have levels 1, 2, 3, 4, 1
connected in this order. For the first case we have
1 tttt
_2_“ I j i‘; [0. (54 —32)]2 [0.(s3 —54)]2 dsy dsydsyds,
000

(=]

4¢2 *

= Sl [l w—oP dud]* =5 [I(t 0 [6, ()12 dv]” <~[j[ea(v)]2dv]

f;

O § Otewm =
\

< 48[ f [6. (ew)]2 dw]” < Const 2.

For the second case we consider

-2

© ey
© ey ™

tt -

j j (Q"e (51— 32)) (ée (52 —53)) (Q"a (53— -5‘4)) (é'e (34—31)) ds, ds,ds; ds,.
00

By the Schwarz inequality, and in the same way as before,

t @

§16: (52— 53)l 18e (53— 54)| ds3 < Conste[ | (d. (EW))2 dw],

0 0

which implies that the ﬁrst integral is bounded by

Const

ttt
“._“ (51 — 520} |05 (52— 51)| dsl ds, ds,.
000
Using again the same argument we obtain the bound
) tt
Const | [ds,ds, < Constt®. m
00

Case 3. Y4 <a< 1.
Now we have

1 1 ,
T, =£T‘1—'—"j F(¥)g(¥)ds.
0

Define
1 1 .
W.() = g% § £(¥) Hz (Y5)ds,
0

where a, is the second Hermite coefficient of g. We shall show that

E(Wa(f)—_Tl)z >0 as £—0.
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Thus, to study the convergence of Tj it is enough to consider that of W,(f).
First, it is easy to see that

lim E(T¢) = im E (W7 (/).

e—0 =
The limit on the left-hand side was calculated in the proof of Theorem 1 and for
the right-hand side the only difference is that g is replaced by H,. They are
equal to (4). To study the convergence of the covariance term a similar ar-
gument can be used: write

1

E(WL()T) = = 24 [ (1= [E £ (%) (X9 (89 H (K)] .
As in the proof of Theorem 1 we split the domain of integration into
[0, Me], [Me, n] and [#, 1]. It is easy to show that the contribution from the
first integral is o(e**~3); for the second, using an argument similar to that of
Lemma 7 we infer that it is O (n**~3), and for the third, using the Dominated
Convergence Theorem and making &, 1 — 0 we see that this goes to (4), so that

lim E(W,(f)~ T.)’ = 0.

To simplify the notation we shall study the asymptotic behaviour of
W, (f) = W,(f)/a,. We have the following expression for the regularized pro-
cess and its derivatives where dZy(4) is the spectral random measure corre-
sponding to X, and dZ.(1) = ¢(ed)dZx(A),

1 + oo . 1 + o0 .
Y=— | &4o@ENdZ()=— | e*dZ.(h),

. 1_‘_00 ) 1 +w .
Ke:; f e;zau(ﬁ(gi)dzx(,q_):é_ [ €*iddZ,(2).

We can write W (f) as
1 @ 1 1 + 1 + o .
W) = =a=0 ) Ck—ZIHk—Z(_ § e‘“dZE(}t)>H2(,— § e'“i/'lza(l))ds.
& k=2 0 O o G "

To prove this identity we have to justify the interchange between the sum and
the integral, but this is a consequence of the following facts. On the one hand,

M 1
Dy = Z ck-szk—z(YsE)Hz(Yse)dS
k=2 0

is a Cauchy sequence in I?(Q), and on the other, defining in I?

M
fu=r— Z Cp—2 Hy— 2,
k=2
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it is easy to see that
1 _ )
E[§ fu(Y¥) H, (Y2)ds]* < E(f3(¥$) E(HE(¥9) = 2! | fuel}
0

and this goes to zero as M — c0. Going back to the asymptotic study of W, we
consider now one of the terms in its expansion, which will be denoted by T; (¢).
Using It6’s formula for the Wiener—It6 integral [10], we get

Ti(e) = m_,i (1 +jwe‘”dZ (A))Hz( 5 estildZ, m)

1 1
20— 'fk_ Z Wem(ry (415 5) - -« Dg(agey (Ax, 8)AZ,(1y) ... dZ, (4 ds,
)

Rk nelly
where 1 "
013, 5) = —explish, @k, 3) = oxp(ish),

E()is 1 if j < k—2 and 2 otherwise, and II; is the set of permutations of
{1, 2, ..., k}. We can use It6’s formula since the functions w;(4, s) are ortho-
gonal with respect to the measure |@ (e4)|? h (1) dA, where h is the spectral den-
sity of the process. As in [9], p. 330, integrating the expression above with
respect to s and defining K (4) = (i1)"! (exp (i1)— 1) we obtain

21 ]
Ti(e) = TR J KA+ ... +4)

X Z Aﬂ-l(k_l)lﬂ—l(k)dze(il) - dZa(lk) a.s.

nellx

But since ¢21 %62 - Cy? and ¢¥"2 > 1 as ¢ — 0, to obtain the asymptotic
behaviour of T;(e) it is enough to consider the rest of the expression above.
Define

-1 ’
M, (g) =T ]"K(Al+ e+ 4 Z Ar-1x—1)An- 100 AZs (A1) ... dZ,(Ay).
« Rk

nelj

Using Lemma 15 below we can prove that

1
E(M%(B))EFIIK(AI‘F e +2'k)|2 Z Z /q. -1k — 1)/1 —x(k)/l‘, 1k — I)A - 1(k)
* Rk

welly velly
X |G A2 ... [P AN AR ... h(A)dAy ... dA,

converges, as ¢ —0, to

1 R
E(M%(O)) =E _[le(].1+ +/1k)|2 Z Z Am= 1= 1) An- 100 Av- 1~ 1) Av-100)
‘R

nelly vellg
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Since the last integral above is finite, we can define the following It6—Wiener
integral:

1
Mk(O) = —F j K(/ll'i‘ +A'k) Z ln‘i(k—l)ln'l(k)dz)((ll) dZX(lk)
.Rk

nelly.

Consider now

Dk, &) = —%K(2_1+ e 4D
X Y An-1i=1) An-10y P (6A1) ... @ (e)/h(Ay) ... /h (K.

nelly,

D(k, €) converges pointwise to D(k, 0) as ¢ -0 and the calculations above
imply that ||D(k, &)|> > |D(k, 0)||*> as ¢ >0 in I? with respect to Lebesgue
measure in R¥, and the Lebesgue theorem implies that || D (k, g—D(k,0)| -0
as ¢ >0 in the I?-norm with respect to Lebesgue measure. We have in fact
M, (e) = M, (0) in I?(Q), ie. T, (¢) » T, (0) in I?(Q), where T, (0) = x~ 2 M, (0).
We will now prove that, as ¢ — 0,

W= 3 R6~gs % o M)~ ¥ TO.

First, note that

v W’)—4‘4‘1‘°’) -y Yy k2
ar( & Z Ck 2( ) (k—z4)v0.]'[(k_z_-i)']z(]_k+4)!

1 ) ' .
X k2 j(l —u) [0 WV [6. @~ >" P [— g, W} ~*+* du
e "0

tends, as ¢ —0, to

ick k=2 Y (k—2)!
k=2 i=w=ayvo Hk—2—NT (i —k+4)!

X } (1 —u) [r@Y [F@]**>"2 [Qr"(u)]f-kﬂdu,
0

A similar argument gives the result when the sum k begins with M + 1. This
implies that

lim limsup Z E(TH* =0,

Moo 220 g=p+1
since
limsup| Y (E(RP—E(T,©0)) =0 and Lm Y E(L0)* =

e~0 k=M+1 M=o p_p+1
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On the other hand,
E(Y (TF-TO)

k=2
M

scmst[E(i ) +E( (nf—n(o))2+E(§ T.0)°].

k>M k=2 k>M

Consequently, using the orthogonality relations and previous calculations
we obtain

imE(Y (RE-TO) =0,
k=2

. 20
and the result follows. m

LemMA 15. Let (u,) be a sequence of finite measures in R* such that their
density with respect to Lebesque measure can be written as '

KA+ oo #2017 Y, Y Ae-rg- 1y Aa-109 Av- 10— 1) Av-100

nelly vellx
X |G €Al ... |9 EA)> h(Ay) ... h(4).
Then u, — p weakly as ¢ — 0, where u is a finite measure on R*. This implies that
lim | dp.(x) = | du(x).
Rk

£—=0 pr

Proof. Define ¥,(y4, ..., ;) to be the Fourier transform of g,. Since K (1)
is the Fourier transform of Pélya’s function, ie. |K (1)|> = §(4), where q(u) =
max (1—|ul, 0), we get

Yla(yla LERK} yk)

. ‘
=y 3 j IQ(“)CXP(I'[M(“+)’1)+ +/1k(u+7k)])}~n-l(k—1)}~n-1(k)

nelly vell; R —1
X Ay 1gm 1y Ay-10 |0 AP - 10 EANPR(AY) ... h(A)duddy ... diy.

We have to consider three cases depending on the permutations that appear in
this expression.

Case 1. For two different integers the permutations are the same. We
may assume, without loss of generality, that #~'(k)=v !(k)=1 and
7 (k—1) =v~'(k—1) = 2. The integral is then

1
{ | a@exp(i[Ai@+y)+ ... +A4(@+yJ]) du
R 1
A2 221G AP . 16 P h(A) .. R A, ... ddy

1
= | q@)G.(r1 +w) @ (2 +u) 0. (y3+u) ... 0 (e +w)du.
-1
There are 2k(k—1)[(k—2)!]% such cases.
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Case 2. The permutations coincide for one index and differ for the
other two indices. We may assume without loss of generality that
n l(k)=v'(k)=1and n"t(k—1)=2, v 1(k—1) = 3. As before we get

1
_I g [3: (r1 +w] ds (2 +u) 0, (V3 +u) @ (Ya+u) ... ge(vi+u)du

and there are 4k!(k—2)!(k—2) possible cases.
Case 3. All indices are different, the integral is

1 .
) _{rq(u)ée(vl + 1) 0, (Y2 + 1) 8, (y3 + 1) 0 (Yo + 1) 0. (ys+1) ... (v +u)du,

and there are k!(k—2)!(k—2)(k—3) possible cases. We will only consider in
detail one integral belonging to Case 1:

1
L= § qu).(y1+w)é.(y2+we.(ya+u) ... g:(v+u)du.
-1

We will prove that L, converges uniformly for (y4, ..., y,) €k, where x is com-
pact in R¥, as ¢—0, to '

1
Lo= [ q@f@i+w)F@G+u)r(ys+u) ... r(p+u)du.
-1

We have
ILe(yla seey yk)_LO(yla ey yk)l

1
< lleal¥ 2 § q@)g. (v +u) @, (y2 +u)—F(ys +u) F(y2+u)l du
-1

+ sup o (ra+u) ... 0. (e tu)—7(ys+u) ... r(pe+u) IIF])3.
ue[—1,1]

" The integral above is bounded by

1 1
o o . 1/2 . . 1/2
16all2 [ § 16:0r1 +u)—F (s +u2du] > +[ 16,02 +0)—F (o +w)? du]V?]
—1 -1
and since 7€ IZ, the two terms tend to zero as ¢ — 0. Hence lim,.o ¥, (yy, ..., 7 is

continuous and, in particular, at (y,, ..., 7 = (0, ..., 0). Therefore there exists
a finite measure p such that ji, — ji and, by Levy’s theorem, u, — u weakly. =
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